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Summary: The purpose of the study presented
here is to enrich low resolution (LOD1) 3D city
models with semantic information about the archi-
tectural style of buildings. The focus is on identify-
ing Wilhelminian-style buildings - terraced houses
with three to four floors, high storeys, richly deco-
rated facades and an architectural style typical for
the turn of the 20th century. We use this example
for the evaluation of the potential of Support Vector
Machines (SVMs) for data mining in 3D city mod-
els. Identification of Wilhelminian-style buildings
with low level data is demanding since most distin-
guishing characteristics are on higher levels of de-
tail. However, Wilhelminian-style buildings tend to
form specific ensembles of buildings with similar
shape, thus context information is significant. After
careful pre-processing, feature extraction, and fea-
ture weighting, a Support Vector Machine with a
radial basis function as kernel was trained. In con-
trast to other classifiers which minimize the em-
pirical, Support Vector Machines are based on
structural risk minimization. This approach turned
out to be especially useful for a task where the re-
spective classes are highly inhomogeneous and a
high percentage of the training data is mislabeled.
In order to reduce the effect of the latter, an outlier
detection was applied as part of the pre-processing.
Above, a clustering algorithm was used to cope
with hidden structures in the training data. Despite
difficult boundary conditions, the SVM classifier
was able to detect Wilhelminian-style houses with
high accuracy. This demonstrates the high poten-
tial of Support Vector Machines for data mining in
3D City Models. However, intelligent pre-process-
ing and kernel parameter optimization are neces-
sary.

Zusammenfassung: Erkennung des Gebäude-Ar-
chitekturstils in 3D Stadtmodellen mit Support Vek-
tor Maschinen. Das Ziel der hier präsentierten Stu-
die ist es, 3D Stadtmodelle mit geringer Auflösung
(LOD1) mit semantischen Informationen über den
Architekturstil der Gebäude anzureichern. Der Fo-
kus liegt dabei auf Gründerzeithäusern – Reihen-
häuser mit drei bis vier Stockwerken, hohen Räu-
men, reichhaltig verzierten Fassaden und einem Ar-
chitekturstil, welcher für die Wende zum 20ten Jahr-
hundert typisch ist. Das Beispiel wird für die Evalu-
ierung des Potentials der Support Vektor Maschinen
für Data-Mining in 3D Stadtmodellen benutzt. Die
Identifizierung von Gründerzeithäusern in niedrig
aufgelösten Daten ist anspruchsvoll, da die charakte-
ristischsten Merkmale dieser Gebäude erst in einem
höherenDetailgrad beobachtbar sind. Allerdings las-
sen sich Gründerzeithäuser oftmals zu spezifischen
Gruppen von Häusern mit ähnlicher Form zuordnen,
wodurch Kontextinformationen wichtig werden.
Nach einer Vorverarbeitung der vorhandenen Daten,
einer Merkmalsextraktion und einer Merkmalsge-
wichtung wird eine Support Vektor Maschine (SVM)
mit radialen Basisfunktionen als Kernel trainiert. Im
Gegensatz zu anderen Klassifikatoren, welche das
empirische Risiko der Fehlklassifikation minimie-
ren, basieren SVMs auf dem Prinzip der strukturel-
len Risikominimierung. Dieses Vorgehen ist beson-
ders nützlich für Aufgaben, wo die Klassen beson-
ders inhomogen und die Trainingsdaten zu einem
hohen Prozentsatz falsch vorklassifiziert sind. Um
letzteren Effekt zu reduzieren, wurde eine Ausrei-
ßersuche bei der Vorverarbeitung der Daten ange-
wendet. Zusätzlich wurde eine Cluster-Methode ge-
nutzt, um unbekannte Zusammenhänge in den Trai-
ningsdaten auszunutzen. Trotz der schwierigeren
Randbedingungen war der Klassifikator in der Lage,
Gründerzeithäuser in dem Stadtmodell mit hoher
Genauigkeit zu prädizieren. Dies zeigt, dass Support
Vektor Maschinen ein großes Potential haben für
Data-Mining in 3D Stadtmodellen. Eine geschickte
Datenvorverarbeitung und Optimierung der Ker-
nelparameter sind jedoch immer noch notwendig.
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The classifier has to face two main prob-
lems. Firstly, an inhomogeneous dataset can
be expected because houses of the same archi-
tectural style may differ significantly with re-
gard to the features in the given level of detail.
Hence, there may be not one prototype for an
architectural style, but an unknown number of
seperate clusters. Secondly, we do not assume
that a set of correctly labeled buildings is giv-
en. Instead streets dominated by a specific
building style are available, where neverthe-
less buildings with a different architecture ap-
pear. A rather high propability of mislabeling
in the training dataset can be expected.
Additionally, Wilhelminian-style houses

are an especially challenging scenario. Their
most distinguishing characteristics (high sto-
reys, richly decorated facades) are not repre-
sented in the LOD1 model. Hence, the classi-
fier has to detect hidden patterns which are
unknown a-priori. This is the reason why the
identification of Wilhelminian-style buildings
in LOD1 data poses a demanding for data
mining.

