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Zusammenfassung: Eine Methode zur semi-auto-
matischen rdumlichen Positionsbestimmung von
Baumkronen. Die Anwendung besteht in der Er-
stellung von Baumkarten inklusive Hohenanga-
ben, welche fiir forstwirtschaftliche Planungsauf-
gaben von besonderem Interesse sind. Das Ver-
fahren integriert hoch auflésende Bilddaten mit
Lidar-Daten gerin-gerer Auflosung. Letztere be-
grenzen den Suchbereich fiir die Herstellung des
Kronenschlusses in den Bilddaten und dienen als
Grundlage fiir eine sichere Bestimmung der Kro-
nenhdhe.

Abstract: This paper presents a method for semi-
automatic 3D positioning of tree tops that can
be used for obtaining tree maps of the photo-vi-
sible trees and tree heights. Such spatio-temporal,
detailed information is usable for many applica-
tions in e. g. forestry and landscape management.
The method incorporates the use of passive, high-
resolution optical images with co-existent low-re-
solution airborne lidar data. The latter is used
for confining the search space of image matching
to agree with the volume of photo-visible trees
in the upper canopy and for obtaining an accurate
elevation model, which is paramount for reliable
tree height estimation. The method is presented
here and tested with restricted image and field ma-
terial.

1 Introduction

Remote sensing is applied currently in al-
most all forest data acquisition. Ortho-
images and stereopairs of aerial photo-
graphs are used for stratifying the forest into
stands, satellite images are employed in the
assessment of large areas and airborne laser
scanning is used for the mapping of topogra-
phy and canopies. Advances in the sensor
technologies and analysis methods contin-
uously widen the potential scenarios of new
forest inventory methods that put to use re-
mote sensing (LECKIE 1990, BALTSAVIAS
1999, PETRIE 2003, NAESSET et al. 2004).
Single-tree remote sensing (STRS) that is
based on the idea of substituting the field
measurements and mapping of individual

trees with cost-efficient airborne observa-
tions is an example of a field made possible
by the development. Digital and automatic,
image- and/or lidar-based STRS is a topical
domain (See references in CULVENOR 2003,
KorpeELA 2004, Pourior et al. 2005), al-
though the concept of STRS is not entirely
novel (WORLEY & LANDIS 1954, TALTS 1977).

STRS aims at a detailed description of the
growing stock that is crucial in most appli-
cations of forest inventory. Ideally, it pro-
vides the size-distribution of the standing
trees per species with the two- or three-di-
mensional map of trees. KORPELA & TOKOLA
(2006) examined the potential of image-
based, 2D and 3D STRS. The DBH (stem
diameter at 1.3 m height) and volume of in-
dividual trees cannot be estimated as accu-
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rately with STRS as is it possible in the field.
The main reason is the indirect estimation
phase with allometric models that results in
both random and systematic, tree and stand
level errors. The model inaccuracies are
coupled with photogrammetric measure-
ment errors in species, tree height and/or
crown width. Random errors cancel out ef-
fectively, but the aggregate results of STRS
at the stand level are liable to systematic of-
fsets. Inclusion of tree heights, i.e. the use
of 3D STRS was found to improve the esti-
mation accuracy of both DBH and stem vol-
ume considerably in comparison to 2D
STRS, in which trees are measured for spe-
cies and crown dimensions only. In addi-
tion, in STRS the growing stock is inherent-
ly underestimated since some trees always
remain unseen — at least by optical sensors.

In STRS, field calibration is needed for
avoiding the systematic errors of the al-
lometric equations. Thus, some field visits
seem inevitable if very accurate data is
wanted. Because of the inferior accuracy in
comparison to field measurements, an appli-
cable STRS system has to provide the
measurements and estimates with much
lower costs, which calls for automatic pro-
cedures. A complete 3D STRS system solves
all of the following tasks: (a) tree or crown
positioning in 3D, measurements of (b)
crown dimensions and (c) tree height, (d)
species recognition and (e) allometric esti-
mation of stem size (Fig. 1).

