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Summary: Within the last decade, a new classifi-
cation method from the field of machine learning,
has found increased application in remote sensing.
So called support vector machines (SVM) are being
used for the classification of virtually all kinds of
data used in remote sensing. They achieve special
attention in the field of hyperspectral datasets. For
these, SVMs are especially well suited, as they
cope very well with their high number of dimen-
sions. This contribution gives a thorough introduc-
tion into the topic, outlines fields of applications —
thereby focussing on classifying vegetation — and
presents a comparison of results with other meth-
ods such as maximum likelihood and spectral angle
mapper.

Zusammenfassung: Uber den Einsatz von Sup-
port-Vektor-Maschinen (SVM) fiir Vegetationsklas-
sifizierung. Im letzten Jahrzehnt hat ein neues
Klassifizierungsverfahren aus dem Bereich des
maschinellen Lernens vermehrt Anwendung im
Bereich der Fernerkundung gefunden. Die so ge-
nannten Support-Vektor-Maschinen (SVM) werden
fur die Klassifizierung praktisch aller Datentypen
der Fernerkundung eingesetzt. Sie erhalten eine be-
sondere Aufmerksamkeit im Bereich hyperspektra-
ler Datensitze, fiir die SVMs besonders geeignet
sind, da sie sehr gut mit der hohen Anzahl an Di-
mensionen zurechtkommen. Dieser Beitrag gibt
eine ausfiihrliche Einfiihrung in das Thema, stellt
Anwendungsgebiete — vor allem aus dem Bereich
der Vegetationsklassifizierung — dar und prasen-
tiert einen Vergleich anhand von Klassifizierungs-
ergebnissen mit anderen Verfahren (Maximum-Li-
kelihood und Spectral Angle Mapper).

1 Introduction

In recent years, a new technique of pattern
recognition has found broad acceptance in the
remote sensing community. Support vector
machines (SVM), have been developed by
VapNIK et al. (1992) as a method of supervised
classification. Since then, the potential of dif-
ferent types of SVM classifiers has been im-
proved and adapted to a large number of tasks.
Classification procedures based on SVM have
been applied to multispectral (MiTrA et al.
2004), hyperspectral (GuaLtiert & CROMP
1998, Camps-VaLLs et al. 2004) data, synthetic
aperture radar (SAR) data (Tan et al. 2007),
and light detection and ranging (LiDAR) data
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(LopHa et al. 2006). In a large number of pub-
lications, SVMs outperformed other classifi-
ers (like Maximum-Likelihood, Minimum
distance, Spectral angle mapper, but also neu-
ral networks, Fooby & MATHUR 2004) in terms
of accuracy and robustness. The main advan-
tage of SVM is given by the fact that they ab-
stain from a statistical description of the data,
but find optimal separation (hyper-)planes
learnt from the spatial distribution of training
data in the feature space.

The paper is organized as follows. At first,
we will give a non-mathematical introduction
to SVM, then we will give some examples of
applications in the field of vegetation and for-
estry. After that, we will present results from
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our own work. Finally, we will give a short
summary and outlook.

2 Brief Revision of SVM

The basic drawback of common classifiers
that led to the development of SVM was to
find a classifier that generalizes well and is
less susceptible to non-Gaussian distributed
and deviant patterns than statistically moti-
vated methods (Vapnik et al. 1992, CorTes &
Vapnik 1995). Consider the situation given in
Figs. 1 and 2. The set of points for the class
marked by crosses, contains outliers. Thus, a
classifier based on the class centres (like Min-
imum Distance) is strongly affected by the lo-
cation of these outliers, resulting in a separa-
tion plane that cuts of some of the points which
are close to the other class. Effectively, points
that lie behind a front of other points from the
same class, are the ones that should least affect
the position of the separating plane. It is evi-
dent, that the only points that should affect the
position of the plane, are the ones that lie op-
posed to the closest points from the other class,
(marked by small squares in Fig. 2). These are
called support vectors. If the two classes can
be separated linearly, it is possible to find an
infinite set of lines to separate the classes (im-
agine rotating the dashed line in Fig.2 by a
few degrees). As we cannot be sure, that the
training data describe their class perfectly, it
should be aimed to find a line which leaves a
broad area (called margin in SVM) between
classes to leave space for the test data. Ac-
cording to the statistical learning theory (for
an overview cf., e. g., Vapnik 1999), a classifier
maximizing the free space between point
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Fig.1: K-means Separation.
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Fig.2: SVM Separation.

clouds generalizes well, i. e., runs a low risk of
classifying unknown patterns falsely.