Data Mining is the implementation of spe-
cific algorithms and learning methods to auto-
matically extract patterns from data (Fayyad

et al. 1996). The classifier has to be able to
learn what is specific for a given class from a
given set of samples, a capability which is
named generalization. Generalization reduces
the risk of overfitting and therefore of wrongly
predicting the affiliation of unseen data to a
certain class. This is achieved by finding a
model which is not overly dependent on single
examples and therefore resistant against out-
liers and noise.
A classification method which has received

increasing attention in recent years is the Sup-
port Vector Machine (Vapnik 1998, SchölkopF

& Smola 2002, heinert 2010). In contrast to
other classifiers who aim at minimizing the
empirical risk with regard to the training data,
SVMs are based on the principle of structural
risk minimization. This leads to a superior
generalization capability (Gunn 1998).
As with other supervised learning methods,

the quality of the training dataset significantly
influences the quality of the class prediction.
Hence, the amount of mislabeled examples in
the training dataset has to be reduced. To
achieve this, two methods are combined. The

1 Introduction

Three dimensional city models are available
for an increasing number of cities. Not only
the volume of data increases, but also the de-
velopment of consistent geospatial data mod-
elling methods (kolbe & GröGer 2003), such
as CityGML, and of models suitable for repre-
senting buildings in different levels of detail is
progressing fast.

However, nowadays most city models are
only given in the level of detail 1 (LOD1). In
LOD1 each building is represented by an ab-
stract solid which is derived from the height
and the cadastre ground plan of the building.
These models make it difficult to detect con-
tentual connections, even if these could sub-
stantially support the user when analyzing and
pre-processing the dataset.
For instance, a user who intends to move

from one town to another and has a specific
style of life intends to query a 3D database in
order to find areas of a certain architectural
style in his new neighborhood. He is able to
point on streets in his old neighborhood which
are dominated by his preferred architectural
style, say Wilhelminian-style buildings. How-
ever, he is not willing to study the technical
details of the database and to translate his in-
ternal concept into an SQL query. Instead he
wants to approach the database by saying: “I
look for a neighborhood similar to the one
where I live now, which is located there”. A
system which supports this kind of queries is
the vision behind our research.

The aim of this study was to design a classi-
fier which identifies areas and streets in cities,
based on LOD1 3D city model datasets, which
are dominated by a specific architectural style.
This information may be used to enrich the
LOD1 solids and help the user to interpret the
abstract solids or may be used to visually en-
hance the LOD1 models with automatically
generated textures (krückhanS & Schmit-
twilken 2009) which fit the specific building
type. This is important as LOD1 city models
have been derived for large regions from air-
borne laserscans and cadastre coordinates,
whereas higher resolutions are more difficult
to obtain. We restrict to the dichotomous case
and leave multi-class labeling for further dis-
cussion.
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We want to generalize the discrete training
samples in a way which allows to predict the
class label y of any unknown sample x gener-
ated by the same propability distribution P(x,
y) as the training samples. Therefore we need
an indicator function ƒ : → {±1} which ap-
proximates the unknown P(x, y).
At first appearance an appropriate classifier

is given by an indicator function which mini-
mizes the expected risk of misclassification,
i.e. where the difference between the predicted
and the given class label of the training sam-
ples is minimal. This approach is called em-
pirical risk minimiziation.
However, this approach risks overfitting. In

an attempt to reduce the empirical risk as
much as possible, the classifer may use a mod-
el with too many degrees of freedom and
therefore may adapt to noise and outliers in-
stead of the underlying patterns we truly
search.
A basic insight of statistical learning theory

(Vapnik 1998) states that in order to achieve
good classification performance one has to re-
strict the set of possible indicator functions.
This is done by a function which estimates
and penalizes the complexity of the model.
The model complexity is measured with the
VC-Dimension (Vapnik & cherVonenkiS

1971). Identification of the appropriate VC-
Dimension with regard to a given problem is
the basic idea of structural risk minimization.
Support Vector Machines are based on this
principle. They balance the risk of overfitting
with the minimization of the empirical risk.

2.2 Linear Support Vector Machines

We start with the basic case of linear support
vector machines and assume that the training
data is linearly separable. The set of indicator
functions is thus restricted to separating
hyperplanes of the form

ωω ωω, 0
i 1

n
x x+ = + =∑

=
b bi i

.