1.1 Hypotheses and objectives

This paper addresses the question of using
remote sensing for 3D treetop positioning
and height estimation and extends the work
by KorpPELA (2000, 2004), in which a semi-
automatic method for treetop positioning
was introduced. It was based on the use of
multiple image-matching of digitized aerial
photographs for the purpose of finding
treetops inside a predefined 3D search space
in the canopy volume (Fig.2). The algo-
rithm applies template matching for pro-
cessing the aerial images into correlation im-
ages, where local maxima correspond to 2D
image positions of treetops (cf. PoLLOCK
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Fig. 1: An example of the data, tasks and output
of a 3D image-based STRS-system for stand
cruising.

1996, LARSEN & RUDEMO 1998). The pre-
defined 3D search space is processed into a
point mesh. The points in the mesh are back-
projected into the correlation images and
aggregated for volumetric correlation,
which is further processed into 3D maxima
that correspond to candidate treetop posi-
tions. The algorithm resembles that of TARP-
JOHANSEN (2001), who positioned tree bases
of oaks in 3D using multiple leaf-off aerial
images. Here, it is further assumed that cor-
rect 3D treetop positions will help in solving
the other image-based tasks of the measure-
ment of the crown dimensions and the in-
terpretation of species (cf. Fig. 1).

The discernibility of treetops is a major
restriction of optical STRS. Only the domi-
nant, co-dominant and intermediate trees
are visible with a high likelihood. The prob-
ability of discernibility is an exponential
function of the relative height of the tree;
such probability-of-discernibility curves
vary between stands according to the dens-
ity of the stand (KorpELA 2004). In most
cases trees with a relative height of below
50% are not seen at all in the images. The
50 % relative height constitutes thus a lower
limit for the volume from where to conduct
the manual or automatic search of treetops
— at least in closed canopies. Respectively,
the upper limit is at the maximal height of
trees. These two parameters vary spatially
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Fig. 2: Image matching for 3D tree top position-
ing (KORPELA 2004). The search is restricted to
a predefined volume in the canopy. ADEM/DTM
is used for height estimation. The scale of the
images (N > 1) is not restricted as such, but the
full orientation of the images has to be estab-
lished reliably.

and it is necessary to obtain reasonably ac-
curate estimates of them to avoid commis-
sion errors by the treetop positioning algo-
rithm (KorpELA 2000, 2004) as the locally
restricted depth of the 3D search space is
the geometric (epipolar) constraint that is
used for the solution of the mathematically
ill-posed correspondence problem for tree
tops. The results can only be optimal if the
search is set to cover the upper canopy vol-
ume (KorpeLA 2004; p. 35, 65-66).

The estimation of tree height is straight-
forward once the treetop is positioned in 3D.
A DTM gives the elevation of the butt. The
error of the height estimate consists thus
from possible treetop positioning errors and
DTM errors. A DTM is also needed for de-
fining the lower limit of search space at the
app. 50 % relative height level below which
treetops cannot be expected to be measur-
able. KOrRPELA (2004) suggested that an ac-
curate DTM obtained by means of low-re-
solution laser scanning could be incorpor-
ated in the algorithm for the delineation of
the search space and for accurate tree height
estimation. Similarly, laser scanning was
proposed for the estimation of the local,

maximal height of trees by a canopy height
model (CHM). These proposals/theses are
put to test here with real field, image and
lidar data. By combining aerial photographs
with lidar this paper exploits the principle
of the photo-lidar approach presented by
ST-ONGE et al. (2004). A low sampling rate
airborne lidar is used to keep the material
costs to a minimum. The proposal in this
article is that low-resolution lidar can be
combined with multiple image-matching of
aerial images for accurate and cost-efficient,
semi-automatic tree top positioning and tree
height estimation.

