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much smaller than for example a Landsat TM
scene, which usually covers about 20,000 km2.
Vegetation studies can take advantage of

the continuously available relectance; for ex-
ample, NiemaNN et al. (2002) note that nar-
row spectral bands are necessary to detect
some forest related parameters whose spec-
tral range may be small. Hyperspectral data
have been used to map land cover types such
as woody vegetation (Wylie et al. 2000, UstiN
&Xiao 2001), leafy spurge (Williams&HUNt
Jr. 2002), shrub recovery after ire (riaNo et
al. 2002), vegetation in semi arid ecosystems
(asNer& HeidebrecHt 2002, okiN et al. 2001)
or lake water quality (HoogeNboom et al. 1998,
tHiemaNN & kaUfmaNN 2002).
The nearly continuous spectrum also has its

costs, in an economical, computational, and
spatial sense. A typical AVIRIS scene holds

1 Introduction

Hyperspectral data offer the opportunity to
explore the differences of land cover types
without being restricted to a few wavelengths.
AVIRIS (airborne visible/infrared imaging
spectrometer) was the irst hyperspectral sen-
sor that measured over 200 bands between the
400 nm and 2500 nm spectrum with individ-
ual band widths of ~10 nm. AVIRIS employs
four spectrometers in the following ranges:
400–710 nm, 670–1290 nm, 1250–1870 nm
and 1830–2450 nm (greeN et al. 1990). The
light altitude is about 20 km with a rate of

7300 spectra per second (greeN et al. 1990).
The covered area of a high altitude light

ranges from 11 km× 9 km (Williams & HUNt
Jr. 2002) to 12.3 km× 10.2 km (riaNo et al.
2002). The resulting area of about 120 km2 is

Summary:We classiied forest cover and tree den-

sity in the Black Hills, SD, in twenty spatially con-

tiguous AVIRIS scenes. Results were compared to

those derived from two-season Landsat TM im-

agery. A decision tree classiier was used to analyze

the TM data as well as the over two hundred bands

of the twenty AVIRIS scenes. The classiication

based on summer AVIRIS data was more accurate

than the classiication based on the comparable

early fall TM data. However, classiication of

spring and especially, two-season TM data resulted

in higher accuracies than the classiication based on

summer hyperspectral data. These results indicate

that seasonality is more important than the number

of spectral bands.

Zusammenfassung: Die Waldläche und Baum-

dichte in den Black Hills, South Dakota wurde in

zwanzig räumlich zusammenhängenden AVIRIS

Szenen klassiiziert. Diese Resultate wurden mit

jahreszeitlich verschiedenen Landsat TM Bildern

verglichen. Die TM Daten und die über zweihun-

dert Bänder der zwanzig AVIRIS Szenen wurden

anhand einer Entscheidungsbaum-Klassiizierung

(decision-tree) analysiert. Aus den Ergebnissen

lässt sich zeigen, dass die im Sommer aufgenom-

menen AVIRIS Klassen eine höhere Genauigkeit

also die Frühherbst TM Daten aufweisen. Aller-

dings sind die Ergebnisse für TM besser, wenn

Frühlingsdaten herangezogen werden. Die TM

Kombination von Frühling und Herbst hat insge-

samt die höchste Genauigkeit. Daraus lässt sich ab-

leiten, dass Jahreszeit wichtiger als die Anzahl der

Spektralbänder ist.
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better success mapping leaf area index (LAI)
with AVIRIS than with Landsat ETM+ data.
lefsky et al. (2001), on the other hand, found
that multi-seasonal TM data performed bet-
ter than AVIRIS for quantifying forest bio-
mass and basal area, although their study used
1994 AVIRIS data in which the signal-to-
noise ratio was lower than today. They used
six temporally different TM scenes but also
showed improved results with only two TM
scenes. Different seasons have been found
to be important for vegetation classiications

