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street to the Chinese Tower of English Garden
for a tour with a car. In this case, it does not
make sense to give the result of directly driv-
ing the car from the origin to the entrance of
Chinese Tower even if some of the streets in
the garden are allowed for cars. Since the user
is not allowed to park his car at the door of the
tower, he has to find an appropriate place along
the route where parking is possible. As a re-
sult, the route is divided by the parking place
into two segments with different transporta-
tion modes – by car and by foot. This is a sim-
ple case of multi-modal route planning prob-
lem with two involved travel modes.

1 Introduction

The purpose of multi-modal route planning
is to provide the user with an optimal route
between the source and the target of a trip.
The route may utilize several transportation
modes including car driving, public transpor-
tation, cycling, walking, etc. (Hochmair 2008).
Taking several accessible transportation
modes into account for the travel plan is a very
common practice in everyday life.

A typical application scenario of multi-
modal route planning, for example, is to iden-
tify the best route from the garage exit of
Technische Universität München in Hess

Summary: The paper addresses the task of generi-
cally finding the shortest path in multi-modal net-
works with the multi-modal route planning problem
in transportation field as a special case. The multi-
modal networks can be modelled by a data struc-
ture based on the core concept of Switch Point
which abstracts the places where it is allowed for
changing from one mode to another. Two routing
algorithms Multi-Modal Bellman-Ford (MMBF)
and Multi-Modal Dijkstra (MMD) were elicited
which are respectively rooted in the classical label-
correcting and label-setting methods. Both MMBF
and MMD are capable of finding in multi-modal
networks the shortest paths in spite of different
computing complexity. The feasibility of the ap-
proach was verified in our prototype system. The
results of our experiments conducted on real trans-
portation networks showed the differences between
the proposed algorithms in terms of computing per-
formance.

Zusammenfassung: Algorithmen zur multi-moda-
len Routenplanung auf Grundlage des Schaltpunk-
tes. Der Beitrag befasst sich mit der Aufgabe zum
Auffinden der kürzesten Route in einem multi-mo-
dalen Netzwerk, wobei die multi-modale Routen-
planung aus dem Bereich der Verkehrstechnik als
eine spezielle Anwendung betrachtet wird. Die
Modellierung eines multi-modalen Netzwerks ba-
siert auf dem Kernkonzept Schaltpunkt. Bei einem
Schaltpunkt handelt es sich um eine Stelle, wo eine
Modalität auf eine andere umgeschaltet werden
darf. Zwei Routenalgorithmen Multi-Modal Bell-
man-Ford (MMBF) und Multi-Modal Dijkstra
(MMD) wurden dargestellt. Als Grundlage dazu
dienen zwei klassische Methoden – „Label-Korrek-
tur“ und „Label-Einstellung“. Beide MMBF und
MMD sind in der Lage, die kürzeste Route in ei-
nem beliebigen multi-modalen Netzwerk aufzufin-
den. Die Machbarkeit des Ansatzes zur multimoda-
len Routenplanung wurde in einem Prototypensys-
tem bestätigt. Ergebnisse aus unseren Untersu-
chungen der realen Verkehrsnetzwerke zeigen je-
doch, dass sich die beiden Algorithmen hinsichtlich
des Rechenaufwands voneinander unterscheiden.
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Modesti & Sciomachen 1998, Ziliaskopoulos

& Wardell 2000, Lozano & Storchi 2001,
Lozano & Storchi 2002, Boussedjra et al.
2004, Bielli et al. 2006, Hochmair 2008,
Zografos & Androutsopoulos 2008). They
proposed effective approaches for finding the
best route in static or even dynamic multi-
modal transportation networks. Nevertheless,
most of the proposed routing algorithms are
coupled with the specific transportation mode
combinations, which may limit their accep-
tance in a variety of applications, although it is
true that the path should respect a set of con-
straints on the sequence of the used modes,
i. e., the path must be viable (lozano & storchi

2001). The method proposed by frank (2008)
is a novel approach. His idea is to combine the
navigation graph and business graph together,
and then apply the traditional shortest path al-
gorithms in the product graph. In addition, the
researchers from Universität Karlsruhe have
also made substantial contribution to this top-
ic. They proposed a multi-modal path finding
method based on (regular-) language-con-
strained shortest path algorithm (Barrett et
al. 2008, Pajor 2009) generalized from (for-
mal-) language-constrained algorithm applied
in transportation field by Barrett et al. (1998).
Unfortunately, as they remarked in (Delling

et al. 2009), using a fast routing algorithm in
such a label-constrained scenario is very com-
plicated and hence, another challenging task.
In our previous work (Liu & Meng 2008), we
gave a preliminary investigation of the multi-
modal extension of Bellman-Ford algorithm,
but lacked any theoretical analysis of the pro-
posed algorithm. At that time, we didn’t real-
ize that our method for generalizing mono-
modal Bellman-Ford into multi-modal situa-
tion is generic enough that it can also be ap-
plied in the label-correcting algorithms (e. g.,
Dijkstra’s algorithm).

