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1 Introduction

Precise and detailed, three-dimensional geo-
metric models are used for multiple purposes 

such as industrial site reconstruction, heritage 
documentation, and natural surface monitor-
ing for risk and hazard assessment. Point 
clouds acquired by a terrestrial laser scanner 
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Summary: Phase-shift terrestrial laser scanners, 
as all other measuring devices, are affected by 
measurement errors, i.e. errors in range and verti-
cal and horizontal angle. These errors are com-
posed of a random and a systematic part. The sys-
tematic errors of the range measurement are in the 
order of a few millimeters, whereas random range 
measurement errors are higher.
 An on-the-job range calibration method is pre-
sented and applied on a real dataset. The method 
relies on scanned datasets of planar surfaces, so 
called “patches”. Assuming that the measured 
points are on these patches, parameters of the range 
correction function, scanner and patch parameters 
are estimated simultaneously using least squares 
adjustment.
 A continuous piecewise linear correction func-
tion is suggested, and its parameters are estimated 
using the proposed adjustment method. This is, 
from the theoretical point of view, the main contri-
bution of this paper. It effectively exploits the mas-
sive overdetermination provided by terrestrial laser 
scanning and advances previously suggested self-
calibration approaches (Gielsdorf et al. 2004, Bae 
& lichti 2007). The actual range correction func-
tion for a FARO LS 880HE instrument clearly 
shows the periodic range errors reported by other 
authors. The correction function also shows shorter 
periodic errors not reported before as well as non-
periodic systematic errors.

Zusammenfassung: On-the-Job Entfernungskali-
brierung von terrestrischen Laserscannern mit 
stückweise glatten Funktionen. Die Winkel- und 
Streckenmessungen von terrestrischen Laserscan-
nern sind durch zufällige und systematische Fehler 
verfälscht. Bei der Entfernungsmessung nach dem 
Phasenvergleichsverfahren sind die systematischen 
Fehler typischerweise zwar kleiner als die zufälli-
gen Fehler, aber auch schwieriger zu bestimmen. In 
diesem Artikel wird eine „on the job“ Kalibrie-
rungsmethode für die Streckenmessungen präsen-
tiert und an einem realen Datensatz getestet. Die 
Methode setzt voraus, dass ebene Flächenstücke in 
der gescannten Punktwolke vorhanden sind. In der 
Folge werden in einer Ausgleichung nach vermit-
telnden Beobachtungen die Orientierungsparame-
ter der einzelnen Scanpositionen, die Ebenenpara-
meter und die Parameter für die Entfernungskor-
rektur simultan berechnet. Letztere ist durch eine 
stetige, stückweise lineare Korrekturfunktion rea-
lisiert. Diese Form der Korrekturfunktion und die 
simultane Berechnung ihrer Parameter ist der 
Hauptbeitrag dieses Artikels. Der Ansatz nutzt die 
in Laserdaten vorhandene Überbestimmung sehr 
effizient aus und erweitert existierende Selbstkalib-
rierungsvorschläge (Gielsdorf et al. 2004, Bae & 
lichti 2007). Im Beispieldatensatz eines FARO LS 
880HE Laserscanners zeigten sich deutliche perio-
dische Korrekturanteile über die auch andere Auto-
ren bereits berichtet haben. Mit der vorgestellten 
Methode wurden aber auch markante periodische 
Korrekturanteile mit kürzerer Wellenlänge aufge-
deckt – über diese wurde bisher noch nicht berich-
tet. Zusätzlich wurden auch nicht-periodische An-
teile festgestellt.
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(TLS) are commonly used for automated mod-
el generation, as TLS allow for fast and area-
wide acquisitions of huge scenes. The continu-
ously increasing performance (i. e. data sam-
pling rates) of such scanners increases also the 
expectations of the data end-users with respect 
to accuracy and richness in detail. However, 
these expectations can often not be fulfilled 
due to shortcomings of the systems.
 TLS based on phase-shift measurement 
(rüeGer 1990) have a field of application be-
tween less than one meter and up to 100 meter. 
Commercial systems apply amplitude modu-
lation of the continuously emitted wave (AM-
CW). The achievable accuracy of the raw 
measurements is about 3 millimeters for dis-
tances of up to 10 m. However, it has been 
shown, for example, by lichti (2007), amiri 
Parian & Gruen (2005), and schneider & 
maas (2007), that the error budget of TLS can 
be divided into random (precision) and sys-
tematic measurement errors following the 
definition of (mikhail 1976). Hence, both cat-
egories of errors may be dealt with individu-
ally. For example, random measurement errors 
as reported by (inGensand et al. 2003) can be 
reduced significantly by suitable averaging 
techniques (notheGGer & dorninGer 2009) 
especially when taking advantage of the high 
measurement rates of phase-shift scanners 
(> 100 kHz).
 Systematic measurement errors cannot be 
removed by simple averaging. These errors 
are often correlated with the measured dis-
tance, hence, modifying the average of the 
measured distances. Thus these errors limit 
the applicability of terrestrial laser scanning 
especially if high accuracy, e. g., ± 1 mm, is 
required. However, systematic measurement 
errors can be eliminated, or at least reduced, 
by proper laboratory calibration. However, 
very often the scanned data still shows re-
maining systematic errors. Therefore correc-
tion methods are required, which can be ap-
plied “on-site”, termed on-the-job calibration 
or self calibration.
 In this paper, we propose a method for on-
the-job range calibration of TLS. It requires 
multiple scans from identical, planar patches. 
It can be applied on data acquired on the job, 
i. e., real project data. Hence, changes of the 
calibration over time can be dealt with prop-