The distance between the origin and the hy-
perplane is given by b ∈ R, while ω ∈ Rn de-
notes the normal vector (weight vector) of the
hyperplane. The hyperplane divides the fea-

LOF outlier detection (breuninG et al. 2000)
is eligible for finding outliers in datasets where
no information about the underlying distribu-
tions is given. Even if this algorithm can find
outliers, the example training set still contains
clusters of mislabeled buildings. Therefore, a
combination of a clustering algorithm with a
SVM-classifier is used to pre-process the
training dataset and to remove training exam-
ples where the probability of a correct prelabe-
ling is low.
After an overview over the concept of the

Support Vector Machines is given in Section
2, the main contribution of this paper is pre-
sented in Section 3, which describes how the
SVMs are applied to LOD1 city models in or-
der to classify buildings and how the training
dataset is pre-processed in order to reduce the
number of misclassified training examples.

2 Support Vector Machines

The following Section introduces the concept
of the Support Vector Machines. Support Vec-
tor Machines is a supervised learning method
for binary classification problems. Based on a
set of labeled training samples SVMs learn a
model which enables the classifier to differ be-
tween two classes and predict the class of un-
seen samples.

Starting with the general problem of binary
classification the important principle of struc-
tural risk minimization is presented as well as
the separating hyperplane on which the class
indicator function is based, and subsequently
linear and nonlinear Support Vector Machines
are introduced. Section 2.4 discusses the case
of not linearly separable classes.

2.1 Binary Classification

The starting point is a given dataset of train-
ing samples (x1, y1) … (xm, ym), with xi denot-
ing an n-dimensional feature vector and with
yi ∈ {±1} indicating the class labels of the
samples xi. The dataset is generated inde-
pedent and identically distributed by the un-
derlying, unknown propability distribution
P(x, y) = P(x)P(y | x).
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rush-Kuhn-Tucker conditions (rockaFellar

1993) we get:

max
α

α α αW( )αα = ∑ − ∑
= =

i
i 1

m

i j i j i j
i, j 1

m1
2

y y x ,x , (3)

subject to αi ≥ = 0 (4)

and αi i
i 1

m
y 0=∑

=
. (5)

Solving (3) returns the dual Lagrangian αi for
every xi. One key ability of the Lagrangian
dual variable is that it becomes zero for every
xi where the constraint does not become zero,
i.e. where the distance between the hyperplane
and the corresponding class is not minimal.
Those points where αi ≠ 0 is true are called
support vectors. With the help of the Lagrang-
ian dual variable the optimal hyperplane can
be calculated again:

ω̂ = αi i i
i 1

y x
m

=
∑ , (6)

b̂ = − 1_
2 〈ω̂, xa + xb〉, (7)

where xa and xb are any support vectors of the
two classes (xa,ya) ∈ {+1} and (xb,yb) ∈ {–1}.
The coefficients of ω can be interpreted as the
weights of the individual features.

ture space into two regions, one for the class
{+1} and one for the class {–1}. New, unseen
points are classified depending on which side
of the hyperplane they are.

We now search the hyperplane which re-
sults in no misclassification and where the dis-
tance between the hyperplane and the nearest
points in the training dataset is maximal.
Among all separating hyperplanes (there are
infinitely many) this maximal margin hyper-
plane proves to minimize the structural risk
(Section 2.1) and to achieve the best prediction
accuracy. If we fix the minimal distance of
the nearest point in the dataset to the hy-
perplane to one, we get a so called canonical
hyperplane and the distance of any point
in the dataset to the hyperplane is given by

d (ω, b; x) =
〈 〉 +ωω

ωω
,x b

.

If we would not use canonical hyperplanes ω
and b could always be multiplied by the same
non zero constant. Fixing the distance to any
scalar abolishes this degree of freedom, which
would prevent the construction of a unique
maximal margin hyperplane.
Hence, we have to minimize

h( ) 1
2

2ωω ωω= (1)

to get the optimal hyperplane with the maxi-
mal distance to the nearest point of the train-
ing dataset.

The separating hyperplane will only then
be optimal, if the risk of misclassification is
minimized at the same time. This is achieved
by the constraint:

y , b 1,i 1...i iωω x +( ) ≥ = m (2)

Finding the optimal hyperplane therefore is
identical to solving equation (1) subject to the
constraint (2). This turns out to be a convex
minimization problem which is guaranteed to
have one global solution which may be found
with well known methods. With regards to
performance SVMs tend to solve the follow-
ing equivalent dual maximization problem
(boyd & VandenberGhe 2004). Using the Ka-

Fig. 1: Separating hyperplane between two
classes (grey and black points). The optimal
hyperplane is the one with the largest distance
to both classes.
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The hyperplane is now given by