Our concern with the multi-modal route
planning is more general. The main purpose
of our work is to propose a solution which can
find the optimal route in a static N-modal net-
work for an arbitrary mode combination,
where N indicates the number of modes. More
precisely, we treat the mode combination as a
part of the input. To approach such a routing
problem, we have scrutinized the input of the
multi-modal route planning and developed a

Another typical scenario which is a little bit
more complicated would be to find an optimal
route in Munich from a suburban place such as
Seefeld to the Chinese Tower of English Gar-
den for a tour with a car after work. In this
case, directly driving to a parking place and
then walking to the destination may not be a
best choice because there would be traffic
jams in the downtown area of Munich. To stop
the car at a suburban train station, and then
travel to the destination by inner-city public
transportation system may be a better solu-
tion. The task is not trivial because only an
experienced inhabitant who is familiar with
the traffic context in Munich would tend to
make such a decision. This is a routing prob-
lem involving multiple networks with multiple
objectives, constraints and some dynamic and
fuzzy information.

A number of mature mono-modal naviga-
tion services such as car navigation, pedestri-
an navigation, public transportation informa-
tion systems which can do route planning for a
specific network are already available on the
market. Some public transportation informa-
tion systems can be envisaged as an embry-
onic form of multi-modal route planning sys-
tems as they can serve the user with an esti-
mated travel time and an overview map that
sketches the walking routes from the original
locations to various stations. couckuyt et al.
(2006) from Microsoft have patented the basic
concepts of multi-modal navigation and some
basic functions of such a system. And rehrl

et al. (2007) described the requirements of a
multimodal transportation routing system in
more detail. hoel et al. (2005) from ESRI pro-
posed their approach for efficient modeling of
the multi-modal network, which was imple-
mented as a tool in ArcGIS Network Analysis
toolbox. The modeling issue of a multi-modal
freight transportation network was discussed
in (southworth & peterson 2000). Their pro-
posed data models can be regarded as multi-
layer graphs connected by transfer nodes or
arcs, while some other researchers (Modesti

& Sciomachen 1998, Boussedjra et al. 2004)
built a single graph containing all the informa-
tion of different transportation modes. The
problem of finding the optimal path in a multi-
modal network was also being investigated in
the past two decades (Boardman et al. 1997,
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ferent modes, mi and mj as two distinctive ele-
ments of M, only the points satisfying some
special conditions are eligible to be the Switch
Points from mi to mj . All the special condi-
tions can be expressed by a N × N Switch Point
Matrix SPM (see Fig. 1). The matrix elements
are denoted by λSP

mi mj, λSP
mi mj = nil when mi = mj.

That means all the values on the diagonal of
SPM are nil because it is meaningless to
switch from a mode to itself. λSP

mi mj, mi ≠ mj in-
dicates the condition that should be satisfied
for the switching from mi to mj. A practical ex-
ample of λSP

mi mj is that if mi and mj indicate the
modes of car driving and walking respective-
ly, then λSP

mi mj, should be “the place is allowed to
park a car”.

Fig. 1: Switch Point Matrix (SPM).

According to the graph theory, a graph is com-
posed of a vertex set V and an edge set E,
which is denoted by G = {V, E}. λSP

mi mj can be
expressed by some special attributes of verti-
ces in G. Therefore, a vertex υ is the Switch
Point between two different modes mi and mj,
if and only if

1) υ is accessible by both Gmi and Gmj;
2) λ (υ) = λSP

mi mj.

where Gmi and Gmj denote the graphs of mode
mi and modemj respectively, λ is a function
and can return the attribute of a vertex.