2 Method for semi-automatic 3D
treetop positioning using aerial
images and LIDAR based surface
models

The method consists of the steps 1-9 given
below. Automation of steps 2 and compu-
tations in step 5 have been developed most
in comparison to the algorithm presented
in KORPELA 2004.

1) Delineation of the area of interest. Here,
the tree tops were positioned inside circular
plots with a radius ranging from 15 to 20 m.
In general, the geometry of the area of in-
terest can vary and a homogenous stand
would be a natural choice in practice.

2) Delineation of the 3D search space in the
upper canopy. This is done by analyzing the
lidar-DTM and the lidar-CHM such that
the search space is filled by a 3D point mesh
with 0.5m spacing. The maximal elevation
or local dominant heightin a given XY point
is given by the CHM, which is multiplied
by parameter fy,0, € [1,1.3] to reduce
the inherent underestimation. Parameter
HDepth € [0,1] defines the depth of the
search space with respect to the local domi-
nant height of trees (HDepth = 1) and the
terrain elevation (HDepth = 0).

3) Selection of a sample tree and the
measurement of its 3D treetop position us-
ing manual image-matching. The capture of
elliptic templates representing the tree in all
images (Fig. 3).



38 Photogrammetrie « Fernerkundung « Geoinformation 1/2007

Fig.3: Template-boundaries of a selected and manually positioned sample spruce tree with pa-
rameters: EllipseHeight = 3m, EllipseWidth = 2.6 m and EllipseShift = -1 m. The shift downwards
by EllipseShift is seen in the image on the right: the image position of the hot-spot i. e. the tree
top and the template centre deviate. The vertical lines connect the measured 3D tree top position
and the DTM. This photo-lidar height estimate was 15.53 m and the field measurement was 15.7 m.

Fig. 4: Cross-correlation images computed using the captured templates and aerial images of Fig. 4.

High correlation is displayed in white.

Object space parameters EllipseShift, El-
lipseHeight, and Ellipse Width define the po-
sition, size, and shape of the ellipse in the
images. EllipseShift shifts the center of the
template in the Z direction. Using this para-
meter, the templates are typically moved
down to capture more of the crown than
the background. Ellipseheight defines the
major axis of the elliptic template, which in
the images is made parallel to the direction
of the Z axis (trunks). Ellipse Width defines
the length of the shorter axis. The shape is
conditioned to circulari. e. the templates are
allowed to be elliptic for oblique views only
and in the direction of the radial displace-
ment (i. e. Z axis, tree trunk). These 3 para-

meters take metric values. The actual tem-
plate images are rectangular copies of the
aerial images. Pixels that fall outside the el-
lipse are masked out. The location of the
treetop inside the template, the so called hot-
spot, is stored for each template and is ac-
counted for in cross-correlation computa-
tions that follow.

4) Template matching. Template matching
with normalized cross-correlation is carried
out for each image using the template of that
aerial image. This procedure maps the aerial
images into cross-correlation images p (X, y)
€ [—1, 1], in which high values of p indicate
good match at image location x,y (Fig.4).



|. Korpela, 3D Treetop Positioning

39

Ideally p(x,y) would consist of very sharp
peaks at the correct positions of the treetops.

5) Aggregation of 3D correlation, p3D.
Each point in the search space is back-pro-
jected to the cross-correlation images using
collinear equations and an affine fiducial
mark transformation with pixel accuracy.
p3D is computed for each point in the 3D
search space seen as a geometric mean of
the images resulting in p3D € [0, 2].

Fig. 5: lllustration of the volumetric, discrete p3D
data in the search space with three transects
(slices) superimposed in an oblique aerial view.
The brightness of the points denotes p3D. The
undulationis due tochanges interrain elevation
and local dominant height of trees. The white
dots that form lines are the terrain points.