〈ω̂, x〉 = αi i i
i 1

m
y k( , )x x

=
∑ (11)

and

b̂ = − +∑
=

1
2

y (k( , ) k( , ))i i i a i b
i 1

m
α x x x x , (12)

where xa and xb are any support vectors from
both classes. The indicator function is

f (x) = sgn (∑
i = 1

m
αiyi k〈x, xi〉+ b̂). (13)

2.4 Soft Margin Classifier

Until now it has been assumed that the train-
ing data are free of noise and that both classes
do not overlap in feature space. This assump-
tion, again, is not realistic in most practical
cases. Above, as discussed in Section 2.1, the
classifier has to handle the trade-off between
minimizing the empirical risk and calculating
a hyperplane which generalizes the data well.
Hence, soft constraints are required which al-
low misclassifications in the training data. In
order to handle misclassifications, the slack
variable ξ is introduced, which results in a
new constraint for (1)

yi ﴾〈ωi , xi〉+ b﴿ ≥ 1 – ξi, i = 1…m, (14)

ξi ≥ 0,i = 1…m. (15)

With an unbounded slack variable ξ, however,
all examples would meet the constraints. Thus
the sum of the slack variables has to be mini-
mized.

Minimize h(ω) = 1
2

C2
i

i 1

m
ωω + ∑

=
ξ , (16)

subject to constraint (14) and (15), where the
penalty term C weights the influence of the
slack variables. Interestingly, the Lagrangian
dual optimization problem (9) stays the same,
apart from a slightly modified constraint
C ≥ αi ≥ 0

Predicting the class of a new, unseen data
point is now possible through the sign of the
distance between this point and the hyper-
plane, which leads to the indicator function

f = sgn (∑
i = 1

m
αiyi 〈x, xi〉+ b̂). (8)

2.3 Nonlinear Support Vector
Machines

Until now it was assumed that the data is lin-
early separable, though this indeed is not ap-
propriate for all datasets. As the Cover-Theo-
rem (coVer 1965) states, the propability that
classes are linearly separable increases when
the features are nonlinearly mapped into a
higher dimensional feature space. Mapping
the original dataset into a higher dimensional
space therefore allows the construction of an
optimal separating hyperplane.

This, however, may be rather computational
inefficient for large datasets. Hence, kernels
(Shawe-taylor & criStianini 2004) are used
to compute the Support Vector Machine in
high dimensional feature spaces without ex-
plicitly mapping into these. As the kernel trick
states we can replace every dot product with a
kernel function k(x1,x2). Since all feature vec-
tors only occur in dot products, the kernel
trick can be applied (SchölkopF & Smola

2002) to map the data into a high dimensional
space and simultaneously avoid the drawback
of a high runtime.

Performing the mapping with a kernel func-
tion k(x1,x2) results in a modified optimization
problem:

max
α

α α αW( )αα = −∑ ∑
= =

i
i 1

m

i j i j i j
i, j 1

m1
2

y y k( , )x x , (9)

subject to the constraints (4) and (5).
The most widely used kernel function is the

Gaussian radial basis function

k(x1,x2) = exp −
−











x x1 2
2

22σ
, (10)

where the parameter σ influences the smooth-
ness of the decision boundary in feature
space.



376 Photogrammetrie • Fernerkundung • Geoinformation 5/2010

3.1 Constructing the Features from
the LOD1 City Model

The example dataset is given as a 3D-Cit-
yGML model of Bonn in the LOD1 represen-
tation, where buildings are reduced to abstract
solids without roofs (see Fig. 2). The solids are
constructed from cadastre coordinates of the
conjugated houses ground plans, whereas the
height is extracted from airborne laserscans.
Overall, the database used for this experiment
has 57,510 buildings. In addition, every build-
ing is given with its address.
The SVM classifier expects feature vectors

of fixed length which allow a comparison be-
tween the buildings. The given cadastre coor-
dinates for the ground plans of the buildings,
however, are lists of arbitrary length which are
not suitable for a similarity test. As such, the
given ground plans are not suitable for our
tasks. Therefore, feature construction was
necessary.
As every solid can be described by its

ground plan and its height, descriptions of
both are used as features. Hence, the first fea-
ture used is the height of every solid. The
ground plan is approximated by its 2D-bound-
ing box. From this bounding box, the width
(here the shortest edge of the box), the length
(the longest edge of the box) and the slimness
as the ratio of width to length is extracted. An-
other feature is the area of the exact ground
plan. The last feature derived from a single
building solid is the type of the floor plan. Un-

3 Predicting Wilhelminian-style
Buildings

Our aim has been to learn a SVM model of
Wilhelminian-style buildings for LOD1 data.
Wilhelminian-style buildings, typical for the
late 19th to early 20th century, are mainly ter-
raced houses with three to four floors. The fa-
cade is typically richly decorated and has
many small oriels. While the first and second
floor are mostly high with huge windows the
upper floors were mainly inhabited by serv-
ants or people from the poorer working class
and display small windows and low ceilings.

