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ing of image features at different epochs.
There exists a variety of approaches to estab-
lish correspondences between image or 3D
data. A special group of algorithms, mostly
inspired by the work of Lowe (2004), is based
on the notion of distinctive feature descrip-
tions. Typical examples of these approaches

1 Introduction

One task towards reconstructing the motion of
a stereo system, e.g. used as a robot’s eyes as
it traverses through its environment, is to es-
tablish correspondences between points of the
point clouds reconstructed from stereo match-

Summary: In a wide range of applications stereo

systems are used to extract geometric information

from the scene observed with the stereo cameras.

One possible solution to reconstruct the motion of

such a system is to establish correspondences be-

tween points of the point clouds generated from

stereo matching of image features at different ep-

ochs. There exists a large variety of approaches to

establish correspondences between image or 3D

data. A special group of algorithms, mostly in-

spired by the work of Lowe (2004), is based on the

notion of distinctive feature descriptions. These al-

gorithms assume the existence of a dense neigh-

bourhood changing not too much over time. But the

prevalence of untextured regions or computational

constraints hindering the use of computationally

expensive dense stereo matching approaches often

result in only sparse point clouds and thus these ap-

proaches cannot be used for the registration of

sparse 3D data. In our work we present a new ap-

proach that uses the basic principles of distinctive

feature descriptions and extends them in a way that

they can be applied to identify corresponding

points between sparse 3D point clouds. Further-

more, an evaluation is given investigating the ad-

vantages and limitations of our approach. The re-

sults clearly show the effectiveness of the presented

distinctive features to establish point matches be-

tween sparse 3D point clouds.

Zusammenfassung: In vielen unterschiedlichen

Anwendungsbereichen werden Stereosysteme ver-

wendet, um geometrische Informationen über die

aufgenommene Szene zu extrahieren. Eine dabei

anfallende Teilaufgabe ist das Identiizieren von

Korrespondenzen zwischen Punkten einer 3D

Punktwolke, die zu unterschiedlichen Zeitpunkten

durch das Stereomatching von Bildmerkmalen ent-

standen ist. Inspiriert durch die Arbeit von Lowe

(2004) sind für die Suche nach korrespondierenden

Punkten eine ganze Reihe von Ansätzen entstan-

den, die auf charakteristischen Beschreibungen

aufsetzen. Alle diese Verfahren setzen das Vorhan-

densein einer dicht besetzten Nachbarschaft vor-

aus, die sich über die Zeit hinweg nicht zu stark

ändert. Allerdings führen untexturierte Bereiche

oder Echtzeitanforderungen, die den Einsatz von

rechenintensiven dense-matching Ansätzen verbie-

ten, zu dünn besetzten 3D Punktwolken, so dass

die bekannten Verfahren nicht unmittelbar verwen-

det werden können. In unserer Arbeit wird ein neu-

artiger Ansatz vorgestellt, der auf den Grundprin-

zipien der charakteristischen Beschreibungen auf-

baut und diese so erweitert, dass sie für die Punkt-

zuordnung in dünn besetzten 3D Punktwolken ge-

eignet sind. Darüber hinaus wird eine Untersu-

chung vorgestellt, die die Vorteile und Grenzen des

entwickelten Ansatzes aufzeigt. Die Ergebnisse

zeigen deutlich die Leistungsfähigkeit der entwi-

ckelten charakteristischen Beschreibung für die

Zuordnung von dünn besetzten 3D Punktwolken.
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A prerequisite for the solution of this task is
to identify point correspondences between the
point clouds at t = i and t = j. If the correspond-
ences are known, established approaches like
ICP (iterative closest point) (BesL & McKay

1992) and its variants (RusinKiewicz & Le­

voy 2001) or least squares matching (GRün
& aKca 2005) can be used to ind the opti-
mal solution for jT

i
that minimizes the error

given in (1). As the focus of our work is an
algorithm to establish point correspondences
between sparse and varying point clouds we
irst give in section 2.1 a short overview about

the generally applied matching worklow, and

show in section 2.2 the general ideas behind
the use of distinctive features for the task of
identifying correspondence either in 2D or 3D
data. In section 2.3 we give a detailed expla-
nation of the contribution of our work. For the
experiments presented in section 4 signalized
targets are used that can be identiied easily

in the stereo image pairs to create a sparse 3D
point cloud. Approaches that allow the deri-
vation of a sparse point cloud from dense but
irregularly sampled point clouds can be found
e.g. in stücKLeR & BehnKe (2011) and novat­
nacK & nishino (2007).