6) Clustering of the p3D data into 3D
treetop candidate positions. The point set
is first sorted in the ascending order of p3D.
Clusters are formed from points with p3D
above a limit, R/imit. Points are merged into
existing clusters while the sorted list is pro-
cessed. Merging is controlled by a planimet-
ric distance parameter, XYthin. Points
closer than the set value are merged into
existing clusters and do not form a new clus-
ter. The 3D position of the cluster is the
mean of the 3D points that belong to the
cluster and p3D is used in linear weighting
of'the coordinates. Rlimit is a parameter that
controls the quality of the clusters. Only the
best clusters are accepted as tree top candi-
dates, if Rlimit is set to a high value. In such
cases, omission errors are few assuming that
the search space is set correctly. A low value
of Rlimit brings about new clusters at the
cost of commission errors. The merge-para-
meter X Ythin controls the density of the
clusters. A value that is too large causes
neighbouring trees to be merged. Similarly,
if XYthinis set too low it can result in several
clusters originating from the actual p3D res-
ponse of a single tree.

The description of the steps 7-9 below ap-
plies to any practical implementation of the
algorithm in situations where no ground
truth exists. In the experiments of this study
step 7 was replaced by a numerical quality
assessment, and steps 8 and 9 were not per-
formed.

Fig.6: Candidate positions and the borders of circular photo-plot (r = 15m) superimposed in an
image pair. The circle is drawn at the elevation of the treetop of the model tree.
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7) Visual quality assessment of the treetop
positioning. The visual evaluation of the
matching results is based on visual examina-
tion of the candidates that are superimposed
either on monoscopic or stereoscopic views.
If necessary, the clustering algorithm is re-
run by adjusting the parameters X Ythin and
Rlimit. Sometimes the procedures have to
be repeated from the start by selecting and
positioning a new model tree. As all subse-
quent steps need to be re-computed it is im-
portant to have good approximate values
for the parameters to avoid unnecessary it-
eration.

8) Manual correction of the semi-automatic
matching results. In it, the bad candidates
are removed or corrected for position. The
unrecognized tree tops are completed manu-
ally using stereo interpretation (for oper-
ators with a good stereo vision) or using
manual image matching with monocular ob-
servations and epipolar constraining (KoR-
PELA 2004).

9) Height estimation using the existing
DTM.

3 Experiments

3.1 Data

The field data in Hyytiéld, southern Finland
(61°50'N, 24°20’E) consists of fully mapped
and measured stands (KOrRPELA 2004). The
field measurement errors for tree positions
and the basic tree variables are known
through repeated observations. The posi-
tions of the field trees have been established
with tacheometer and VRS™-GPS observa-
tions and field levelling. The image data con-
sisted of digitized aerial photographs, which
have been orientated in one large multi tem-
poral (1946-2004) image block (KORPELA
2006). Here, leaf-on images from summers
of 2002 and 2004 were used in the experi-
ments. These were taken using standard
metric cameras with 15cm and 21 cm lenses
and the images have a 14- or 15-micron pixel
size. The experiment allowed for testing the
following nominal scales: 1:6000, 1:8000,
1:12000, 1:14000, 1:16000 and 1:30000. The

images have forward and side overlaps that
vary from 60% to 80%. Lidar data was
from August 2004 with an Optech
ALTM2033 sensor from a flying height of
900 m. The pulses had a footprint diameter
of 0.3m and the pulse density was 1.1 m by
1.3 m, on average. The instrument recorded
1 or 2 returns. The full geometry of each
pulse was available: time stamp, position
and orientation of the lidar, ranges, inten-
sities and positions of the 1 or 2 returns. A
raster DTM was processed from the lidar
returns using a simple gradient-based
method and a RMSE of 0.30m was ob-
tained in a test set of 10947 tacheometer
points representing terrain of wooded areas.
A raster CHM was constructed from lidar
maxima in 5m by 5m cells.