We used the LIBSVM Tool from (chanG &
lin 2001), which is readily available and pro-
vides a stable, performant and convenient
SVM implementation on several platforms.
Most other algorithms used here are available
in the open source data mining system Rapid-
Miner (mierSwa et al. 2006).
The first Section describes how the feature

space is constructed from the LOD1 model. In
Section 3.2 the training examples for the Wil-
helminian-style buildings and for “Others”
are chosen. In Section 3.3 the Support Vector
Machines method is applied to our classifica-
tion task. Section 3.4 describes how the results
can be improved using an outlier detection and
a clustering algorithm and finally in Section
3.5 the results are discussed.

Fig. 2: Typical examples of Wilhelminian-style buildings (left side) compared with a LOD1 solid
(KoLbe & GröGer 2003) on the right side.
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tures build the feature vector x of the binary
classification task for every building the SVM
algorithm is supposed to learn. The rank is
based on a weighting which will be discussed
in Section 3.3.
Finally, as the features have different scales,

all features are normalized to a distribution
with mean 0 and standard deviation of 1. This
is a standard step in pre-processing and avoids
unintended influence of features with a large
scale in equation (8).

3.2 Choosing the Training Examples

The next step has been to provide a sufficient-
ly large number of training data containing
both Wilhelminian-style buildings and “Oth-
ers”. The focus has been on the design of a
(semi-) automatic procedure following the
lines sketched in the introduction.
For this reason, previous knowledge has

been used. Suburbs were selected which are
dominated by a certain building type. The
buildings of a whole suburb are either assigned

der the assumption that every angle is rectan-
gular, the ground plan is categorized into rec-
tangles, L-,U-, T-forms and atriums. If none of
these forms fit the ground plan sufficiently it is
labeled as a complex form.

Most Wilhelminian-style buildings are ter-
raced houses and therefore very similar in
their features. All houses are grouped in
house-blocks. As a rule, adjacent houses are
closer than one meter to its neighbor. Since
Wilhelminian-style houses tend to be rather
similar within a given neighborhood, context
turns out to be rather important. For this rea-
son, the context is represented explicitly for
every single building. For every feature, with
the exception of the type of the ground plan,
the median of its house-block is calculated and
added as an additional feature.

To take buildings into account which differ
considerably from the other buildings in a
house-block, the difference between the me-
dian and the single buildings’ feature has been
added as an additional feature.
All in all, 16 features were derived (see

Tab. 1 for a list of all features used). These fea-

Tab. 1: Features derived from the LOD1 solids, ordered according to their relevance for the clas-
sifier calculated by the SVM-Weighting algorithm explained in Section 3.3.

Feature Rank

HeightMedian of the associated house block 1

SlimnessMedian of the associated house block 2

WidthMedian of the associated house block 3

HeightDifference to the median of the associated house block 4

WidthDifference to the median of the associated house block 5

Height 6

LengthMedian of the associated house block 7

Width 8

Slimness 9

Type of the floor plan 10

AreaMedian of the associated house block 11

Length 12

LengthDifference to the median of the associated house block 13

SlimnessDifference to the median of the associated house block 14

AreaDifference to the median of the associated house block 15

Area 16
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training examples, soft margin SVMs were
used, as described in Section 2.4. This means
the only parameter which had to be optimized
was the penalty term C which weights the
slack variable ξ in equation (16) and deter-
mines the influence of wrongly classified
buildings on the position of the hyperplane.

There is no possibility to estimate the best
value for C a-priori. As Fig. 3 shows, the per-
centage of correctly predicted buildings is
very sensitive to minimal changes in the pa-
rameter C. Therefore, different values for C
had to be tested and the one which minimizes
the empirical risk was assumed to be the best.
To test the empirical risk a ten-fold cross-vali-
dation (kohaVi 1995) was used.

By and large, the accuracy of the linear
SVM was not satisfactory. However, as a de-
sired side-effect, the linear SVM provides a
good weighting of the relative relevance of the
distinct features. According to formulas (6)
and (7) in Section 2.3 the learned model con-
sists of a normal vector ω and a bias b. The
normal vector ω specifies the coefficents of
the linear equation defining the hyperplane.
The absolute value of the components ofω is a
good indicator of the weight of the respective
attributes.