erly. Because of the huge amount of data, such 
methods are only feasible if they run automat-
ically. The method is based on an overall ad-
justment of the residuals of the measurements 
with respect to the planar patches. Simultane-
ously, the plane parameters of all patches and 
the registration parameters of the individual 
scans are determined. The paper starts with an 
overview on the state-of-the-art in TLS cali-
bration approaches in Section 2. Theory and 
methods are described in Section 3. In Section 
4, we describe the acquisition and the prepro-
cessing of the datasets used for the experi-
ments. The results of the method’s application 
on point clouds, acquired in historic rooms are 
presented in Section 5 and discussed after-
wards.

2 State-of-the-Art

To understand the nature of the systematic er-
rors discussed in this paper, a closer look on 
the measurement principles of the instruments 
used is necessary. Systematic errors of the 
early phase-shift electronic distance measure-
ment devices are summarized by (rüeGer 
1990). He identified additive constant error, 
scale-error, short-periodic errors and non-lin-
ear distance dependent errors. The additive 
constant error is a constant difference of the 
true and the measured distance. This is due to 
the optical and electronic structure of the in-
strument (the uncompensated optical path 
length and time delay in the electronics). The 
scale error is due to the frequency error of the 
modulating waves. The short-periodic errors 
are periodic functions of the measured range. 
The wavelengths of these periodic functions 
are usually integer divisors of the modulating 
wavelengths. This can be caused by the opti-
cal and/or electrical crosstalk (rüeGer 1990). 
Non-linear distance dependent errors are all 
other distance-dependent errors, which are re-
peatable and reproducible, but do not fit into 
the above three classes. These errors are usu-
ally modeled with polynomial expressions.
 A similar error model was presented by 
(lich ti 2007) for phase-shift scanners. The er-
ror functions for range measurement correc-
tion were the additional constant, scale factor 
and periodic functions with only the half of 
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the wavelength of shortest and middle modu-
lating waves. In addition, the dependency of 
the measured distance from the vertical and 
horizontal angle of measurement direction 
was also considered. The actual values of the 
coefficients of the error functions (additional 
parameters, APs) were estimated using an ad-
justment method comparing laser scanner and 
tachymeter measurements of a set of retro-re-
flecting targets.
 (inGensand et al. 2003) reported laser scan-
ner range measurements compared with inter-
ferometer distances. As the measurements 
were made with one-meter interval for 0 – 52 
meters, the short-periodic errors (shorter than 
2 meters wavelength) were not seen in the 
calibration function. They also found an unex-
pected short-periodic error with a wavelength 
of approximately 3.4 meters and with increas-
ing amplitude from 3 mm to 27 mm in the dis-
tance range from 28 to 52 meters. This indi-
cates that short-periodic errors cannot be re-
garded as a periodic function with constant 
amplitude over the entire measurement range.
 (kersten et al. 2008) used spherical objects 
and reflective targets to evaluate and deter-
mine the long-distance measurement errors of 
new generation laser scanners. They also de-
termined the non-periodic systematic errors 
for two phase-shift scanners.
 The method of range measurement error de-
termination – applied by the authors men-
tioned above – has significant deficiencies: 
Because the random error of the range meas-
urements is larger than the systematic errors, 
the number of the calibration measurements 
(number of the measured targets) should ex-
ceed substantially the number of the calibra-
tion function coefficients (additional parame-
ters). This is a very time consuming work, 
because the scanner measurements should be 
repeated many times for proper averaging of 
scanner data, and reference measurements 
(with tachymeter or interferometer) should be 
made with short distance intervals to find all 
possible short-periodic error components over 
the entire measurement range.
 An analysis of short-periodic errors was 
made by (dorninGer et al. 2008). They de-
fined local plane surface segments (patches) in 
the dataset of a scanned room, and calculated 
the distances of individually measured points 