2.1 Common Matching Worklow

Overviews of approaches for the matching of a
large variety of input data can be found e.g. in
BRown (1992), seeGeR & LaBouReux (2000),
zitová & FLusseR (2003) or McGLone et al.
(2004, chap. 6.3). In general, approaches used
for the matching of a variety of input data, fol-
low a similar scheme:

Defining the feature space

The feature space deines the input data used

for matching. Typical examples for the 2D and
3D case are grey values, gradients, corners
and 3D point clouds. A feature is an element
taken from the set of the input data.

are SIFT (Lowe 2004) and Spin Images (John­
son & heBeRt 1999) for the registration of 2D
and 3D data. Most of these approaches cannot
be used directly for the registration of sparse
3D data, though, as they assume the existence
of a dense neighbourhood that does not signi-
icantly change over time. Sparse and varying

point clouds must be expected if such a sys-
tem is used in a man-made environment with
untextured regions on loors and walls or if

real-time constraints hinder the use of com-
putationally expensive dense stereo matching.
In our work we present an approach that

uses the basic principles of distinctive feature
descriptions and extends them in a way that
they can be applied to identify point match-
es between sparse point clouds. The resulting
distinctive feature vector is sparse and dis-
crete and can be used to establish correspond-
ences eficiently. After discussing the state-of-

the-art in section 2, a detailed description of
the proposed algorithm is given in section 3.
The performance of the presented approach is
tested on different sequences of a stereo sys-
tem moving along a corridor. The established
correspondences between points are used to
reconstruct the motion of the system. Further-
more, in section 4 an evaluation is given inves-
tigating the overall performance and limita-
tions of our approach. The results clearly show
the effectiveness of the presented distinctive
features for the matching between sparse 3D
point clouds. Section 5 presents some ideas for
future extensions.

2 Related Work

The point clouds that are generated at the ep-
ochs t = i and t = j, while e.g. a stereo system
mounted on a robot platform traverses down
a hallway, are related by a rigid transforma-
tion jT

i
, where the symbol jT

i
combines the ro-

tation jR
i
and the translation it

j
. The rotation

jR
i
rotates a point ix, deined in the coordinate

system at t = i into the coordinate system at
t = j. The translation it

j
between the epochs

is deined w.r.t. to the coordinate system at

t = i. Given the point clouds from two epochs
one seeks to ind the transformation jT

i
mini-

mizing the error e given in (1) for all n corre-
sponding points.
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using simple distance metrics like the Eu-
clidean distance.

Examples for distinctive description used
to match two-dimensional image data are the
SIFT and SURF descriptors (Lowe 2004, Bay
et al. 2008). For the identiication of corre-
sponding points in point clouds derived from
either range scanner like e.g. the Microsoft
Kinect system or terrestrial laser scanner,
FLint et al. (2008), wanG & BRenneR (2008),
Lo & sieBeRt (2009), BaRnea & FiLin (2010)
and weinMann et al. (2011) directly apply
variants of the SIFT algorithm that consider
the special characteristics of the available 3D
data. All these approaches require that the ir-
regular 3D data must be resampled to a regular
two-dimensional grid. Furthermore, the point
signatures (chua & JaRvis 1997), spin imag-
es (Johnson & heBeRt 1999), the approach of
GeLFand et al. (2005) and the NARF (normal
aligned radial feature) developed by stedeR
et al. (2011) are more examples of algorithms
that use distinctive feature descriptions to es-
tablish matches between points from differ-
ent point clouds. All these approaches have
in common, that they incorporate points or
information from a densely sampled local
neighbourhood to deine a unique local frame