3.2 Performance of tree top
positioning

A treetop was considered to be correctly
found (hit) if a candidate was inside a 2.4-
meter wide and a 6-meter high test-cylinder.
The dimensions of the test-cylinder affect
the performance measures. The field errors
in tree positioning using tacheometer, in
height measurements, errors made in updat-
ing heights to the time of the photography,
possible tree slant and sway as well as the
stand density of the test sites were consider-
ed. The test-cylinders can have overlap in
dense forests and excessive candidates in a
test-cylinder or in intersecting cylinders
were considered as commission errors and
trees without a candidate were considered
as errors of omission. A buffer around cir-
cular test plots (Fig. 7) was used as trees can
be hit by a candidate from the buffer and
vice versa.

Hit-rate was the ratio between the num-
ber of hits and the total number of trees.
An accuracy index was computed based on
the numbers of omission (0) and commis-
sion (c) errors and the number of trees (n)
(cf. Pourior et al. 2005): Al = [(n—o0—¢)/
n] x 100. The 3D-positioning accuracy was
evaluated with the RMSE that were com-
puted separately for the XY and Z although
the positioning is entirely 3D. The RMSEs
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include the imprecision of the ground truth
and therefore overestimate the true inaccur-
acy. The positioning error-vector [AX, AY,
AZ] was defined as field-candidate; thus a
positive AZ indicates underestimation.
Mean differences of AX, AY and AZ
measure systematic offsets. To evaluate the
averaging effect of tree heights, a regression
line was fitted in the AZ x tree height dis-
tribution and the slope coefficient (trend)
and its standard error were computed. The
set of field trees was confined to those that
were discernible to the operator. This tree
set represents the potential trees to be found.
In some stands such a criterion can leave
out 50% or more of the trees; however, the
proportion of the total volume in the non-
discernible trees is normally small, from 0%
in managed stands to 12 % in natural forests
(KORPELA 2004).

3.8 Tests in a spruce stand

Treetop positioning was tried out using im-
age sets in scales 1:8000—1:16000 (Tab. 1) in
one managed spruce stand. Images in the
scale of 1:6000 were left out because of the
computational burden of template matching
and scale 1:30000 was omitted because in-
dividual treetops were not well measurable
in that scale anymore.

One model tree was used in all trials, and
the parameters defining the shape and po-
sition of the elliptic templates were kept
fixed. The exact 3D position of the treetop
was measured separately for each set of im-
ages using manual, monoscopic multi-image
matching. It varied in Z because of the tem-
poral mismatch of the May 2002 and June
2004 images and because of small orienta-

Tab.1: Results of treetop positioning using dif-
ferentnumber of images in different scales. Plot
S6 with 95 photo-visible trees in a circular plot
with radius of 20 m. f, 5., = 1.15, HDepth = 0.65.

Number of images, | Al- | ¢ |Mean RMSRMS

+0.15/0.93 |0.62
+0.42{0.98 | 0.58

scale, overlaps (%),| % AZ | AZ, |AXY,
focal length (cm) m m | m

2 1:8000 60/60 21|61.1 |13 |—0.04{1.29|0.70
2 1:83000 60/60 21|77.9| 9(—0.39/1.24|0.73
4 1:8000 60/60 21|85.3| 7{+0.06/0.76 | 0.68
4 1:8000 60/60 21|88.4| 5|—0.21{0.99|0.67
6 1:3000 60/60 21[85.3| 2|—0.08/0.72|0.61
2 1:12000 70/60 15[82.1 |10 |+0.22] 0.80 | 0.60
3 1:12000 70/60 15/91.6 | 5|4+0.13/0.70 | 0.56
4 1:12000 70/60 15|88.4 | 4|+0.31/0.85|0.57
3 1:14000 80/60 21|87.4 | 4|—0.09/0.83|0.68
4 1:14000 80/60 21|87.4 | 7|—0.20/0.93{0.65
6 1:14000 80/60 21[94.7 | 3|—0.15/0.87|0.60
7 1:14000 80/60 21{93.7 | 2|—0.12/0.94|0.62
2 1:16000 60/60 15[85.3 | 5]—0.25/0.87|0.66
31 3