The υSP
mi mj between mode mi and mode mj is

not unique. All the υSP
mi mj constitute a set of

Switch Points. The fact that | VSP
mi mj | > 1 in most

cases indicates the main difficulty of multi-
modal route planning. If the Switch Points be-
tween any two modes can be uniquely deter-
mined, i. e., | VSP

mi mj | ≡ 1, mi, mj  M, i ≠ j, the
problem can be reduced to finding the shortest
paths that visit specified intermediate nodes in
a multi-modal network. This is a typical kind

corresponding mathematic model. Based on
this model, two algorithms which can solve a
general problem of finding the multi-modal
shortest path are implemented. The main con-
tributions of this paper consist of: 1) a data
model based on the concept of Switch Point
for modeling the multi-modal networks; 2)
two multi-modal shortest path algorithms gen-
eralized from the classical mono-modal short-
est path algorithms, and the generalizations
are based on the same basic principle; 3) a pro-
totype system in which the proposed data
model and algorithms are implemented.

The paper is organized as follows. In Sec-
tion 2 we present the definition of Switch Point
which is the core concept of our data model
and its matrix expression, propose the multi-
modal graph set containing the Switch Points,
describe the multi-modal shortest path prob-
lem and present its mathematical formulation.
A general multi-modal shortest path problem
can be solved by Multi-Modal Bellman-Ford
(MMBF) and Multi-Modal Dijkstra (MMD).
The two proposed algorithms are described,
demonstrated and analyzed in detail in Sec-
tion 3. The experiment results related to the
city of Munich in our prototype system are
shown in Section 4. Finally, Section 5 gives
the conclusions and an outlook.

2 Data Model

2.1 Switch Point

In modern urban transportation systems,
many inter-modal facilities such as parking
places, park and ride lots, transit hubs, trail-
heads, etc. are provided besides the basic
transportation networks. These facilities make
it easy to transfer between different transpor-
tation modes. With the collection and digitali-
zation of inter-modal facilities from the real
world and the integration of their information
with navigational databases, it becomes pos-
sible to conduct automatic multi-modal route
planning.

In our multi-modal data model, the inter-
modal facilities are abstracted as points where
a travel mode can switch from one to another.
Therefore, we call them Switch Points. Gener-
ally speaking, given a set M containing N dif-
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parking place connecting the motorized net-
work and the pedestrian network.
Switch Point is significant to the multi-mo-

dal route planning problem. A network dataset
can not support multi-modal routing applica-
tion without the information of Switch Point.
The definition of a multi-modal shortest path
problem and its solutions are all based on the
concept of Switch Point.

From the transportation point of view,
Switch Point is an abstraction of the place in
the real world where people can change from
one transportation mode to another. We can
enumerate different Switch Points of different
traffic mode-pairs in a table such as Tab. 1
which we call SPM-T (SPM in Transporta-
tion). Given an ordered transportation mode
tuple (mi, mj ), we can get the values of
SPM-T (mi, mj ) by looking up the matrix.

With Tab. 1 we do not attempt to enumerate
all possible traffic modes which may for ex-
ample include airplane, ship, inter-city train,
bicycle, roller skating, etc. Instead, we focus
on the most usual ones in our everyday life.
The SPM-T has two properties:

SPM-T is asymmetrical.
Taking the car driving and walking modes
for example, SPM-T (D, W) is not equal to
SPM-T (W, D). The reason is obvious: a driver
can park his car at any available parking place
and transfer to pedestrian mode, however in
the reverse situation, the driver must walk to a
place (e. g., the parking place where his/her
car is parked, or a car rental company) where
there is a car he/she can use.

SPM-T is scale-dependent.
Tab. 1 just shows the case of inner-city map
scale. At a more detailed level, we may find
that there are no switch points between car

of constrained shortest path problem, which is
considered by (Bajaj 1971) according to the
taxonomy of shortest path algorithms (deo &
pang 1984).

For the purpose of route planning in multi-
modal networks and their various combina-
tions, we have to pay special attention to the
Switch Point. Conceptually, Switch Points are
similar to point features which can reside in
one or more connectivity groups of the multi-
modal network model in ArcGIS Network
Analysis toolbox (Hoel et al. 2005). However,
in our Switch Point-based data model, the va-
lidity of a vertex as a Switch Point depends on
the aforementioned two conditions. A υSP

mi mj

connecting two different modes may not be
geometrically identical in the two correspond-
ing networks. Taking urban transportation
network for example, two nodes with distinct
geographic coordinates are eligible to be the
Switch Point connecting the two networks if
they share some attribute values (e. g., node
ID). Fig. 2 demonstrates a Switch Point which
is a car entrance and a pedestrian exit of a

NodeID: 10002
Attribute: parking place
(car entrance)

NodeID: 10002
Attribute: parking place
(pedestrian exit)

Motorized road

Pedestrian way

Fig. 2: Example of a Switch Point expressed by
two geographically different nodes in two net-
works.