of reference. The deinition of the local refer-
ence frame is usually the irst step to achieve

invariance against rotation and translation of
the input data. A well-designed computation
of the distinctive description allows the usage
of simple distance metrics for the matching
step and makes it robust against other changes
of the input data like scaling or change of il-
lumination. Furthermore, the developed fea-
ture descriptions simplify the matching step
and established approaches like clustering or
binary space-partitioning trees can be used
to accelerate the search for matching descrip-
tions (e.g. winKeLBach & wahL 2008, nistéR
& stewenius 2006).

2.3 Contribution of Our Work

Most of the known approaches that rely on
distinctive descriptions to ind matching point

pairs between point clouds or surface data re-
quire the existence of a densely sampled and

Defining the parameter space

The dimension of the parameter space is de-
ined by the choice of transformation used

for mapping of the input data. Typical trans-
formations that are often used in the context
of feature matching are homographies, afine

and Euclidean transformations.

Establishing assignments using a
similarity measure

Matched features are identiied by deining

a similarity measure that is computed either
for all combinations or a reasonable subset of
the used/extracted features. Two features can
for instance be matched if a) their respective
similarity is the largest and b) the similarity
is discriminative, i.e. it is above and the ratio
between the second-best and the best match is
below a pre-deined threshold.

2.2 Matching with Distinctive
Features

Recently, feature representations that are
unique and distinctive are widely used in the
area of photogrammetry and computer vision.
For these representations two different terms
are used in the literature: descriptor and sig-
natures. The differentiation between these
terms is not always clear and sometimes they
are used ambiguously. In Lowe (2004) a de-
scriptor is deined as a distinctive and com-
pressed representation of the original input
data. In contrast, caLondeR et al. (2008) de-
ine a signature as the result of a mapping

F : RD→ Rd that transforms the input data
x
k
∈ RD, ∀k = 1…n with the dimension D into

another space with the dimension d. To avoid
any ambiguities, we will use the term distinc-
tive (feature) description in the following. The
most important properties of distinctive de-
scriptions independent of their actual realiza-
tion are:
● The distinctive description is invariant
w.r.t. a variety of changes of the input data.
Typical changes comprise e.g. illumination
changes, translation, rotation and/or scaling.

● The computation of a similarity measure
between any two descriptions can be done



538 Photogrammetrie • Fernerkundung • Geoinformation 5/2012

proaches mentioned in section 2.2: the estima-
tion of a plane normal n from points in a local
neighbourhood. To increase the probability
that the normal does not change when neigh-
bouring points disappear or new ones enter the
camera’s ield of view only those points are se-
lected for the computation of n that lie approx-
imately on the same plane as x. For the estima-
tion of n and the identiication of points lying
in the same plane as x a brute-force approach
using the RANSAC algorithm (FischLeR &
BoLLes 1981) is applied. The functional model
is the Hessian normal form given by (2), where
d represents the distance of a point x to the
plane with its normal n.

d⋅ =n x (2)

The simple brute-force approach used here
is sensible as the processed point clouds con-
tain only few points lying mostly on the planar
walls of a hallway. For these constraints the
RANSAC algorithm needs only a small num-
ber of iterations to ind a good solution. For the

selection of the local neighbours we deine the

following parameters: a) maximum number
n
max
of neighbours considered, b) minimum

number n
min
of neighbours considered, and

c) a maximum radius r
max
used in the nearest

neighbour search. As a result of this irst step

we have associated every point x of a point
cloud with a locally planar neighbourhood, a
normal vector n and a set P = {x

1
…x

n
} of its

n neighbours. Those points with a non-planar
neighbourhood are not considered further in
the matching process.