from the adjusted planar patches. They used 
patches with an extent in range direction that 
is slightly longer than the wavelength of the 
expected systematic error. This method has 
limitations: the coefficients of periodic errors 
with longer wavelength than the extent of the 
patch cannot be determined. But increasing 
the extent of the patches is also limited, be-
cause then also the planarity of the patches on 
real surfaces decreases.
 In an earlier work, a plane-based on-the-job 
calibration method was suggested by (Giels
dorf et al. 2004). The basic idea is that points 
measured from different scanner positions 
and corrected with the proper calibration func-
tion should fit on planar patches. The parame-
ters of the calibration function, the exterior 
orientation of the scanners, and the plane pa-
rameters of the patches are estimated using an 
adjustment process, similarly to a photogram-
metric bundle adjustment. (Gielsdorf et al. 
2004) applied the method for correcting hori-
zontal and vertical angles. For the ranges they 
estimated the additive constant error and the 
scale-error. (Bae & lichti 2007) applied this 
method for the FARO LS 880HE laser scanner 
data, and they estimated for range correction 
only the additive constant parameter (besides 
angular correction functions).
 The measured distance also depends on the 
propagation conditions in the atmosphere (not 
significant on distances up to 50 meters) and 
on the interaction of the reflecting surface and 
the laser beam. This second effect (“material-
related variance”) was examined by (inGen
sand et al. 2003). It is often modeled as a func-
tion of measured intensity and applied in the 
laser scanner software.

3 Theory and Method

We assume the following to be given: (i) sev-
eral scans of the same scene obtained from 
different scan positions, and (ii) planar fea-
tures included in the scene.
 The method for detecting such planar fea-
tures (termed patches in the following) is not 
scope of this paper. However, Section 4 on the 
example data gives a short description of the 
method we applied.
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3.1 Observations

Exported x, y, z point coordinates should be 
converted to spherical coordinates, as the in-
strument actually measures these values. The 
spherical coordinates1 of the ith measured point 
in the jth scanner space are range, ρij, horizon-
tal direction, λij, and elevation (vertical) angle, 
φij, which are parameterized in terms of scan-
ner space Cartesian co-ordinates (xij, yij, zij) as 
follows:

λij = arctan  (  yij ___  xij
  ) , φij =  (  zij _______ 

   √
_____

  x ij  
2   +  y ij  

2    
  )  (1.a, b)

ρij =    
 √
________

  x ij  
2   +  y ij  

2   +  z ij  
2     + Δρ (xAP)  (1.c)

 As a consequence of the aim – correction of 
range measurements – a range correction 
function Δρ is introduced in Eq. (1.c). The ac-
tual form of the function Δρ will be discussed 
later. The parameters xAP of this correction 
function are either called “interior orientation 
parameters”, “additional parameters” (AP), in 
(lichti 2007), or “calibration parameters” in 
(Gielsdorf et al. 2004).

3.2 Functional Model

 In the proposed algorithm, identical planes 
are observed from different scanner positions, 
so the range correction function, the scanner 
orientation parameters and the patch parame-
ters are adjusted simultaneously, with the con-
dition that the measured points are on the 
patch.
 The Cartesian coordinates of the observed 
range and angle measurements can be calcu-
lated using the inverse of Eqs. 1.a – 1.c.