Tab. 1: An example of SPM-T. D, P and W denote car driving, public transportation and walking
respectively.

D P W

D nil P+R lots parking lots for cars

P P+R lots where a car is
available

nil public transportation stations

W some place where a car is
available or can be rented

public transportation stations nil
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denoting MMGS. λ : V → Λ, V = kM Vk
is the vertex label function, and CM =
{ck : Ek→ R+, kM} is the set of cost functions
that map the edges of different modes to posi-
tive real-valued costs. The source node and
target node are denoted by S, SVm1 and
T, TVmN respectively. With the list M as in-
put, we can get the switch point value λSP

mi mi + 1 =
SPM (mi, mi + 1), i [1, N− 1] by looking up in
the SPM.
At first, we give the formalized description

of double-modal shortest path problem as a
simplified multi-modal shortest path problem.
With the inputs listed above, in a double-mo-
dal shortest path problem, we are given a se-
quential modes list M = m1, m2, m1 ≠ m2 com-
posed by two different modes, a set of vertices
attributes Λ and a double-graph GM =
{Gm1 = {Vm1, Em1}, Gm2 = {Vm1, Em2}, with vertex
label function λ : V → Λ, V = Vm1 Vm2, and
cost functions cm1 : Em1→R+ and cm2 : Em2→R+.
CM = {cm1, cm2} is the cost function set com-
posed of the two functions. With the
M = m1, m2 as a part of the input, we can
get the λSP

m1 m2. The path cost of mode k
pk = υ0, υ1,…, υt is the sum of the costs of its
constituent edges (cf. (1)).
We define the double-modal shortest path cost
from S to T with tow modes m1, m2 (2).

A double-modal shortest path from vertex S
to vertex T with two modes m1, m2 involved
in is then defined as any path p

m1, m2
with cost

c (p
m1, m2

) = δ (S, T, m1, m2).
Based on the formalized description of dou-

ble-modal shortest path problem, we can gen-
eralize it to the multi-modal situation. The
path cost of mode m pk = υ0, υ1,…, υt is the
same as defined in double-modal shortest path
problem by Eq. (1).

driving and public transportation because it is
impossible to drive a car directly into a bus
just like taking a bicycle into a suburban train.
In other words, no Switch Point can exist that
connects car driving mode and public trans-
portation mode. There must be a pedestrian
mode in between. On the other hand, when
zooming out to a much smaller map scale,
some traffic modes such as pedestrian, bi-
cycle, inner-city public transportation, etc.
may become meaningless and therefore should
be ignored.

In our real life, a route planning problem
with multiple travel modes can be very com-
plicated. Still, it can be reduced to a shortest
path problem or some of its variations. In our
approach, we describe the original routing
problem as a multi-modal shortest path prob-
lem.

2.2 Formalized Description

The input of a multi-modal shortest path prob-
lem contains five parts: 1)Multi-Modal Graph
Set (MMGS); 2) attributes of vertices in the
MMGS; 3) Switch Point Matrix (SPM); 4) a
sequential list of modes which will be con-
tained in the final route; 5) a source node and
a target node.

The notational conventions used in this pa-
per are identical with the second edition of the
textbook Introduction to Algorithms (Cormen

et al. 2001). Consequently, we are given a se-
quential list M = m1, m2,…, mN, N ≥ 2,
mi ≠mi+1, i [1, N− 1] composed by N modes, a
set of vertices attributes Λ and a vertex-la-
beled, non-negative weighted, acyclic, direct-
ed multi-graph GM = {Gk = {Vk, Ek} | kM}

(1)

δ (S, T, m1, m2) = (2)

δ (S, T, M) = (3)
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3 Multi-modal Shortest Path
Algorithms

Our investigation starts with the double-mod-
al shortest path problem which can be then
generalized to cope with the multi-modal situ-
ation. We implemented two double-modal
shortest path algorithms based on the classical
label-correcting and label-setting algorithms,
i. e., Bellman-Ford algorithm (Bellman 1958,
Cormen et al. 2001) and Dijkstra’s algorithm
(Dijkstra 1959, Cormen et al. 2001) respec-
tively, and extended them to Multi-Modal
Bellman-Ford (MMBF) and Multi-Modal Di-
jkstra (MMD). A key step was to make a few
modifications with respect to Switch Point
during the initialization process.