3.2 The 2D Distinctive Description

The computation of the entries d
k
for the two

dimensional description D is done in three
steps. First, for a neighbour x

i
a local frame

of reference is deined where the x-axis is giv-
en by the direction from x to x

i
projected into

the local plane and the z-axis is given by the
local normal n. The y-axis is computed from
the cross product of the x- and z-axis. Sec-
ond, as shown in Figs. 1(a) and 1(b) all neigh-
bours x

j
: ∀j = 1…n are projected into the x,

y-plane of the local reference frame and trans-
formed into two dimensional polar coordi-

regular neighbourhood that does not change
too much over time. Typical examples for data
fulilling such a requirement are the results

from dense stereo matching or data acquired
with a laser scanner. For these types of input
data it is relatively easy to establish a unique
frame of reference to be robust against rota-
tion and translation. For systems generating
sparse point clouds with local neighbourhoods
that change over time as new points become
visible and other points move out of the ield

of view, the known approaches using distinc-
tive descriptions for matching cannot be used
directly. The algorithm presented in section 3
extends the existing approaches for matching
3D points and presents solutions to:
● achieve invariance against rotation and
translation of the input data for sparse and
varying point clouds,

● compute a distinctive description that is just
as sparse and varying as the input data,

● eficiently compute a similarity measure for

the sparse and varying distinctive descrip-
tion.

3 Matching between Sparse and
Varying Point Clouds

The proposed scheme to ind matching point

pairs in sparse and changing 3D point clouds
follows the worklow of the existing approach-
es that use distinctive descriptions for match-
ing. The irst step is the deinition of a lo-
cal frame of reference to achieve invariance
against rotation and translation of the point
cloud. In the second step a sparse 2D distinc-
tive description D is computed from selected
points in a local neighbourhood. For the third
step the sparseness of the 2D distinctive de-
scription is exploited to derive a compact 1D
description that allows an eficient computa-
tion of similarity between two distinctive de-
scriptions.

3.1 Identiication of Locally Planar
Neighbourhoods

The irst step for the computation of the dis-
tinctive description for a point x in a sparse
and varying point cloud is identical to the ap-
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3.3 A Compact Distinctive
Description

It is clear from the algorithm in section 3.2
and Fig. 1(b) that the two dimensional dis-
tinctive description is still sparsely popu-
lated. This special structure of D allows,
analogously to the idea given in caLondeR
et al. (2009), to design a more compact vari-
ant of the distinctive description. For a com-
pact version of D, the non-discrete entries
d
k
: ∀k = 1…n2, d

k
∈ D are mapped into an in-

teger scalar s
k
: s
k
∈ {1, 2,… 2p}, where p is a

parameter of the mapping and inluences the

discretisation. Finally, the s
k
are pooled in an

ordered result set S containing only unique
values. As shown in section 3.4, the usage of
integer values is advantageous as it allows an
eficient implementation for the comparison of

two distinctive descriptions. The s
k
are com-

puted by applying the mapping T : d
k
→ s

k
to

all entries d
k
in D. For T the quad tree index

(FinKeL & BentLey 1974) is used that recur-
sively divides the 2D space into discrete grids
and gives an integer index for a two dimen-
sional point. The only parameter of the quad
tree index is p deining the number of quad-
rants used for the partitioning of the two di-
mensional space. This parameter controls the
loss of accuracy caused by the discretization.
For a chosen value of p = 16 the x-axis (radial
distances d

j
) and the y-axis (angle θ

j
) will be

partitioned into 2p/2 = 256 bins. The value of

nates. Fig. 1(b) shows that for all neighbours
x
j
the radial distance d

j
w.r.t. x and the angle

θ
j
w.r.t. the x-axis of the local reference frame

are used as entries into D. Third, the steps one
and two are repeated for all remaining neigh-
bours. In contrast to e.g. the point signatures
(chua & JaRvis 1997), that use exactly one
reference direction to deine a local frame of