ρij, λij, φij, → xij, yij, zij (2)

 The Cartesian coordinates of this observed 
point are denoted as ρij. To convert these 

1  Often phase based TLS work like a “profiler”: 
the emitted laser beam direction rotates in a vertical 
plane, so the vertical angle, φij, is from − 90° (nadir) 
to 270°. This “profiler” makes a half rotation during 
the measurement process, so the direction angle, λij, 
is between 0° and 180°.

“scanner-based” coordinates to our global 
(project) coordinate system, the rotation ma-
trix, Mj, and translation vector, tj for the jth 
scanner position are used. The point ρ′ij in the 
global coordinate system is given by

ρ′ij = Mj · ρij + tj (3)

 The rotation matrix is constructed using the 
rotation angles around the three axes of the 
global coordinate system. (Gielsdorf et al. 
2004) used quaternion representation for the 
rotations, but if the initial values of these an-
gles are close to the solution, classical rotation 
matrix representation is sufficient. The pa-
rameters responsible for scanner position and 
angular attitude are the exterior orientation. 
Therefore, the rotation angles and translation 
vector components are denoted as  x j  

EO .
 The parameters of the kth patch in the global 
coordinate system are the plane normal nk 
(with nT  ·  n = 1) and the patch constant dk. The 
patch parameters are combined and denoted 
as  x k  

PP . The orthogonal distance of the meas-
ured point ρ′ij from its corresponding patch is:

νijk = ρ′ijT  ·  nk − dk (4)

3.3 Stochastic Model

 Our aim is to determine the additional pa-
rameters, the exterior orientation and the patch 
parameters such that all points ρij lie as close 
as possible to their respective patch. For doing 
this simultaneously we apply a least squares 
adjustment based on Eq. (4). Since ρ′ij in (4) is 
a function of the original polar measurements 
(ρ, λ, φ), such a least squares adjustment would 
require a Gauss-Helmert model minimizing 
the residuals of these original measurements. 
Then (4) could be used as constraints with 
νijk ≡ 0. However, at the present state of our 
research, we apply a simplified version and 
use ρ′ij as fixed, but consider Eq. (4) as obser-
vation equation (also termed condition); i. e.

0 + νijk = ρ′ijT · nk  − dk (5)

 Thus, the observation value is zero (i. e. the 
orthogonal distance of ρ′ij to its patch) and νijk 
is the residual. This way we work with a 
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Gauss-Markov model and according to the 
least squares principle, we need to minimize 
the sum of squared residuals:

 ∑ 
i, j, k

   
 

   ν ijk  2    = min (6)

 However, each point is observed at different 
distances and at different incidence angles 
w.r.t. the patches. Therefore the distribution of 
the orthogonal distance to the respective patch 
will be different in each ρ′ij. Consequently we 
introduce individual a priori weights, pijk and 
minimize the weighted sum of squared residu-
als:

 ∑ 
ijk

   
 

   pijk  ·  ν ijk  2   = min (7)

 The individual weight p (omitting ijk ) is giv-
en by p = 1/ σ n  

2 , where σn is derived by applying 
the law of error propagation onto (4). Geo-
metrically σn can be interpreted as half of the 
extension of the error ellipsoid of the point ρ′ij 
in the direction of the plane normal nk. This 
error ellipsoid results from the propagation of 
the errors in (ρ, λ, φ) into the point ρ′ij.
 The remainder of this Subsection shows 
how σn can be derived geometrically. The sto-
chastic model can be established by defining 
standard deviations σρ, σλ and σφ for original 
observations (kraus 1997). These values are 
taken from the instrument specification. To 
calculate the error ellipses of a measured 

point, a local point-based coordinate system  
( 
_
 x   
_
 y   
_
 z ) is defined (Bae et al. 2005), where this 

error ellipsoid is in canonical position: its axes 
are parallel to the axes of the local coordinate 
system. The  

_
 x –axis of this coordinate system 

is in the range measurement direction; the  
 
_
 y –axis is orthogonal to the  

_
 x –axis and orthog-

onal to the scanner vertical axis. The  
_
 z -axis is 

orthogonal to both, and the three axes follow 
the right-hand rule. In this local Cartesian co-
ordinate system, the semi-axes of the error el-
lipsoid are:

σ _ x  = σ _ ρ ,   σ _ y  = cos φ · ρ · σλ,   σ _ z  = ρ · σφ (8)

 As σ _ y  and σ _ z  increases with the range, the 
shape of error ellipsoid differs from point to 
point. The σn is half of the extension of the el-
lipsoid in the plane normal direction. For 
points with longer measured range, σ _ y  and σ _ z  
might significantly exceed σ _ x . To calculate σn, 
the plane normal is transformed into the sys-
tem ( 

_
 x   
_
 y   
_
 z ).