3.1 Multi-modal Bellman-Ford

Bellman-Ford search is a well-tested label-
correcting algorithm used to find the shortest
path from a single source in a graph without
negative-weighted cycles. Generally speak-
ing, Bellman-Ford search procedure consists
of two main steps: the initialization and the
traversal on the whole graph (i. e., iteratively
relaxation of all the edges). After the traversal
step, the distance value on each vertex indi-
cates the shortest distance value from the
source to this vertex.

To solve the double-modal shortest path
problem, we execute Bellman-Ford search
twice, the first time in the Gm1 with the source
S and the second time in the Gm2. The initiali-
zation step in the second time is different from
the first time. Instead of setting all the distance
values on the vertices to infinity, we kept the
values calculated on the Switch Points in Gm1.
After this modified initialization, we did Bell-
man-Ford traversal in Gm2 and got the final
shortest paths from SVm1 to any vertex
υVm1 with mode m1 and any vertex υVm2
with modes m1 and m2 via Switch Points.
Fig. 3 demonstrates the work flow of the

double-modal Bellman-Ford algorithm on two
graphs with a single source-target pair. The
first graph is Gm1 = {Vm1, Em1} with 6 vertices
and 9 edges of mode m1, and the second one is
Gm2 = {Vm2, Em2} with 7 vertices and 18 edges
of mode m2. The source is vertex S in Gm1. The

We define the multi-modal shortest path
cost from S to T with the mode list M by (3).

An N-modal shortest path from vertex S to
vertex T is then defined as any path pM with
cost c (pM) = δ (S, T, M).

If we restrict the discussion in urban trans-
portation field, the shortest path with N travel
modes reveals some other interesting proper-
ties besides the lowest cost.

The number of switch points in the multi-
modal shortest path is limited.
There is a set of alternative transportation
modes available for users to make their travel
plan. Although people may travel using more
than one mode, they are not disposed to under-
take too many modal switches. This property
can be seen as a constraint on the number of
modal transfers on a multi-modal shortest
path.

The sequence of switch points in the multi-
modal shortest path has some regularity.
The regularity of the switch points sequence
can be set equal to the transportation mode se-
quence. A multi-modal path may become less
logical if the involved transportation mode
combination seldom or never appears in a
travel plan. This property can be seen as a
constraint on the mode list.

By taking the constraints into account the
path will become “viable” as defined in (lo-
zano & storchi 2001). However, finding the
multi-modal shortest path and determining
the relative logic of mode combination should
be treated as two separate problems. The at-
tempt to couple the algorithms with the con-
crete mode constraints may limit the accep-
tance level of routing algorithms themselves
in applications other than transportation route
planning, e. g., computer network routing, cir-
cuit designing, etc.

Our concern with the multi-modal route
planning is more general in the sense that
there are N modes involved and the mode
combination can be arbitrarily set. The solu-
tion is provided by two multi-modal shortest
path algorithms described in the next section.
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where the routines multimodalinitialize and
Bellmanfordsearch work as follows:

ThecomputingcomplexityisO (∑kM | Vk | | Ek |)
for the MMGS Gm and the mode list M,
since the multimodalinitialize takes Θ (Vk )
time and the Bellmanfordsearch takes
Θ ((|Vk | − 1) |Ek |) time in each of the N
passes.

Theorem 3-1 (Effectiveness of the MMBF)
Let MMBF be run on a vertex-labeled,
non-negative weighted, acyclic, directed
MMGS GM = {Gk = {Vk, Ek} | kM} where
M = m1, m2,…, mN , N ≥ 2, mi ≠ mi + 1,
i [1, N− 1] with source S and cost function
set CM = {ck : Ek → R+, kM}. We can have
distance [mi] [υ] = δ (S, υ, m1,…, mi ) for all
vertices υVmi.

target is vertex T in Gm2. Fig. 3 (a) and (d) are
the original graphs. The vertices in dark grey
C and D indicate Switch Points from mode m1
to m2. The distance values after initialization
and searching processes are shown within the
vertices. The thick edges in Fig. 3 (c) indicate
the shortest paths from S to the Switch Points.
The second initialization is illustrated in Fig. 3
(e). The thick edge in Fig. 3 ( f ) indicates the
shortest path from Switch Point to the target.
In this example, the double-modal shortest
path from S to T is S→ B→ D (Switch Point)
→ T with the final distance value of 29.