41 4

116000 60/60 15(88.4
:16000 60/60 15|74.7

Fig. 7: Results of treetop positioning for a circular test plot. Unfilled squares depict the candidate
positions for correct hits (56), squares with a cross depict missed treetop positions (o = 2), and
the crosses depict the commission errors (¢ = 1). The Al was [(58-2-1)/58] X 100 = 94.8%. The
hit-rate in total stem volume was 97.1%, RMSE of AXY was 0.55m, RMSE of AZ was 0.67 m with
a slope coefficient of 0.055m per m of tree height. The errors in the DTM elevations had an RMS

of 0.27 m.
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tion and observation errors. The search
space was kept fixed with parameters /0.,
and HDepth. Tree heights from May 2002
were simply added 0.7 m, which correspon-
ded to the average height growth of three
summers. Parameters Rlimit and XYthin
were tuned for obtaining optimal results in
the Al-measure.

Increasing the number of images usually
improved the performance in the AI
measure; however there were images in
which the crown of the model tree was not
seen against a clear background, which re-
sulted in a poor cross-correlation image that
deteriorated treetop positioning. The imag-
ing geometry affects treetop positioning;
best results were obtained with an image set
that consisted of six images taken with nor-
mal-angle cameras at the scale of 1:14000.
These images had even large overlaps and
the elevation of the sun was higher (45°) dur-
ing the photography. These factors affect
occlusion and shading in aerial views that
can impede image matching. It seems that
the optimal scale for the type of spruce trees
in plot S6 (heights from 12 to 22 m) is some-
where between 1:10000 and 1:15000. The
images in 1:8000 had details that did not
help in treetop positioning, but may be
needed for example in species recognition
with texture measures.

Tab. 2: Performance of the 3D tree top position-
ing algorithm for different values of the parame-
ter f 0. Plot S6 with 95 trees in a circular plot
with radius of 20 m. Rlimit = 1.41, XYthin = 1.5

Parameter f},,,,, corrects the local domi-
nant height given by the CHM and thus de-
fines the upper limit of search space. Simi-
larly, the parameter HDepth defines the
lower height and depth of the search space.
Treetop positioning was tried at different
values of these parameters. The optimal
values for f;,0, Were from 1.1 to 1.3, when
HDepth was kept at 0.65. All performance
measures showed best performance in this
range. Here, the CHM was calculated using
a 5m grid, which may be too coarse in sparse
stands. Similarly, the density of the lidar
data will most likely affect the quality of the
CHM, which needs to be considered in set-
ting the value for fy;p0u-

Parameter HDepth gives the lower height
of the search space, and this parameter
should be adjusted according to stand den-
sity since in dense stands only the tallest
trees remain photo-visible The dominant
height of plot S6 was 20.6 m and the shortest
discernible tree had a plot-level relative
height of 0.53. However, the neighboring
trees of this 10.6-m high tree had heights
from 15 to 18 m, which means that the local
relative height of this tree is approximately
0.6. Best results in AI-% were obtained with
HDepth at 0.65. Commission errors (“‘short
ghost trees”) start to appear, if the search
space is started from a too low height. If

Tab. 3: Performance of the 3D tree top position-
ing algorithm for different values of the parame-
ter HDepth. Plot S6 with 95 trees in a circular
plot with a radius of 20 m. Rlimit = 1.41, XYthin