 On the ellipsoid the point r = ( 
_
 x r  

_
 y r  

_
 z r) is the 

tangent point of a plane parallel to the patch 
(see Fig. 1). The distance of the origin of the 
coordinate system to this tangent plane equals 
σn. It can be computed in the following way. 
The normal vector n of the patch and the el-
lipsoid gradient in r must be parallel: 
n || gradell (r); thus:

(n _ x ; n _ y ; n _ z ) ||  (  2  
_
 x r _  σ  _ x   2   ;   

2  
_
 y r _  σ  _ y   2   ;   

2  
_
 z r _  σ  _ z   2 
  )  (9)

This yields:

( 
_
 x r;  

_
 y r;  

_
 z r) =   s __ 2    ( n  _ x        σ  _ x   2 ;  n  _ y        σ  _ y   2 ;  n  _ z        σ  _ z   2 )   (10)

 The scale factor s is computed using the el-
lipsoid equation:

  1 _  s    2 
   =   

 n  _ x   2   ·   σ  _ x   2 
 __ 4   +   

 n  _ y   2   ·   σ  _ y   2 
 __ 4   +   

 n  _ z   2   ·   σ  _ z   2  __ 4      (11)

 Substituting s into Eq. (10) returns r, which 
finally gives the a priori standard deviation of 
the measurement:

σn = nT · r (12)
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Fig. 1: Error ellipsoid in the measurement 
based local coordinate system. The σn value is 
half of the extension of error ellipsoid in the di-
rection of the plane normal vector.
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 Since σn depends on the unknown normal 
vector n, σn needs to be recomputed before 
each iteration step.

3.4 Formulation of the Adjustment

By combining all vijk to a vector v and generat-
ing a diagonal matrix Pll from all weights pijk, 
our minimizing criterion is therefore given 
by

vT Pll v = min (13)

 From Eq. (5) we get after linearization:

v = Ax − l (14)

where x is the vector of corrections to the un-
known parameters

x = (xAP,  x l  EO , …,  x J  EO ,  x l  PP , …,  x K  PP ) (15)

with J scan positions and K planar patches. A 
is the Jacobian of Eq. (5) with respect to x and 
l is the misclosure vector. Constraints need to 
be defined as the length of each patch normal 
vector is 1:

   √
______

  n k  T   ·   n k        − 1 = 0 (16)

 These constrains after linearization can be 
rewritten in the form:

Cx − w = 0 (17)

where C is the Jacobian of the constraints with 
respect to the set of parameters and w is the 
misclosure vector. This way we get a Gauss-
Markov model with constraints. The respec-
tive system of equations can be solved using 
Lagrange multipliers μ.

 [   A
T Pll A   C       

CT
   0   ]  ·  [  ̂  x    μ ]  =  [ AT Pll l   w ]   (18)

 Since the initial values of the parameters 
are already close to the final solution, one it-
eration is usually sufficient.

3.5 Range Correction Function

The applied range correction function should 
be mathematically as simple as possible, but 
also as effective as possible.
 Harmonic functions (sine and cosine) with 
wavelengths reported by other authors seem to 
be a good choice. This definitely works for 
short-periodic wavelengths, but it also tries to 
approach the non-periodic error with periodic 
functions, which might introduce serious er-
rors. Another disadvantage of harmonic func-
tions is that the correction function does not 
necessarily have equal amplitude along the 
whole measurement range. Polynomial func-
tions are also good for non-periodic compo-
nents, but for realizing short-periodic compo-
nents higher order terms are required, whose 
behavior is not very predictable. More compli-
cated error functions could be composed by 
combining harmonic and polynomial func-
tions.
 Because of the mentioned drawbacks of 
harmonic and polynomial functions we select 
a piecewise linear range correction function. 
The measurement range is divided into M 
equal range intervals. The mathematical form 
is:

Δρ (ρ) = ai +   
ai+1 − ai __ ρi+1 − ρi

   ·  (ρ − ρi)

if: ρi ≤ ρ < ρi+1   with i = 1, …, M + 1 (19)