The calculated weights have been used to
rank the features as was suggested by (Guyon

et al. 2002) and to rescale the normalized fea-

to the class Wilhelminian-style buildings or
“Others”. The “Bonner-Suedstadt”, a suburb
dominated by the Wilhelminian-style, is the
training example for Wilhelminian-style
buildings, where three other suburbs are ex-
amples for the class “Others”. Those three
suburbs are chosen in such a way that one is
expected to be easily separable, one with only
few buildings of a similar architectural style
and one which is expected to be very difficult
to separate. The last one was a former “Wil-
helminian-style-suburb”, before it was de-
stroyed by bomb raids in World War II. As
some single buildings and streets still are Wil-
helminian-style, the new buildings were con-
structed with similar height, width and length
to fit into the overall picture of the suburb.
Putting together this demanding training set
was done intentionally to provide a challeng-
ing scenario for the learner.

The result has been a training dataset of 812
houses serving as the Wilhelminian-style ex-
amples and 1992 houses within the other three
suburbs as examples for the class “Others”.

3.3 Learning the Model

For reasons which become clear later we start-
ed with learning a linear SVM as described in
Section 2.3. As both classes overlap in their

Fig. 3: Prediction accuracy of an unweighted, linear SVM on the training dataset using a ten-fold
cross validation with respect to different choices for the parameter C.
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scribed in equation (9) (SchölkopF et al.
1996).
This affords a second parameter σ which

controls the smoothness of the decision bound-
ary. So two parameters, namely C and σ, had
to be learnt in order to specify the optimal
model. They are different from the parameters
learnt for the linear model.
For the linear SVM the evolutionary algo-

rithm (GoldberG 1989) was used. As we have
many local maxima (see Fig. 3) a high number
of iterations is suggested. It found the optimal
value for the SVM-weighting at CW = 66.16.
The coefficients of this SVM were now used
to rescale the feature space and subsequently
the final SVM-classifier was learned with
CSVM = 145.41. This parameter combination
resulted in 84.45% correctly classified build-
ings on the whole training dataset. Please note
that CW is not near the global maximum of
Fig. 3. This is due to the fact that we chose a
step size of one for the parameters in Fig. 3
while the evolutionary algorithms uses deci-
mal places too. The great difference between
the optimal values for C underlines how sensi-
tive the performance is to minimal changes in
the parameter C.

The indicator function we derived from the
training examples was used to classify all
buildings in the city of Bonn. In order to eval-
uate the results, specific suburbs which are
known to consist of both Wilhelminian-style

tures in order to give more weight to more rel-
evant features. The accuracy was improved by
7 % this way. The drawback here is, however,
that we have to learn two linear SVM models
and have to estimate the parameter C two
times independently: at first for the normal-
ized training dataset and then at second for the
rescaled, weighted dataset.

Even if the linear SVM classifer was al-
ready able to predict some Wilhelminian-style
buildings, it resulted in too many obvious er-
rors (cf. Fig. 4) and gave reason to doubt that
the problem can be linearly separated through
hyperplanes. As this is a binary classification
problem with the task to distinguish between
Wilhelminian-style houses and all other build-
ings in the city, it is easy to imagine that there
are always examples of buildings from another
architectural style which are both larger and
smaller in one feature than the Wilhelminian-
style buildings. Hence the possibility that both
classes can be distinguished with linear hy-
perplanes seemed unlikely.

Therefore, a non-linear model based on a
radial basis function as described in Section
2.4, formula (10), was learned. If this kernel is
applied to the Support Vector Machine, the
method can be compared with a radial basis
network, though instead of putting the radial
basis functions in the center of each class, they
are placed at the support vectors which result
from the Lagrangian optimization process de-

Fig. 4: Results of the linear Support Vector Machine and the RBF Support Vector Machine. Shown
are the 2D-bounding boxes of each building. A grey box was predicted by both classifiers. Orange
boxes were identified only by the linear SVM and blue boxes only by the RBF SVM.
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There are different approaches for outlier
detection (hodGe & auStin 2004). Most of
them make certain assumptions on the distri-
bution of the data. These assumptions could
not be confirmed in the given data. For this
reason we applied two more recent methods,
namely LOF outlier detection (breuninG et al.
2000) and X-Means (pelleG & moore 2000).
Instead of finding global outliers, the Local

Outlier Factor (LOF) test is local and depends
on how isolated a point is with respect to the
neighborhood. The decision of how isolated a
point is relies on its local density compared
with the local density of its neighbors. From
this comparison a degree of being an outlier is
derived. The only parameter needed for this
approach is the number of nearest points which
are used as the neighborhood. As the test com-
pares local densities, it can be interpreted as
the decision if a point belongs to a certain
cluster of the size of at least a minimal number
of points, controled by the parameter min_
points. Therefore, we only have to estimate
the size of the minimal cluster we wish to keep
in the training dataset with min_points. In this
experiment, a clustersize of ten was used,
though other choices between 10 and 40 led to
only very small changes which had no great
impact in this dataset. This indicates that a
rough estimation is sufficient for this pre-
processing step.