These considerations led to the develop-
ment of SVM (Vapnik et al. 1992). Given an
p-dimensional feature space, we choose a cou-
ple of m training samples x, with p features x =
(G xp) and a class label y, € [-1, +1] to
form a dataset T = {x,, ¥,, X,, ¥, ..., X,, ¥, }.
Considering Fig. 2, it becomes clear that there
exists a separation plane, given in the normal
form w - x + b =0, which correctly assigns all
of the training data in 7 into the classes de-
fined by their labels y, leaving a broad margin
for data with unknown label. Here, w is the
normal vector on the plane and the bias b is the
distance from the closest point on the hyper-
plane to the origin. The task is now to solve an
optimisation problem, thus, finding an optimal
separation hyperplane (OSH). Mathematical
foundations can be found in (BurGges 1998, Iv-
ANciuc 2007). A very comprehensive, yet more
intuitive description is given in (BENNETT &
CampBeLL 2000). Numerical solutions are de-
scribed in (Borrou & Lin 2007). Within the
optimisation problem, patterns from 7" appear
in dot products — an important feature to keep
in mind. After w and b have been found, de-
ciding the class membership of new data is
done by simply checking, on which side of the
hyperplane they are situated.

2.1 Relieving the Constraints by Soft
Margin SVM

However, in many cases it may not be possi-
ble, or wanted, to find a plane which separates
all the training samples into the right classes.
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Fig. 3: Soft-margin SVM by using slack varia-
bles ¢, w represents the normal vector of the
plane, b is the distance of the closest point to
the origin.

As shown in Fig. 3, for each class there ex-
ists one pattern (marked by squares) to be on
the opposite site of the separating plane. These
might be known exceptions, like pixels from
falsely assigned training areas. In this case it
could be allowed for these pixels to be on the
wrong side of the plane. This is realized by in-
troducing slack variables &, > 0 to each data
point, which equal zeros if the points are lo-
cated correctly and has a positive value if the
point is on the wrong side. These slack varia-
bles are summed up, penalized by a weighting
factor and added to the optimisation problem.
Various concepts of this so called Soft Margin
approach have been proposed in literature, the
most common ones being C (Cost) SVM
(CorTES & Vapnik 1995). However, in recent
publications, a promising new approach named
v-SVM (ScHoLkopr et al. 2000) is used. It can
be applied to achieve separation of one class
regardless of the other classes (One-class
SVM).

2.2 Finding a Solution in High-
dimensional Spaces by Kernels

Fig. 4 gives an example, where using a statisti-
cal description can lead to linearly infeasible
separation problems. Although it is clear that
the two classes can perfectly be separated, us-
ing a criterion like the class centres is not ad-
equate to solve the problem. As in this case
linear SVM, even using slack variables, also
fails to separate the data linearly, this situation
leads us to the next stage.

Fig. 4: Original feature space.

Fig. 5: Higher dimensional space.

For exactly this kind of cases, the SVM ap-
proach has been enhanced. Separating the two
classes is merely a question of increasing the
dimensionality of the feature space. This is
done by introducing a non-linear feature space
mapping D(x) (like the square distance to the
origin in this case, see Fig.5) that makes the
data linearly separable in the higher-dimen-
sional space. @(x) is not required to be calcu-
lated explicitly, though. Instead the so called
»kernel-trick (Ivanciuc 2007) is applied,
which reformulates the mapping and evaluat-
ing of two data points x, and x, by K(x,, x) =
D(x,) - D(xj). Kernels operate in the original
feature space but act like dot products in the
high-dimensional space (BurGes 1998). Thus,
they compute the solution implicitly, making
the problem resolvable in a much easier way.
There exists a large variety of kernels, yet the
most frequently used ones — apart from the
linear kernel, which equals to not performing
any transformation — are the following:

XX,
K(xl.,xj_):exp( : 2’]
(@
Radial Basis Function (RBF) Kernel (1)
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K(x,x)=(x; x;+ 1)
Polynomial Kernel of d" degree )