 The ai coefficients are the parameters of  
the function. The length of the intervals 
δρ = ρi+l − ρi can be set arbitrarily to some ex-
tent. As a lower limit for the interval length, 
there should be enough measurement points in 
all intervals of the range, to reduce the effects 
caused by random errors. An upper limit of δρ 
is given by the Nyquist-Shannon theorem: δρ 
must be smaller than half of the shortest wave-
length of the short-periodic errors. The short-
est wavelength observed by (dorninGer et al. 
2008) is the 15 cm wavelength, so the interval 
length should be shorter than 7.5 cm, and 
therefore δρ = 5 cm proved to be a good com-
promise.
 Depending on the minimum and maximum 
range (i. e. the span of ranges) this correction 
function is applied on, the number of unknown 
parameters ai can be quite high and their esti-



G. Molnár et al., On-the-job Range Calibration 15

mates after the adjustment will be correlated. 
This property makes this correction function 
not the best candidate for a laboratory calibra-
tion, which later is to be applied at different 
projects with different spans of ranges. It is, 
however, suitable for on-the-job calibration, 
which is the topic of this paper. There the de-
rived correction function is only applied to the 
data set, which contains the patches that were 
used for determining the parameters ai. In or-
der to get reasonable estimates for all ai within 
the span of ranges on site, all range intervals 
must be covered with range-wise overlapping 
patches. Therefore a suitable number of planar 
regions is required on site. Such conditions 
can be fulfilled for example at manmade sites. 
If certain range intervals are not covered by at 
least one patch, then these intervals can not be 
corrected.
 The correction function (19) is of a very 
general form. The additive constant and the 
scale error are included implicitly. The latter 
would lead to a singularity in the adjustment. 
Consequently proper means for fixing this sin-
gularity must be introduced; e. g., known dis-
tances between the intersection points of tri-
ples of patch planes. Alternatively, one ai can 
be fixed. This, however, introduces an artifi-
cial scale which appears as a linear trend in 
the correction function.

4 Data

4.1 Dataset

With a FARO LS 880HE scanner, several 
rooms of Schönbrunn Palace (Vienna, Aus-
tria) were scanned during a measurement 
campaign in May 2007. One of the rooms with 

approximately 7.4 m by 5.8 m horizontal ex-
tension, and with a vaulted ceiling (up to 4 m) 
was scanned from three scanner positions. 
The walls of the room are covered with paint-
ings (frescoes in the vaults and on linen, fixed 
on wooden frames on the walls). The floor is 
varnished parquet. Fig. 2, left, shows a tex-
tured, virtual model of this room. A map of 
the room indicating the three scanner posi-
tions (SP1, SP2, and SP3) is shown in Fig. 2, 
right. The three point clouds, acquired at the 
three scanning positions, originally consist of 
about 40 million points, each. The mean point 
density at 5 meter distance is about 3 mm.

4.2 Preprocessing of Data

The instrument already is equipped with a set 
of three internal range correction functions: a 
periodic correction with a wavelength of 
60 cm, a polygonal correction function based 
on range and described as a look-up table, and 
another look-up table based correction corre-
lated with the intensity of the reflected signal. 
Individual investigations of these three cor-
rections have shown that the intensity calibra-
tion is sufficient, while the other two correc-
tions may not able to cope with the occurring 
systematic errors properly. Indeed, the influ-
ence of the periodic error with a wavelength of 
60 cm was reduced but not eliminated suffi-
ciently and periodic errors with different 
wavelengths are still detectable. Moreover, the 
polygonal distance correction eliminates the 
systematic errors only partially (dorninGer et 
al. 2008). Hence, the internal periodic and the 
polygonal correction were deactivated, prior 
to our investigations.