The result is a value between zero and one,
which indicated the degree of a point being an
outlier. Good results were achieved by chosing
the mean outlier factor plus three times the
standard deviation, i.e. a LOF value of 0.24.
This way the more obvious outliers were de-
leted. This is important as the next step uses a
K-Means algorithm which may be influenced
by those outliers. Stricter bounds, say the
mean plus two times the standard deviation
led to similar results. Closer boundaries re-
sulted in too many deleted Wilhelminian-style
buildings.

The next step was to identify clusters of
buildings which had the wrong label. The
training dataset of Wilhelminian-style houses,
for instance, contained a cluster of semi-de-
tached houses which are not built in the Wil-
helminian-style.

The idea to solve this problem is based on
the assumption that a classifier will predict

houses and other buildings were compared
with the classification results.
Fig. 4 shows the exemplary results for the

streets ‘Rosental’ and ‘Rosenst.’. Both are not
part of the training dataset. The classifier was
able to successfully predict the Wilhelminian-
style buildings in the ‘Rosenst.’. The street
‘Rosental’ is also consisting of Wilhelminian-
style houses, but only the southern buildings
were correctly identified, whereas the north-
ern part of the street was wrongly classified as
“Others”.

In addition, some buildings which are obvi-
ously too large for the searched Wilhelminian-
style buildings with respect to their ground
plan, for instance the one south of ‘Rosental’,
were also wronlgy classified.
If we calculate the RBF-SVM the optimal

result was achieved with the parameters CW =
289.97 for the SVM Weighting and CSVM =
18.46 and σSVM = 0.05 for the SVM classifier.
This resulted in 87.67% correctly classified
buildings on the training dataset.
The use of the Gaussian kernel significantly

improved the results of the classifier. The ob-
vious outliers are no longer predicted as part
of the Wilhelminian-style and also some ad-
ditional buildings in the street ‘Rosental’ are
correctly classified. Nevertheless some errors
remain. For example the first building in the
picture of the street ‘Rosental’ is clearly no
Wilhelminian-style house. Also both the line-
ar and the RBF-SVMwrongly predicted whole
streets in other parts of the city as Wilhelmin-
ian-style.

3.4 Pre-processing the Training
Dataset: Outlier Detection and
Clustering

It was already mentioned that a relevant
number of buildings was mislabeled. As Sup-
port Vector Machines is a supervised classifi-
er, this has negative effects on the quality of
the classifier.

In order to improve quality, data pre-
processing should refine the quality of the
training data. We applied two methods, name-
ly identification and elimination of outliers
and clustering. Both are closely linked. We
start with the discussion of outlier detection.
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like DB-SCAN (eSter et al. 1996) are not
used, as they are not optimal for clusters with
different densities (ertöz et al. 2003). X-
Means (pelleG & moore 2000) is an exten-
sion of the classical K-Means algorithm where
the optimal number of clusters K is estimated
through the Bayesian information criterion
(Schwarz 1978).
To reduce the influence of unimportant or

highly correlated features on clustering, a fea-
ture weighting algorithm was applied before-
hand. Best results were achieved if the top
eight features (half the feature space) were
used.

This way, four clusters of Wilhelminian-
style-samples were derived. These were
trained in the same way as described in Sec-
tion 3.3 using a multi-class SVM against the
class “Others”. This resulted in two clusters
with correctly classified building ratios of
more than 80 % and two classes with ratios be-
low 55 %. The latter were deleted from the
training dataset, the remainig two were con-
solidated. The process from Section 3.3 was
repeated on this refined dataset.

The question for a good threshold remains.
In our experiment, a threshold of 66 % led to
good results. A higher boundary denied too
many buildings for the classifier, whereas a
lower boundary was not always able to catch
all errors.
As a result, the mentioned semi-detached

houses were completely removed from the
training dataset, together with other wrongly
pre-labeled samples. Though this, of course,
also resulted in the loss of some correctly pre-

buildings of clusters which are compact in fea-
ture space as patterns of the same class. This
follows the underlying cluster assumption of
semi-supervised learning which states that if
points are in the same cluster, they are likely
to be of the same class (chapelle et al. 2006).
Therefore, if we have buildings with a differ-
ent architectural style than the Wilhelminian-
style in the training dataset, we should be able
to find them with an unsupervised clustering
algorithm.