In a multi-modal situation with an ordered
mode list M, we can also get the shortest paths
by applying the modified initialization in the
graphs from Gm2 and traverse graphs of fur-
ther modes. Thus, the double-modal Bellman-
Ford algorithm is generalized into multi

modalBellmanford (MMBF). The whole
process can be described as follows:

Graph of mode m1
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Fig. 3: Work flow of the double-modal Bellman-Ford algorithm.
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3.2 Multi-modal Dijkstra

In MMBF algorithm, the key action is the res-
ervation of the distance values on Switch
Points during the initialization step in each
round of Bellman-Ford searching from the
mode m2 to mn through which the multi-modal
shortest path can be finally found. This idea
can also be applied in Dijkstra search which is
a well-tested label-setting algorithm. Against
the assumption made in our early study (liu &
meng 2008) that only double-modal Bellman-
Ford has the potential to be generalized to a
multi-modal situation while the double-modal
Dijkstra search can only find a good but not
necessarily the optimal path. With our most
recent experiments we have proved the possi-
bility of finding the shortest path using dou-
ble-modal Dijkstra or its further extension
multimodaldijkstra (MMD). The MMD al-
gorithm can be described as follows.

where the multimodalinitialize is the same
as in MMBF and dijkstrasearch works in the
following way:

Proof
After the first round Bellmanfordsearch on
Gm1, distance [m1] [VSP

m1 m2] = δ (S, VSP
m1 m2, m1). Af-

ter the second round multimodalinitialize

on Gm2, all the δ (S, VSP
m1 m2, m1) are kept as the

initial values of the vertices υSP
m1 m2 VSP

m1 m2, m1,
i. e., distance [m2] [VSP

m1 m2] = δ (S, VSP
m1 m2, m1). To

prove distance [m2] [υ] = δ (S, υ, m1, m2) after
the second round Bellmanfordsearch, we
add a virtual source vertex Sm2 directly con-
necting to the vertices υSP

m1 m2 VSP
m1 m2 in Gm2

which becomes G'm2 (Fig. 4(a)). The costs of
the edges from Sm2 to VSP

m1 m2 are exactly
δ (S, VSP

m1 m2, m1). As a result, there are | Vm2 | + 1
vertices in G'm2, and a normal Bellman-Ford’s
algorithm should take | Vm2 | iterations of the
relaxes of all | Em2 | + | VSP

m1 m2 | edges. In fact, the
status of Gm2 after multimodalinitialize is
exactly the same as that after the initialization
and the first iteration of relaxes all the edges in
G'm2. That means the algorithm just needs to do
the remaining | Vm2 | − 1 iterations inG'm2, which
is exactly the work of Bellmanfordsearch in
Gm2. After that, we can get the shortest dis-
tance values on all the vertices in Gm2, i. e.,
distance [m2] [υ] = δ (S, υ, m1, m2). In general,
we can add virtual source vertex Smi in the
graph of the ith mode i [2, N], and the edges
whose costs are δ (S, VSP

mi− 1mi, m1,…, mi ) from
Smi to the Switch Points from the last graph to
Gmi. After the multimodalinitialize and
Bellmanfordsearch in Gmi, which is equiva-
lent to the normal Bellman-Ford search in
G'mi = {Vmi  {Smi}, Emi  {Smi→VSP

mi− 1mi}}, we can
have distance [mi] [υ] = δ (S, υ, m1,…, mi ). ■
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Fig. 4: The effectiveness proof of MMBF by adding virtual sources and the corresponding edges.
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when the target is reached. This improvement
can also be used in MMD with a single source-
target pair. If we are only interested in the
shortest path between source and target via
mode sequence M, the search process can be
terminated and continued into the next graph
when it has reached all the υSP

mi mi + 1  VSP
mi mi + 1 from

Gm1 to Gm N− 1
, and be finally terminated when it

has reached the target in GmN
. In this case, the

original multimodaldijkstra becomes mul-
timodaldijkstra-target depicted as follows.

where the dijkstrasearch should be changed
into dijkstrasearch-target:

This improvement by terminating the search-
ing process ahead of time can not be applied in
MMBF because it is based on label-correcting
method which can get the shortest distance
value on all the vertices only after the very last
iteration.

According to our complexity analysis,
MMD with an ordinary array as its min-prior-
ity queue is faster than MMBF. MMD-T
should be faster than MMD practically al-
though in the worst case they have the same
running time. The performance differences
between MMBF and MMD were verified in
our experiments described in section 4. The
average improvement of MMD-T can also be
seen from the results.

4 Experiments

We implemented the two proposed algorithms
in C# and developed a prototype system by

When the min-priority queue Q is implement-
ed as an ordinary array, its computing time
complexity is O (∑kM | Vk |2) for the MMGS
GM and the mode list M, since the multi

modalinitialize takes Θ (Vk) time and the
dijkstrasearch with an ordinary array as its
min-priority queue takes O (| Vk |2) time in each
of the N passes.