Fig. 2: A textured model of the Bergl-room (left) and a map including the scanner positions 
(right).
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 For reducing the measurement noise while 
simultaneously reducing the number of points 
to be processed, a three-dimensional filtering 
and thinning approach (notheGGer & dor
ninGer 2009) was applied. This allowed reduc-
ing the number of points by a factor of 20, re-
sulting in approximately 2 million points per 
scan.
 The first registration of the scans was based 
on a network of spherical targets, detectable in 
all point clouds. The reference positions of the 
targets were determined by tachymetric meas-
urements. The accuracy of this registration is 
about ± 0.5 cm.
 For the on-the-job calibration approach de-
scribed in the following, planar features 
(“patches”), identifiable in multiple scans, are 
necessary. These patches are determined auto-
matically by a two step procedure. First, an 
automatic segmentation (dorninGer & noth
eGGer 2007) is performed, resulting in an as-
signment of the given points to huge segments 
representing the walls and the floor. Second, 
the patches are determined by partitioning the 
huge segments into subsegments. These are 
defined in a regular pattern of the local 2D co-
ordinate system of each huge segment. There-
fore and because of the known orientation of 
the scans the patches are identified in all 
scans.
 The patch definition allows for the determi-
nation of rectangular patches considering an 

overlap (in percent), a minimum number of 
points belonging to a patch, and an a priori 
threshold for outlier elimination. For our ex-
periments, we determined 1 by 1 meter patch-
es, with 10 cm gaps between patches. For out-
lier elimination we defined a threshold of 
1 cm. As the measurements were made in a 
room, where the strict planarity of the walls 
and the floor could not be guaranteed, a small-
er threshold to eliminate non-planar patches 
would be favorable. On the other hand, it could 
not be determined beforehand if the observed 
deformation of a patch originates from the 
non-planarity of the feature, or from the sys-
tematic range measurement error of the in-
strument.
 According to these parameters, we deter-
mined 73 patches. Initially, the plane parame-
ters (n and d) for all patches are calculated by 
independent adjustments. The orthogonal dis-
tances of the patch defining points with re-
spect to the planes are shown color coded in 
Fig. 3 for one scan.

5 Results

Fig. 4 shows the resulting range correction 
function. Fig. 5 shows the power spectrum of 
the range correction function. As expected, 
periodic components with wavelengths of 
60 cm and 30 cm can be found in the correc-

 

Fig. 3: The dataset of a room captured with FARO LS 880HE instrument. Point colors indicate the 
distance (in mm) of the measurement points (of SP 2 in Fig. 2) from adjusted planar patches. Cir-
cular patterns on the floor and on the walls originate from short-period measurement errors.
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Fig. 4: Range correction function with interval length δρ = 5 cm. Short-periodic systematic errors 
are clearly visible. The additional constant error of 6.72 mm on average is due to deactivating the 
internal periodic and polygonal correction.

Fig. 5: Power spectrum of the Fast Fourier Transformation of the range correction function. The 
60 cm wavelength is dominant, but also 15, 30 and 20 cm show very clear and sharp peaks. No 
such sharp edges can be identified for longer wavelength components.
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tion function, but also higher frequency com-
ponents (20 and 15 cm) are clearly visible.
 Because no external reference distance was 
given, the scale ambiguity mentioned in Sec-
tion 3.5 was solved by fixing one ai. The linear 
trend induced thereby in the correction func-
tion was estimated after the adjustment and 
removed from the correction function shown 
in Fig. 4.
 In order to show the positive effect of the 
derived correction function Fig. 6.a and b 
show the distance of all measured points with-
out and with range correction from the patch-

es. The standard deviation of these distances 
was 1.62 mm without range correction func-
tion (cf. Fig. 6a). In this adjustment process, 
only the scanner  parameters and the patch  
parameters were estimated. By estimating the 
range correction function parameters in the 
adjustment process, the standard deviation of 
these distances decreased to 1.21 mm. The 
comparison of Fig. 6.a with b and the decrease 
in the standard deviation show that the data 
quality is significantly improved. Outliers 
were not removed from the dataset (cf. Section 
3.2).

Fig. 7: Distance of measured points from adjusting patches. (a) Scanner position 1 without correc-
tion, (b) Scanner position 2 without correction, (c) difference of both scans without correction; (d) 
Scanner position 1 with correction, (e) Scanner position 2 with correction and (f) difference of both 
scans with correction. Note: For subfigures (c) and (f) the data of scanner position 1 was triangu-
lated and the distance of the data points of scanner position 2 to this surface is visualized.