reference, the approach presented here deines

a local frame of reference for every neigh-
bour. Such a strategy is advantageous if the
structure of a local neighbourhood changes
over time. If that is the case it is not advis-
able to select one of the neighbours as a refer-
ence direction, because that point might dis-
appear from the stereo system’s ield of view

and then a new reference direction must be
selected and thus the distinctive description
changes completely. The proposed computa-
tion of the entries d

k
: ∀k = 1…n2 for the dis-

tinctive description D also fulils the require-
ment of invariance w.r.t. rotation and transla-
tion of the point cloud. The computed entries
(relative angles and distances) are not changed
by a rotation around the z-axis and the use of
a local frame of reference eliminates the inlu-
ence of a translation. The distinctive descrip-
tion is not invariant w.r.t. scaling that changes
the length of distances. Scale invariance can
be achieved, however, when ratios of distanc-
es are used instead of distances.

Fig. 1: Example for one iteration of the computation of the sparsely populated distinctive descrip-
tion D. (a) Deinition of a local frame of reference. The x-axis is given by the direction to point 1;
the z-axis points toward the reader. The n neighbours are transformed into the local frame and
converted to polar coordinates (distance and direction). (b) Part of the descriptor D computed from
the neighbourhood shown in (a). The entries into D are the polar coordinates of all neighbours for
the local frame of reference.
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At the end of section 3.3 it is mentioned that
it is important to select a value of p according
to the point density of the observed 3D point
clouds. If p is too small two neighbouring
points might fall in the same bin and are as-
signed the same index. Such an event reduces
the total number of entries in the distinctive
description S, because we allow only unique
values to be present. As a result the identiica-
tion of matching points might fail because the
minimum number of identical entries (see (4))
is not reached.

3.5 Robust Filtering of Matches

Applying the matching scheme described
above to point clouds generated by a stereo
system at t = i and t = j results in a set of m
candidate pairs {(ik x, jl x)} for point corre-
spondences. Following the insights of satt­
LeR et al. (2009) we use a RANSAC based ap-
proach to eliminate wrong correspondences
and to estimate the change of orientation be-
tween two epochs. The functional model used
by the RANSAC algorithm is given in wenG

et al. (1992) and needs at least three non-col-
linear correspondences to compute the change
of orientation jT

i
between the two epochs t = i

and t = j.
In every iteration of the algorithm three

pairs of correspondences are chosen random-
ly. In order to evaluate the quality of each hy-
pothesis all points at t = j are transformed into
the epoch t = i using jT

i
and a best match for

every transformed point is identiied with a

nearest-neighbour search. The quality of the
current hypothesis e

hyp
is given by (5) where

n is the number of matches identiied by the

nearest-neighbour search and ||·|| is the L2-
norm of a vector.

1

k k

n
i ji i

hyp j j

k

e
=

= − +∑ x R x t (5)

The orientation iT
j
is computed from all cor-

respondences found by the nearest-neighbour
search, of the best hypothesis according to the
functional model given inwenG et al. (1992).

p must be chosen w.r.t. to the density of the
point cloud and must be large enough to avoid
the event that neighbouring points fall into the
same bin and are thus assigned the same in-
dex.

3.4 Matching of 3D Points

In order to determine the change of orienta-
tion between two epochs, it is necessary to es-
tablish correspondences between individual
points of both point clouds. To ind matched

points a similarity measure d
i,j
is computed for

all possible combinations of the n respectively
m compact distinctive descriptions S

i
and S

j

for t = i and t = j, where n = |S
i
| andm = |S

j
|. The

chosen similarity measure should support reli-
able matching of distinctive descriptions even
if they match only partially and have a differ-
ent number of entries. From section 3.3 it is
clear that the proposed distinctive description
encodes the structure of the local neighbour-
hood in a one-dimensional vector of unique
integers: that means if two descriptions have
identical entries it is very probable that they
encode the structure of the same neighbour-
hood. Thus a possible similarity measure for
the identiication of matched points can be de-
ined by the overlap of the two ordered and

unique sets S
i
and S

j
.