(scHriever & coNgaltoN 1995, Wolter et al.
1995, lefsky et al. 2001).
In this study we compare twenty scenes of

single-date AVIRIS data and two-season TM
imagery to classify a forest in the Black Hills,
South Dakota, USA. These two sensors were
chosen to allow us to compare expensive hy-
perspectral data to a low-cost multispectral
alternative. We received AVIRIS data via a
grant by NASA and then selected freely avail-
able Landsat TM imagery over the same area.
A decision trees classiier was used because

of slightly better results in preliminary tests
(maNNel et al. 2002) and because it offers
the best alternative for processing large areas
composed of many AVIRIS scenes (by being
able to work with separate scenes without the
need to fuse them).

about 400 MB. Most classiications, for ex-
ample, maximum likelihood, require all light

lines fused into one image, severely restrict-
ing their utility for hyperspectral classiica-
tion of large areas with more than 10 AVIRIS
scenes. However, a decision tree classiication,

allows the user to work with each AVIRIS
scene separately. To our knowledge this might
be one of the irst studies to classify a medi-
um scale forest of about 2,000 km2, utilizing
twenty AVIRIS contiguous scenes. In prelim-
inary tests decision trees also showed to be
comparable or even slightly better than maxi-
mum likelihood classiications of Landsat TM

data (maNNel et al. 2002).
Decision trees use a binary recursive par-

titioning algorithm to divide the data into
smaller subsets with increasing statistical ho-
mogeneity (sWaiN & HaUska 1977, breimaN
et al. 1984, clark & PregiboN 1993). These
divisions can be represented as branches and
nodes, where nodes are connected to a set of
possible answers that will lead to a classiica-
tion. This process is often referred to as data
mining (read 2000).
Projects that compared AVIRIS data to oth-

er data sources are not always in agreement.
UstiN & Xiao (2001) found AVIRIS about
20 % more accurate than SPOT data in classi-
fying forest regions. lee & coHeN (2002) had

Fig. 1: Study area.
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us plots. Overstory canopy cover was meas-
ured with a sighting tube (gaNey & block

1994, cook et al. 1995, maNNel et al. 2006).
The sighting tube made it possible to record
species while taking canopy measurements.
Based on the forest service protocols, we dis-
tinguished the following densities: open, me-
dium (40 %–60 % canopy cover), and dense
(RIS, unpublished data 2000). Cover type was
designated based on the dominant species that
covered more than 70 % of the plot. If no spe-
cies covered more than 70 %, the plot was la-
beled “mixed”.
Tree species differ in their abundance

and densities. Ponderosa pine is abundant in
the Black Hills but rarely forms very dense
stands. We only encountered two ield plots

with a canopy cover of more than 70 %. The
spectral relectance characteristics are there-
fore close to the medium class (40 %–60 %).
We, therefore, combined medium and dense
pine to one class. Aspen and white spruce are
much less abundant than pine. Both tree class-
es usually grow in medium or dense stands
in the Black Hills. We combined all densities
for these two species into one aspen and one
white spruce class.
Trees in the Black Hills typically form dis-

tinct stands dominated by one species, and ar-
eas with mixtures of different species (other
than aspen/birch) were rare and of small size.
As a result, an insuficient number of refer-
ence data for mixed classes could be collected.
Water was identiied using Digital Orthophoto

Quadrangles (DOQs). DOQs are essentially
georeferenced aerial photographs. Our DOQs
were black and white with a ground resolution
of one metre.
Training data for the nonvegetated class

was based on an open sand pit, which was also
the calibration site for AVIRIS atmospheric
correction. Additional reference data for bare
areas were dificult to collect, since bare areas

large enough to buffer possible georeferencing
errors and mixed pixels are rare in the Black
Hills. Our inal land cover scheme included

water, nonvegetated bare areas, meadow, as-
pen (including birch), spruce, open pine, and
medium/dense pine.
The ield-sampled plots were mapped on