2.3 Methods for More than Two
Classes by Multi-class SVM
Strategies

Up to now we have only discussed two class
problems. Within the field of remote sensing,
it is merely the case, to have only two classes
of interest. What is needed is a method to
adapt SVMs to the classification of problems
with more than two classes. Some research
has been made using specialized algorithms to
treat more than two classes at once (WESTON
&WATKINS 1999, AsSHARAF et al. 2007, SOMAN
et al. 2007). However, until now these meth-
ods are still on an experimental level. The ap-
proach widely used is to subdivide the n class
problem into several 2 class problems. A
number of specific strategies have been devel-
oped, and the three most important ones are
presented here. The first adaptation of SVM to
multiple classes was the One-against-all ap-
proach. For each of the n given training class-
es, a OSH is optimised, labelling the recent
class as +1 and all the pixels from the other
classes as —1. During the classification phase,
each pixel is passed on to each of the n SVM
classifiers. It is assigned as member of a class,
if labelled as +1 by the respective SVM classi-
fier and left without class membership if la-
belled as —1. As this approach has a couple of
inconveniences (e. g., the existence of a not
meaningful rejection class), One-against-one
has been invented. It refuses to consider all n
classes at the same time, but finds for all the
n(n—1)/2 combinations of classes a suitable
hyperplane. This means, that a certain hyper-
plane is only meaningful for two classes, ig-
noring all the other classes. In the classifica-
tion phase, each pixel is checked by all the
n(n—1)/2 classifiers, recording the label attrib-
uted by each classifier. After finishing this
process, the max wins strategy assigns the
pixels to the classes, they have received most
votes from. There has been a number of publi-
cations using hierarchy-based approaches.
The most common one is the DAG (directed
acyclic graph) by PratT et al. (2002). It can be

considered as a special case of One-against-
one, due to the identical training procedure. In
contrast to One-against-one, the data set is
split up during the classification phase by fol-
lowing a graph. Thus, the data set which is
passed on to a certain SVM model gets ever
smaller on each layer of the graph, shortening
classification times significantly.

2.4 One-class SVM

A major drawback of these approaches is the
lack of methods to train and classify images,
using only a subset of the classes present in the
image. If, for example, out of n classes in a
rural area, only two (e. g., forests and mead-
ows) are of interest, one none the less has to
train SVM models, considering all the classes.
This drawback can be solved using One-class
SVM. This strategy is effectively not a multi-
class strategy, but a different type of error pe-
nalization (v-SVM) which can be exploited to
overcome the drawbacks of the Cost-SVM
based multi-class strategies given in Section
2.3. Instead of finding a hyperplane, that sepa-
rates a class from the other classes, a hyper-
sphere is found, which optimally hulls in the
points from one class. This enables the user, to
find a separating criterion for a given class
without explicitly assigning training areas for
other classes.

3 Performance of SVM for Forest
and Vegetation Classification

In this section, we will show the applicability
of SVM in the field of vegetation classification
and forestry. At first, an overview on the work
of other authors from the field of forestry will
be given. In the next step, we will present
some results from our own work that was
achieved using the classical multi-class ap-
proaches, presented in Section 2.3. We will
conclude by comparing a One-against-all clas-
sification, using the traditional Cost-SVM ap-
proach, with the newer One-class SVM. The
reason for this is, that One-class SVM is a
promising approach, which has not been used
widely in remote sensing so far.
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3.1 Related Work

In this section, we present some related work
on the application of SVMs in the field of for-
estry. WiaYa & GLOAGUEN (2007) classify two
different Landsat ETM7+ scenes of tropical
rainforests (South Ecuador, Central Indonesia)
into five classes. Using SVM, they achieve
73 % of overall accuracy for Ecuador and 81 %
for Indonesia. In their study, Zammir et al.
(2006) present classifications of burnt forest
areas using after-fire scene in France from
SPOTS. In their comparison, SVM outper-
forms K-Means, and K-Nearest-Neighbours
regarding overall accuracy (96.5 % for SVM)
and false positives (3.1 % for SVM). LAFARGE
et al. (2004) apply a specialized kernel to de-
tect forest fires with SPOTS. Applying SVM,
the authors are able to detect fire through
smoke formation using only the panchromatic
channel. Through a combination of Landsat
classification with climate data and other eco-
logical data, Guo et al. (2005) develop a pre-
diction map for areas, threatened by sudden
oak death (Phytophtora ramorum) in Califor-
nia. The authors report that, due to the high
true-positive rates yielded (0.91), SVM can be
recommended for ecological niche classifica-
tion. YANG et al. (2006) use SVMs to predict
gross primary production of forested and non-
forested areas at a continental-scale using data
from the MODIS sensor. The results of SVM
were competitive to the standard MODIS GPP/
NPP algorithm.