The demonstration of MMD in a double-
modal situation with a single source-target
pair can also be expressed by Fig. 3. The sta-
tuses of the graphs after the two rounds
multimodalinitialize are exactly the same as
that in MMBF. This means, the statuses of the
graphs after dijkstrasearch are the same as
that shown in Fig. 3 (c) and ( f ).

Theorem 3-2 (Effectiveness of the MMD)
MMD, run on a vertex-labeled, non-negative
weighted, acyclic, directed MMGS
GM = {Gk = {Vk, Ek} | kM} where
M = m1, m2,…, mN , N ≥ 2, mi ≠ mi + 1,
i [1, N− 1] with source S and cost function
set CM = {ck : Ek → R+, kM}, terminates with
distance [mi] [υ] = δ (S, υ, m1,…, mi ) for all
vertices υVmi.

Proof
The basic method used in the effectiveness
proof of MMBF can also be used here. In gen-
eral, we can add a virtual source vertex Smi in
the graph of the ith mode i [2, N] and the
edges whose costs are δ (S, VSP

mi− 1mi, m1,…, mi )
from Smi to the switch points from Gmi− 1
to Gmi. Gmi becomes G'mi = {Vmi  {Smi},
Emi  {Smi→VSP

mi− 1mi}}. The multimodalini-
tialize in Gmi is equivalent to the normal Dijk-
stra’s initialization together with the first
round relaxes on the virtual edges emitted
from Smi in G'mi . As a result, each time the
execution of multimodalinitialize and
dijkstrasearch in Gmi is equivalent to the
normal Dijkstra’s algorithm in G'mi . Therefore,
when the MMD terminates, we have dis-
tance [mi] [υ] = δ (S, υ, m1,…, mi ). ■

For any vertex in any Gmi, the distance value
on it indicates the shortest distance from the
source inGm1 to this vertex via the mode se-
quence (m1,…, mi) after MMD. For the classi-
cal Dijkstra’s algorithm with a single source-
target pair input, the performance can be con-
siderably improved by terminating the search
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of Munich from two different sources. One is
OpenStreetMap (OSM) which has been en-
riched with Switch Point information, the
other is a navigation dataset provided by Unit-
ed Maps Co., Ltd. (UM) which integrates the

Visual Studio 2005 Professional. The pro-
grams run on a PC with a 2.2 GHz Intel Core2
Duo CPU and 2 GB physical memory under
Windows XP Professional SP3. Our tests were
conducted on the spatial datasets of a portion

Tab. 2: The size of test networks.

Data source Area of coverage
(width, length)*

Mode | V | | E | | E | / | V |

UM
(20.34, 26.18)

D 19471 44979 2.31

W 20516 57694 2.81

(9.829, 11.00) U 64 132 2.06

OSM (4.970, 4.663)
D 4807 9125 1.90

W 9077 22482 2.48
* The unit of width and length is km.

Tab. 3: Computing speed of MMBF and MMD.

Data source Mode list MMBF(s) MMD(s)

UM

1-modal

D 354.9 10.28

W 536.7 12.27

U 0.003125 0.001094

2-modal

D, W 862.7 24.81

W, U 467.3 12.21

U, W 467.7 13.13

3-modal
D, W, U 817.1 25.11

W, U, W 936.5 25.57

4-modal D, W, U, W 1287 37.98

OSM
1-modal

D 15.99 0.4941

W 76.42 2.239

2-modal D, W 90.78 3.013

Tab. 4: Computing speed of MMD and MMD-T on UM dataset.

Mode list MMD (s) MMD-T (s) Improvement. ratio (%)

2-modal

D, W 23.70 16.93 40.0

W, U 14.96 12.02 24.5

U, W 12.70 9.066 40.1

3-modal
D, W, U 23.75 19.27 23.2

W, U, W 23.83 19.91 19.7

4-modal D, W, U, W 35.99 27.65 30.2

Avg: 29.6
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ing the performances between MMBF and
MMD on the two datasets; the other is the test
of single source-target-pair MMD to investi-
gate how much performance improvement can
be made by MMD-T. For a given combination
of dataset, mode list and multi-modal shortest
path algorithm, an average running time of
100 s execution of MMD with randomly se-
lected source (and target for MMD-T) and 10 s
for MMBF was recorded. The reported run-
ning times do not include data input or log out-
put. The SPM (or, more precisely, SPM-T)
used for the experiment is shown in Tab. 1 in
Section 2. It should be noticed that the Dijk-

information from Navteq and ATKIS (the of-
ficial topographic cartographic information
system in Germany). The two datasets differ
in the areas they cover as well as the size of
their corresponding networks.