AVIRIS, TM, and DOQ imagery and were
visually inspected for potential mislocations

2 Methods

2.1 Study Area

The study site lies in the northern Black Hills,
SD. The Black Hills form an oval uplift ap-
proximately 200 km× 100 km in size with el-
evations reaching 2200 m in contrast to the
surrounding plains at an elevation of about
900 m. The forested hills rise above the sea of
prairie grass and form an orogenic and ecolog-
ic island in the plains. Ponderosa pine (Pinus
ponderosa) covers approximately 84 % of the
Black Hills (beNNett 1984), supplemented by
other trees such as white spruce (Picea glau-
ca), aspen (Populus tremuloides), paper birch
(Betula papyrifera) and oak (Quercus macro-
carpa). Ponderosa pine and white spruce each
form forest stands typically dominated by one
species, and they form two of the primary
mapping classes in this study. Birch is hard
to distinguish from aspen even from a few
yards away. The spectral similarities between
aspen and birch were conirmed by siNgHroy

et al. (2000) who measured both species with
a ield spectrometer. In addition the two trees

usually occur as a species association in me-
dium to dense stands. For these reasons, birch
and aspen were mapped as a single class. Bur
oak stands are isolated and too small to justify
a separate land cover based on remote sens-
ing. Open meadows are common in the Black
Hills, and are dominated by mixed shortgrass
prairie grasses such as western wheatgrass
(pascopyrum smithii), blue grama (bouteloua
gracilis), little bluestem (schizachyrium sco-
parium), and others, with a variety of forbs
(larsoN & JoHNsoN 1999). Non-vegetated
classes include water and bare rock or soil.

2.2 Field Data and Cover Classes

Field data plots were sampled in the sum-
mer of 2000. Points were randomly distribut-
ed and stratiied by cover class and forest den-
sity based on the Rocky Mountain Resource
Information System (RIS) compiled by the
Black Hills National Forest. Density refers
to the percentage of ground covered by tree
crowns when viewed from directly overhead.
We established and measured 135 15-m radi-
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training or testing during analysis, the refer-
ence data were always divided by clusters such
that a single cluster was assigned as either all
training data or all testing data, but never both
(maNNel et al. 2011). This technique was ap-
plied to negate the effects of spatial autocorre-
lation on the accuracy assessment.

2.3 Image Preprocessing

The high-altitude AVIRIS light took place in

the summer of 2000. The irst light on 26 June

2000 was repeated due to 5 %–50 % cloud
cover within the light rows. The second light

on 6 July 2000 covered six light lines result-
ing in 30 scenes. The weather was clear with
the exception of light haze and one cloud. We
selected twenty scenes that covered an area
containing most of our ield data sites.

During the AVIRIS overlight we meas-
ured the relectance of our calibration site,

a bare sand pit, with a handheld spectrome-
ter (ASD VNIR Dual, with a spectral range
of ~370 nm–1100 nm). The atmospheric cor-
rection program ACORN (aNalytical imag-
iNg aNd geoPHysics, LLC, 2001) was used in
conjunction with the calibration site measure-
ments to correct for atmospheric effects and
to convert radiance to relectance. The follow-
ing AVIRIS bands were removed: 374 nm–
394 nm (bands 1–3), 1354 nm–1424 nm (bands
107–114), 1812 nm–1951 nm (bands 153–168),
and 2489 nm–2509 nm (bands 222–224) be-
cause of strong atmospheric effects. In these
wavelengths atmospheric gases, such as water
vapor increase the signal noise to unaccepta-

prior to including them in the reference data
set. Checking the spatial validity of remote-
ly sensed data with respect to reference data
location is necessary in boundary regions be-
tween classes. Removing reference data from
boundary regions, such as roads or along
meadow/forest boundaries, can increase the
accuracy signiicantly (foody 2002, maNNel