If we now cluster the training dataset for
Wilhelminian-style buildings and assume that
each cluster represents either one architectural
subcategory of Wilhelminian-buildings or of
another building style, say semi-detached
houses, we could use each cluster as a seperate
class and train it versus the class “Others” us-
ing an SVM. A high misclassification ratio
will now indicate that a significant number of
similar buildings lies within the training data-
set “Others”. For example, there may be about
ten times the number of semi-detached houses
in the training samples for “Others” as in the
training dataset of Wilhelminian-style build-
ings, hence the classification performance of
the cluster containing the semi-detached hous-
es will be relatively poor.

This way, the clusters which are hard to
separate from “Others” are deleted from the
training dataset of the Wilhelminian-style-
class”. This works especially well with Sup-
port Vector Machines because of its superior
generalization ability.

There are several cluster analysis methods
available for this step. Well-known algorithms,

Fig. 5: Comparison of the SVM classifier after the clustering (brown) and without the clustingering,
using the RBF-Kernel from Section 3.3 (blue). Buildings identified as Wilhelminian-style buildings
by both classifiers have grey bounding boxes.
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shows that the structural risk minimization
works well and is capable of handling a cer-
tain amount of wrongly pre-labeled training
data examples.

When the buildings are very similar in their
geometric characteristics misclassifications
happened. This is due to the mentioned limita-
tion of LOD1. This limitation proved to be es-
pecilly critical when whole streets of the “Wil-
helminian-style-suburb” were destroyed in
World War II and replaced by more modern
houses with similar characteristics in order to
not disturb the urban image in these suburbs.
All in all, the classifier was able to predict

the architectural style of buildings with a high
accuracy in spite of the limitations of LOD1.
Using city models of a higher resolution could
further improve the accuracy. Especially the
roof type and the facades which are denied in
LOD1 could be of great relevance for the clas-
sifier.
The LOF outlier detection proved to be a

good method for finding outliers. Clustering
caused an even more reliable class prediction,
as it successfully removed wrongly labeled
clusters of buildings from the training dataset.
Without the clustering, two whole streets
where predicted as Wilhelminian-style, even
if a visual control of those streets showed that
those were not part of this architectural style.

The running example of this study were
Wilhelminian-style houses. The methods pre-
sented here, however, are not confined to this
specific architectural type. The identification
of detached houses, terraced houses or semi-
detached houses, for example, is feasible as
well. henn (2009) successfully distinguished
between those building types with a slightly
different approach using SVMs as well. His
study, in contrast, used manually pre-labeled
data sets.

Support Vector Machines proved to be eli-
gible for a challenging classification task. The
principle of structural risk minimization re-
sulted in a successful generalization of the
data set and avoided overfitting to a high de-
gree. The information content of the given
LOD1 city model is limited and the variety
within the two classes Wilhelminian-style and
“Others” is large. There were many misclassi-
fied individuals in the training dataset. Never-
theless the classification accuracy was amaz-

labeled buildings, especially those Wilhelmin-
ian-style houses which have atypical features,
like the ones placed at the corners of the street,
who have a ground plan which is more rectan-
gular and not typical for the terraced houses of
the other Wilhelminian-style examples.
The trained classifier was then again used

to identify the Wilhelminian-style buildings
in the whole city of Bonn. Fig. 6 shows the re-
sults for the same region used to validate the
classifiers in Section 3.3. As we see, the street
‘Im Krausfeld’, which was previously wrongly
labeled as Wilhelminian-style houses was now
correctly identified as part of the class “Oth-
ers”.

3.5 Results and Conclusions

Out of 57,510 buildings on the complete data-
set, 2,629 were predicted to be of the Wil-
helminian-style and 54,881 were assigned to
the class “Others”. As there is no pre-labeled
dataset of Bonn, validation of the results can
only be based on a visual verification. As
manually checking all buildings would be a
non manageable effort we limit the validation
to the areas and streets where large blocks of
Wilhelminian-style houses were predicted and
check if streets known to be characterized by
the Wilhelminian-style not contained in the
training examples were identified successful-
ly.
As a general rule the classifier worked well

in streets which are dominated by Wilhelmin-
ian-style. Problems occurred in areas where
single Wilhelminian-style buildings were part
of a street dominated by other buildings. Here
the classifier was not always capable of pre-
dicting the correct house class. The reason for
this is the usage and high relevance of context,
represented by the median features as dis-
cussed in Section 3.1. These features bring
about a bias in favour of the dominating archi-
tectural type of a specific street.

In this regard the results from the ‘Wolfsst.’
are worth being mentioned. This street was
part of the training examples of the class “Oth-
ers” because Wilhelminian-style houses are
not predominant. Several buildings, however,
were correctly predicted as Wilhelminian-
style buildings by the classifier. This example
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ingly high. This demonstrates the high poten-
tial of SVMs for data mining in 3D city mod-
els.

Careful pre-processing, namely the con-
struction of features representing context, out-
lier elimination and cluster analysis, substan-
tially contributed to the achieved accuracy.
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