The basic information of the two datasets is
listed in Tab. 2. There are three transportation
modes of network in UM dataset: motorized
ways denoted by D, pedestrian ways denoted
by W and underground lines denoted by U. In
OSM dataset, there are D and W.

The experiments consist of two groups: one
is the test of single-source multi-modal short-
est path algorithms for the purpose of compar-

Fig. 5: Comparison between the routing results of our prototype system and Google Maps.

Fig. 6: A multi-modal routing result with three modes.
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Two algorithms MMBF and MMD were de-
veloped on the basis of label-correcting and
label-setting algorithms respectively. They re-
veal the complexities of O (∑kM | Vk | | Ek |) and
O (∑kM | Vk |2) respectively. The effectiveness
of the algorithms has been proved, which can
ensure that the found paths are the shortest in
terms of distances or weights. Our experi-
ments were conducted on real transportation
networks from two different data sources.
MMBF is much slower than MMD, and MMD-
T runs 29.6% faster than MMD on average in
case of the single source-target pair. From the
practical point of view, the MMBF is ineffi-
cient for real-time applications although it is
able to find the multi-modal shortest path.

The conducted experiments have shown the
convincing process of solving a multi-modal
route planning problem. However, multi-mod-
al routing in our real life can take various far
more complicated forms which will challenge
the computing power of routing algorithms.
Therefore, our work for the next steps will fo-
cus on two points:

1) To explore the further potential of com-
puting performance of the routing algo-
rithms
The multi-modal routing planning algo-
rithms introduced in this paper are based on
the two earliest and well-tested shortest
path algorithms. In fact, some researchers
have proposed improved versions of mono-
modal shortest path algorithms (Gallo &
Pallottino 1988, Cherkassky et al. 1996).
According to the evaluation done by (Zhan

& Noon 1998) using real road networks and
the comparison work between label-setting
and label-correcting algorithms for comput-
ing single source-target pair shortest paths
by (Zhan & Noon 2000), TWO-Q is the
most efficient routing algorithm for shortest
path finding in road networks (Pallottino

1984). We attempt to implement a new
multi-modal shortest path algorithm based
on TWO-Q and test its performance in the
near future.

2) To take the knowledge from specific field
into consideration.
There is a lot of context knowledge from the
transportation field which should be embed-
ded in the route planning. For example, the

stra search can reveal considerably different
computing performance if it is applied in a
different data structure. For this reason, we
used an ordinary array as the min-priority
queue without using any built-in data struc-
tures or methods provided by .net framework
class library. In this way, our test results are
independent of the internal optimization made
by Microsoft.
The experimental results of the first group

are listed in Tab. 3 which shows that the
MMBF is much slower than MMD, which has
confirmed our analysis of theoretical com-
plexities.

The experimental results of the second
group are listed in Tab. 4 which shows that the
average improvement made by MMD-T over
MMD amounts to 29.6%.

Fig. 5 shows the routing result of our algo-
rithm in comparison with Google’s route from
a crossing of motorized roads to a pedestrian
junction in the English Garden. The destina-
tion is shown by a checkered flag. We can see
that the car segments (blue solid line) of the
two routes are exactly the same. However, the
pedestrian segment (red dashed line) in our
route is missing in Google’s route. The reason
for that is in Google Maps (and almost all the
currently available routing systems) only one
travel mode can be selected, e. g., either by car
or by foot, but not both. Our routing algorithm
allows the car-pedestrian combination with an
appropriate parking place as the Switch Point.

Fig. 6 shows another multi-modal routing
result calculated by our algorithms. Three
modes are involved in the route: car driving
(blue solid line), walking (red dashed line), un-
derground train (black solid line) and walking
again.

5 Conclusions and Outlook

The multi-modal route planning problem ad-
dressed in this paper originates from the trans-
portation field. However, we developed a mul-
ti-modal routing strategy in a general sense,
thus opened up its applicability for the fields
beyond transportation. We proposed a data
model with Switch Point as the core concept
and gave the formal description of the multi-
modal shortest path based on Switch Point.
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path should be “viable” which we men-
tioned in Section 2, the traffic rules in the
transportation networks, the cost when
changing the mode, the dynamic traffic in-
formation, etc. We will verify and specify
our approach on multi-modal transportation
networks enhanced with knowledge.
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