3.2 Performance Analysis for
Different Data, Kernels and
Strategies

The capability of SVM shall be shown by
comparing the classification accuracy of SVM
to those achieved by other methods. In this
section, we will present the classification re-
sults for different data types. For some results,
we will only give the Overall accuracy (OAA)
and cappa statistics in Tab. 1. Three results,
however, will be discussed in detail. The first
scene was taken by the QuickBird satellite in
2005. Secondly, a dataset, taken by the HyMap
sensor in 2003 was worked on. The scenes
show the urbanized area of Karlsruhe, Ger-

many. The last scene was a subset of the Rapi-
dEye Demonstration scene, showing the ur-
banized area of Griffith, New South Wales,
Australia. For each scene, the same training
areas were used to perform both an SVM clas-
sification, and another classification approach
(Maximum likelihood for QuickBird and
RapidEye, Spectral angle mapper for HyMap).
Maximum likelihood classification (MLC)
was performed using a commercial software
package, Spectral angle mapper (SAM) was
carried out, using Hypertools (PacLik et al.
2005) for Matlab. The SVM classification was
performed, using an adapted version of Lib-
SVM (Cuanc & Liv 2008). Afterwards, con-
trol areas were defined by field survey, using
our knowledge of the scenes and aerial im-
agery available at the institute. For each land
cover class, various control areas from differ-
ent locations in the scene where assigned. We
used at least two times more pixels for control
areas, than for training areas and made sure,
that no class had significantly more control
area pixels than others. These control areas
where used to calculate confidence matrices
for both the SVM classification as well as for
the comparison (MLC or SAM).

Comparison with Maximum likelihood
— QuickBird

From the entire QuickBird scene, a 1.000 per
1.000 pixel subset, showing the forested area
north west of Karlsruhe castle, was taken. 13
different land cover classes, covering a wide
range of vegetation, as well as urban classes,
were chosen. Concerning the forested areas,
two different kinds of mixed beech groves
(Fagetalia), two different kinds of meadows
(one in good conditions, one slightly degraded
by trespassing) and an alley of lime-tree (Tilia
europaea) on gravel were taken into account.
Training was performed for both MLC and
Cost-SVM (with RBF kernel, applying the
One-against-one strategy). Hence, for each of
the n(n—1)/2 training steps, a different SVM
model was obtained. Considering overall ac-
curacy and cappa coefficient, the SVM out-
performed MLC (see Tab. 1). Comparing re-
sults (given in Figs. 11 to 13) visually, it can be
noted, that SVM delivered a more consistent
image. Many surfaces (like, e. g., red roofs, or
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the area around the castle) appear more coher-
ent in SVM than in MLC. The same accounts
for the lake. The MLC result seems too much
dominated by the cyan class for alleys. The
reason for this might be, that alleys are com-
posed of trees and the sand beyond. This re-
sults in a class with two class centres, which
deviates strongly from the normal distribution
recommended for MLC classification. Fur-
thermore, SVM seems to be better suited to
distinguish between dark-grey roofs and light-
grey streets.

Comparison with Maximum Likelihood
— RapidEye

As for QuickBird, a Cost-SVM approach with
RBF Kernel and One-against-one was com-
pared to MLC. The subset size was 1.000 per
1.000 pixels and 13 landuse classes have been
assigned. (Figs. 14 to 16) show the visual re-
sults. As can be seen, MLC assigned much
more pixels to the dark-green fields class,
which seems only partly justified. There are
obvious differences in the urbanized areas.
The SVM assigned less pixels in the city to
vegetation classes. Industry and other urban
classes are much more dominant, reinforcing
the impression of higher coherence, that the
SVM result for QuickBird gave. Just as for
QuickBird, Overall Accuracy and cappa sta-
tistics of SVM exceeded those of MLC (see
Tab. 1).

Comparison with spectral angle
mapper — HyMap

To compare SVM with a traditional method
for classification of hyperspectral data, a 281
per 169 pixel subset from a HyMap scene was
chosen and processed with SAM and SVM.
For the latter, a Cost-SVM approach with the
One-against-one strategy was chosen. We

used a linear kernel, as due to the high number
of dimensions (126) in the input space, we
hoped to be able to find a linear OSH without
transforming the data to higher dimensional
spaces. As the comparison of overall accuracy
and cappa (Tab. 1) reveals, this assumption
was justified. As well as for the QuickBird
classification, the visual results (Figs. 17 to 19)
seem more coherent for SVM, than for SAM.
Within the forests, SVM could distinguish
better between the different tree classes.
Shrublands marked in yellow have been iden-
tified more clearly and also buildings are not
so much mixed up with pixels from other
classes.