et al. 2011).
In order to provide suficient training and

test data we used DOQs to collect additional
points spatially close to ield data (maNNel et
al. 2006). Around all ield-sampled plots we

visually identiied homogeneous areas using

1-m resolution DOQs, making the assump-
tion that the vegetation characteristics within
those regions were similar to those measured
at the ield site (maNNel et al. 2006, maNNel

et al. 2011). Tab. 1 shows the inal reference

data distribution based on ield data and data

clusters sampled with DOQs. There are fewer
clusters than ield data for two reasons. First,

some ield data sites were spatially invalid and

were omitted from consideration. Second,
some of the original randomly sampled sites
were close to each other, and were considered
to belong to a single cluster.
It is obvious that the DOQ-collected refer-

ence data would be spatially autocorrelated
within each cluster. Moran’s index of all the
data including the clustered additional points
was 0.67 (maNNel et al. 2011). However, auto-
correlation between clusters was not present
because the ield-sampled plots at the core of

the clusters were randomly stratiied, and spa-
tially close sites were aggregated to a single
cluster. When assigning data points for either

Tab. 1: Number of sites for each land cover class. The ield measured plots were supplemented
with additional points based on DOQs resulting in large point clusters.

Land cover Number of ield data

plots

Number of ield- and

DOQ-based reference

data

Number of clusters

Meadow 19 64 10
Bare 0 5 1
Open pine 26 104 14
Dense pine 26 212 19
Spruce 21 126 12
Aspen 17 84 9
Water 0 106 2
Mixed 25 Not utilized –
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Fig. 2: AVIRIS spectra and standard deviation for land cover classes. The following AVIRIS bands were removed: 374 nm–394 nm (bands 1–3),
1354 nm–1424 nm (bands 107–114), 1812 nm–1951 nm (bands 153–168), and 2489 nm–2509 nm (bands 222–224) because of strong atmospheric ef-
fects.
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algorithms are regarded as proprietary (QUiN-
laN 2002, personal communication). See5 as-
signs the classes by weighting the quantity of
the input data, i.e. more training data of pine
means there is more pine in the study area.
See5 allows for the building of multiple de-

cision trees to improve accuracy by utilizing
several classiiers that predict a class. These

predictions are counted and determine the i-
nal class. One type of multiple trees is “boost-
ing”, which identiies the dificulties and mis-
takes made by the previous iteration and con-
centrates on them in the next iteration (friedl
et al. 1999, cHaN et al. 2001, WU et al. 2006).
Boosting lasts until the predeined number of

iterations is reached. We utilized boosting, be-
cause our data (maNNel 2003) and other stud-
ies showed an accuracy improvement by about
5 % (friedl et al. 1999, cHaN et al. 2001).
One point of caution in using decision trees

is “overitting” the decision tree to the refer-
ence data visible in large “trees” (kotsiaNtis
2007). A smaller “pruned” tree, with fewer
branches is usually more robust than a larger
tree (QUiNlaN 1996, friedl et al. 1999). There-
fore, we used the smallest tree with the highest
accuracy for our inal results.

2.5 Accuracy Assessment

We divided the reference data into differ-
ent test and training data based on spatially
unrelated clusters, rather than on individual
points. An entire cluster was either training or
test data (maNNel et al. 2006). In addition, we
sought to reduce bias in our accuracy assess-
ment by performing a 4-fold cross-validation
(maNNel et al. 2011). For that we manually
created four trial sets each with different test
and training data that were chosen by random-
ly selecting 1/3 of the reference clusters as test
data and the remaining 2/3 clusters as training
data. Producer and user accuracies were aver-
aged to calculate overall accuracy.