and HDepth = 0.65. Four images in scale = 1.5m, fy,po, = 1.15. Four images in scale
1:12000. 1:12000.
fupom |AL-% | ¢ |Mean|RMS |RMS | Trend HDepth|Al-%| ¢ | Mean [RMS|RMS| Trend
AZ, | AZ, |AXY, |AZ xh, AZ, | AZ, |AXY,|AZ x h,
m m m m/m m m m | m/m
0.95 | 46.3 | 21 |+1.03] 1.35 | 0.71 | 0.33 045 |64.2|31 |+0.28/0.84|0.72| 0.11
1.00 | 78.9 | 11 |4+0.88| 1.28 | 0.69 | 0.31 0.50 |75.8 |22 |+0.19/0.77|0.71 | 0.11
1.05 | 88.4 | 7 |+0.48/ 092 |0.70 | 0.24 0.55 |88.4 |10 |+0.12{0.72]0.70 | 0.12
1.10 | 94.7 | 4 |+0.21| 0.74 | 0.69 | 0.18 0.60 |90.5| 8 |+0.06/0.71]0.70 | 0.13
1.15 1 93.7 | 5|40.06| 0.74 | 0.70 | 0.16 0.65 [93.7| 5 [+40.06/0.74|0.70 | 0.16
1.20 | 89.5 | 7 |—0.09| 0.80 | 0.70 | 0.17 0.70 |92.6| 3 |+0.01{0.75]0.70 | 0.19
1251905 | 5|—0.18/ 0.86 | 0.71 | 0.16 0.75 |89.5] 3|—0.06/0.75|0.71 | 0.21
1.30 | 88.4 | 5 |—0.21] 0.85 | 0.71 | 0.14 0.80 [89.5| 2|—0.21/0.77|0.72| 0.22
1.35 | 853 | 6 |—0.32/ 091 | 0.71 | 0.13 0.85 [821| 3|—0.42/0.82/0.73| 0.22
1.40 | 73.7 | 15 |—0.39] 0.93 | 0.72 | 0.13 090 |69.5] 2|—0.70{0.94]0.74 | 0.20
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the search space is not deep enough, the
heights of the short trees are overestimated
and the averaging effect increases. These ef-
fects are seen in Tab. 3.

4 Discussion

Semi-automatic 3D tree top positioning of
individual trees using image-matching is an
alternative or complement to lidar-based
techniques in which trees are found by pro-
cessing very high-resolution lidar data with
from 5 to 30 points per m>. The method pre-
sented here combines optical images and
low-cost lidar with emphasis on the use of
images. The lidar-based surface models that
approximate the canopy elevation and give
the terrain relief accurately are a necessity
for accurate height estimation, since the
ground is seldom seen in images taken under
leaf-on conditions. If the image-matching
strategy here is compared with common
techniques of stereo matching for surface
modelling, it can be said that the lidar CHM
and DTM provided a short-cut and gave a
good approximation for the possible space
of solutions, which normally are obtained
by hierarchical image matching techniques
and the coarse-to-fine strategy (SCHENK
1999). The results of the experiments gave
support to the thesis that low-resolution
lidar data can be used for delineating and
bounding the search space in the canopy
semi-automatically by adjusting the para-
meters that define the relative underestima-
tion of the lidar-CHM (fy,0,) and the
lowest relative height of the trees that ex-
pected to be visible in the aerial views
(HDepth).

The implementation described here is not
very robust against the variation in the size
of tree crowns and the results presented here
were good mainly because the test stand re-
presented a rather regular forest. In stands
with a large species mixture and variation
in crown sizes, the results have been found
inferior. It may be possible to incorporate
the use several sample trees (or synthetic im-
ages of crowns; see LARSEN 1997) in image
matching to improve the possibilities to de-
tect and position trees of varying size. Simi-

larly, it would be desirable, if the feature de-
tector, template matching in this case, would
yield not only the 2D image positions of tree
tops but also symbolic information similar
to what is utilized by an operator when the
task is performed manually (species, crown
size). It would then be possible to rule out
automatically some of the unpreventable
commission errors.

A semi-automatic approach seems to be
the only solution to 3D tree top positioning
using aerial views because of the nature of
the problem. Occlusion and shading are in-
herently present in aerial views and trees
vary in size, shape and radiometric proper-
ties. In the development of the methods
presented here, the strategy has been to pro-
vide a system for measuring as many tree
tops as possible automatically with a high
positioning accuracy and a low commission
error rate. After manual amendment the 3D
tree tops provide tree heights and 2D image
positions that can be used as seed points for
the remaining tasks of species identification
and measurement of crown dimensions,
which can possibly be solved in the 2D im-
age domain.
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