Fig. 6: (a) Distance of originally measured points from the adjusting patches. Blue dots: orthogo-
nal distance (vijk). Green dots: average of blue dots (bin size 1 cm in range direction). (b) Distance 
of range-corrected points from the adjusting patches.

a)                                                                          b)
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 In Fig. 7 the data of two scan positions be-
fore and after the range correction is shown. 
The uncorrected datasets clearly show the ef-
fect of short-periodic errors (cf. Figs. 7.a and 
7.b), whereas for the corrected datasets these 
errors are significantly reduced (cf. Figs. 7.d 
and 7.e). These figures visualize the vertical 
distances of the uncorrected and corrected la-
ser points from the adjusted patches. The spa-
tial distribution of the errors before and after 
the correction are similar; i.e. at locations 
where the typical distance of points from the 
adjusting patch is positive before the correc-
tion, it is also positive after the correction. 
This is the consequence of the small but exist-
ing non-planarity of the patches.
 Figs. 7.c and 7.f show the difference be-
tween both scans before and after the range 
correction. This additionally demonstrates the 
improvement. In all the subfigures of Fig. 7 
the spatial distribution of the errors shows a 
relatively sharp change along a line on the 
wall and the floor. This residual error is due to 
the still uncorrected angular errors.
 As mentioned in Section 3.5 the number of 
unknown parameters in the correction func-

tion is high. Therefore it has to be checked that 
each range interval is covered with patches. 
For this purpose Fig. 8 shows the number of 
patches in each range interval used in the ad-
justment. It can be seen that most range inter-
valls are covered by at least 25 different patch-
es. Nonetheless, large correlations were found 
between the parameters ai by analysing the in-
verse of the matrix of the normal equation sys-
tem (18).
 In order to test the stability of the results 
each possible pair of the three scanner posi-
tions was selected for determining the correc-
tion function. The three resulting correction 
functions were very similar to the result shown 
in Fig. 4, which results from using all three 
scanner positions simultaneously.

6 Conclusions

We presented an on-the-job calibration meth-
od for removing short-periodic systematic 
range errors in terrestrial laser scanner data 
using a piecewise linear range correction 
function, whose parameters are determined 

Fig. 8: Number of patches covering the range intervals of size 5 cm in the three scans used. At 
maximum almost 40 patches cover the intervals between 2.5 m and 3 m. The entire data set con-
sists of 73 individual patches. Because of the high resolution of the scans most intervals contain 
about 300 measured laser points and all these are used in the adjustment.
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using all measured points which lie in planar 
patches visible in the scanned scene. This cor-
rection function samples the span of the ranges 
with short intervals. Consequently this func-
tion has the benefit of being very general; thus 
practically no assumptions on the error sourc-
es are required. Its formulation, however, re-
quires many parameters. Thus enough planar 
patches, which are range-wise overlapping 
(within the span of ranges on site) are required. 
Objects fulfilling this condition are, e. g., 
rooms.
 In the presented example, with ranges up to 
7 m, short-periodic systematic range errors 
were found and eliminated from the dataset 
using the proposed method. The short-period-
ic errors found correspond to the shortest 
modulating wavelength (1.2 meter) of the 
FARO LS 880HE instrument. It should be em-
phasized, that these wavelengths were not in-
troduced into the model, but obtained from the 
correction function using Fourier analysis. 
Compared to the method of estimating the pa-
rameters of harmonic functions, we did not 
assume constant amplitudes along the whole 
measurement range. The correction function 
obtained proved to be time-independent – at 
least during the time interval of the three scans 
used in the example.
 The application of piecewise linear func-
tions proved to be effective for on-the-job 
calibration of range measurements. In the pre-
sented example this is shown by the improve-
ment of the data quality, which can be seen 
clearly by comparing Fig. 7.a, b with Fig. 7.d, 
e.
 In the future, we will test the proposed 
method on more examples, especially ones 
with larger spans of ranges. Further we will 
apply it also for the on-the-job calibration of 
the angular measurements of terrestrial laser 
scanners. This will require the formulation of 
the adjustment in the Gauss-Helmert model, 
which then will also allow the simultaneous 
on-the-job calibration of angles and ranges. 
Besides using it in practice as correction tool, 
the proposed function may be also beneficial 
for research. There it could be used as tool for 
studying the error behavior of the measure-
ments by analyzing its computed form, e. g., 
with Fourier transformation. This way new 
correction functions, optimized with respect 

to shape, e. g., harmonics and/or polynomial, 
and number of parameters could be derived 
easier.
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