Comparison One-Against-all versus
One-Class SVM

As described in Section 2.4, a major advan-
tage of One-class SVM is, that training and
classification can be performed for each class
independently of the other classes. Despite
this obvious advantage, One-class SVM has
found few applications in remote sensing so
far, none of the work presented in Section 3.1
has used it. To illustrate the difference be-
tween One-class SVM, we performed a short
comparison. For a very small (338 per 291 pix-
els) subset of the QuickBird scene, different
classifications were performed. The goal was
to achieve a good separation for three vegeta-
tion classes only: dark trees like beech (Fagus
sylvatica) and hornbeam (Carpinus betulus),
light trees like lime-tree (Tilia europaea) and
birch (Betula spec.) and meadows, see Fig. 6).
At first, a One-against-all classification was
performed, assigning trainings areas for the
three vegetation classes only. Fig. 7 shows that
the outcome was quite poor. This is exactly
what we had expected, as the One-against-all
strategy is unable to perform well if not trained
for all classes. Next, we assigned training ar-

Fig.7: O-a-a 3

Fig. 6: Training
classes.

areas.

Fig.8: O-a-a all
classes.

Fig.9: O-a-a set
to black.

Fig.10: One-
class-SVM.
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Dark Trees (Fagus, Light Trees (Tilia, Meadows
Carpinus etc.) Betula etc.)
One-class SVM 28.3% 51.8% 65.1%
One-against-all 33.5% 75.8% 76.3 %

Fig. 11: QuickBird training
areas.

Fig. 14: RapidEye training
areas.

Fig.17: HyMap training areas.

eas to all the classes present in the scene and
classified with One-against-all again. Fig.8
shows the outcome for all classes, in Fig. 9 all
classes apart from the vegetation classes have
been set to black to ensure visual comparabil-
ity with the next result. At last, we trained a
One-class SVM for each of the three vegeta-
tion classes, ignoring of course all the other

Fig. 18: SVM result.

Fig. 19: SAM result.

classes. In contrast to Fig. 7, Fig. 10 shows that
this strategy can indeed be followed, using
One-class SVM.

However, comparing results quantitatively,
One-class SVM failed to outperform One-
against-all. By assigning user-defined control
areas, the rates of true positives were calcu-
lated. One-class SVM achieved poorer accu-
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Tab. 1: Comparison of different classifications (results in bold letters are described in this report).

Scene SVM MLC SAM

OAA Cappa OAA Cappa OAA Cappa
QuickBird 87.5% 0.86 80.8 % 0.78 - ---
RapidEye 79.4 % 0.77 62.7 % 0.59 --- ---
Landsat TM 80.1% 0.8 65.4% 0.6 - -
HyMap subset 1 72.0 % 0.7 --- -—- 48.5% 0.4
HyMap subset 2 82.6% 0.8 --- --- 48.6 % 0.4

racy for all of the three vegetation classes.
One-class SVM found in total fewer pixels for
each class, this might have led to the worse
accuracy rates. A possible reason for this
might be overfitting. As the training areas for
each class were very small, classes could prob-
ably not been described well enough. Another
reason might be, that the differences between
dark and light trees have not been well distin-
guished by One-class SVM. The rows of dark
trees in the south of the scene are too much
mixed up with pixels classified as light trees in
the result of One-class SVM.

4 Summary and Outlook

The results presented here confirm the state-
ments of other authors (Fooby & MATHUR
2004, MELGANI & BruzzoNEe 2004, LopHA et al.
20006, Tan et al. 2007) that SVMs are promis-
ing and capable classifiers for remotely sensed
data of different kinds. The method delivers
reliably well results for data of different di-
mensionality and origin (LiDAR, SAR, mutli-
and hyperspectral). It outperformed MLC and
SAM in a direct comparison. Especially in the
case of hyperspectral data, a linear kernel is
worth trying. Due to the high dimensionality
of the hyperspectral input space, there might
be no need to chose a non-linear functions to
achieve separation. According to (VAPNIK et
al. 1992) the more complex the kernel function
is, the SVM classifier produces higher gener-
alization errors.

A lot of work is currently being done in de-
veloping specialized kernels (CamPs-VALLs et
al. 2005), better training algorithms (Su 2009,
KEeerTHI & LiN 2003) and combination of SVM
with feature extraction (Cao et al. 2003). How-

ever, we consider, that the usage of One-class
SVM is a promising field of work, as it allows
the user to classify only the classes of interest
to him, without having to keep in mind each of
the n occurring classes in the entire scene.
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