3 Results

The two pine densities were hardest to distin-
guish. Confusion mainly existed between the
pine densities and between medium pine and

ble levels. Some of the noise is still visible as
spikes in the remaining bands (Fig. 2). After
adjusting for atmospheric noise 194 bands (out
of the 224) were still available for the actual
classiications, somewhat lowering the avail-
able spectrum for classiications, but still sig-
niicantly higher than the number of Landsat

TM bands.
AVIRIS scenes were georeferenced using

DOQs. The root-mean-square (RMS) error
of the transformation was 1.3 pixels, and the
maximum RMS error for a single GCP was
4.6 pixels. We then overlaid our reference data
and identiied the matching AVIRIS pixels.

Fig. 2 shows the spectral distribution of our
reference data along the AVIRIS bands. Veg-
etation like grass, deciduous trees, and co-
niferous trees show a distinctive relectance

spectrum (Fig. 2). However, classiication

challenges become evident through the high
standard deviation throughout the different
vegetation types (Fig. 2). The high standard
deviation for water is due to two very different
lakes, one was clear, while the other one con-
tained high levels of sediments.
The Landsat TM5 images were from early

spring; leaves not yet fully developed (May 5,

1998) and early fall, “leaves on” (September
24, 1998). We cut the TM scene to match the
approximate area of the AVIRIS overlight.

Both seasons of the TM data were classiied

separately, as well as, a combined two-season
scene to investigate the inluence of seasonal-
ity. The same reference data were applied to
AVIRIS and TM. Remotely sensed data and
ield data were collected within 4 years. We

did not notice any signiicant change in land-
cover, e.g. via logging, during this time peri-
od.

2.4 Decision Tree Classiication

We classiied all data using the decision tree

program See5 (also known as C5.0), distrib-
uted by RuleQuest Research Pty Ltd (QUiN-
laN 2002). See5 is largely based on the tech-
nology used by its predecessor C4.5, whose
algorithms are further explained in QUiNlaN
(1996). According to kotsiaNtis (2007) C4.5
is “the most well-known algorithm in the lit-
erature for building decision trees”. Further
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20 m (AVIRIS) or 30 m (TM) mixed pixels.
On the one hand, birch and aspen are vir-
tually indistinguishable, because they have
very similar spectral properties (siNgHroy
et al. 2000) and occur in mixed stands. Dis-
tinguishing different densities of the same
forest composition is also tricky since the
border between open and dense is luent and

artiicial. On the other hand, we expected

and achieved 100 % accuracies for homo-
geneous and spectrally unique bodies, such
as water and bare soil. For meadow we also
expected and partly achieved very high ac-
curacies because of their relatively homoge-
neity (in comparison to forested areas) and

white spruce (Fig. 2). On the other hand bare
soil and water were easiest to distinguish, be-
cause of their unique spectra and homogene-
ity of the reference pixels. This was followed
by grass with almost 100 % accuracy when a
spring image was included (Tab. 2). Misclas-
siications of meadow occurred with aspen/

birch especially in the summer (AVIRIS) and
early fall (fall TM).
Classiication success depended on 1) the

type of landcover, 2) sensor type and 3) sea-
son:
1) Landcover characteristics affecting classi-
ication success are: a) spectral properties

and b) the homogeneity of the respective

Tab. 2: Comparison of vegetation classiication success of spring TM, fall TM, two-seasonal TM
and summer AVIRIS based on the 4fold holdout method (Mannel et al. 2011).

Land cover Spring TM (%) Fall TM (%) Two-season TM (%) Summer AVIRIS

(%)

Meadow 99 86 99 88

Open pine 68 57 79 71

Dense pine 87 83 88 79

Spruce 86 83 89 81

Aspen 86 68 90 83

Average 85 75 89 81

Fig. 3: a) Classiication of combined spring-fall Landsat TM data (left) and b) AVIRIS classiication
(right). The missing scene contained errors that the data provider was unable to ix. No reference
data was used from the area of the missing AVIRIS scene.
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larger area in a single scene, is less expensive
to obtain, and requires less effort to process
and analyze. Our study seems to indicate that
seasonality is crucial and exceeds advantages
of hyperspectral data.
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