Theirst step to compute the overlap consists

in determining the intersection S

= S

i
 S

j

and the union S

= S

i
 S

j
for the distinctive

descriptions S
i
and S

j
. Both the intersection

and the union can be found eficiently as we

are using sets of integer values for which a
comparison of two values is very fast.
The similarity d

i,j
: d

i,j
∈ [0…1] of two dis-

tinctive descriptions is then given by (3).

(3)

Two descriptions are matched if their
matching score d

i,j
is the highest (greedy ap-

proach) and is above a pre-deined threshold

t
i
. The threshold t

l
can be computed by dein-

ing a minimum number n
min
of neighbours that

must be visible at t = i and t = j for a successful
match. A formula for the computation of t

l
is

given in (4) where n = |S
i
| and m = |S

j
|.
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moved at a speed of approximately 2 m__s be-
tween 2 and 4 metres down the hallway. The
total number of frames captured in the differ-
ent experiments is given in Tab. 1.
For the experiments signalized circular tar-

gets that can be identiied reliably in the imag-
es were ixed on the walls of the hallway. The

position of the centre of these targets is found
using an ellipse measurement algorithm (Luh­
Mann 1986). The result of this feature extrac-
tion step is a list of image coordinates for the
targets in both images of a stereo pair. With
the known epipolar geometry of the stereo
system corresponding targets can be identi-
ied easily using the approach in otepKa et al.
(2002), where the fact is exploited that match-
ing points in both images of the stereo system

4 Experimental Results

To evaluate the performance of the proposed
matching scheme three different image se-
quences were recorded with a multi-stereo
system traversing down a hallway. The two
stereo systems A and B were mounted on a
mobile platform in a way that the respective
ields of view faced the opposite walls. The

performed motion patterns were a pure planar
motion without any rotation (E1), a planar mo-
tion where a rotation was only possible around
the normal of the ground plane (E2) and a free
motion with rotation around all axis (E3). An
example of the planar motion of case E2 is giv-
en in Fig. 2. The sequences were recorded with
a frame rate of 15 Hz and the stereo systems

Fig. 2: Planar motion of two rigidly connected stereo systems A and B traversing down a hallway
and observing signalized target on the opposite walls.

Tab. 1: Aggregated numbers used for the performance evaluation of point matching between two
epochs.

E1 A E1 B E2 A E2 B E3 A E3 B

# stereo pairs 121 120 200 160 290 290

# connected epochs 3173 3247 5313 4964 19215 23273

# possible matches 64197 64436 91085 95359 361526 469029

# established matches 49580 50481 78121 72811 214285 314917

# wrong matches 0 0 0 674 60 5

match quality q
i,j

77 % 79 % 86 % 76 % 59 % 67 %
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Overall match quality

The match quality q
i,j
is computed as ratio

,

,

i j
m

i j

i j

q =



P

P

, where |Pi  j| is the ground truth for

the number of possible matches between t = i
and t = j and |Pmi, j | is the number of matches es-
tablished by the proposed algorithm.

Overlap of point clouds

The overlap o
i,j
of the point clouds at t = i and

t = j can be computed with (6) and is identical
to the computation of the similarity measure
given in section 3.4.

,i j

i j

i j

i j

o =
+ −





P

P P P
(6)

Change of view direction

The change of the view direction v
i,j
is comput-

ed w.r.t. to the normal direction of the points
in the point cloud (see section 3.1). From the
set |Pi  j| of points visible at both epochs, those
matched pairs {ikx, jkx: ∀k = 1…n} are select-
ed for which a normal direction n could be
computed. For all n pairs {ikn, jkn} the angular
difference v

k
is given by v

k
= arccos(ikn ∙ jkn),

where ikn ∙ jkn is the dot product of two vectors
and the function arccos(∙) returns an angle in

the interval [0…π]. From all v
k
the median v̄

k
is

determined and inally v
i,j
is given by v

i,j
= v̄

k
.

Scale change

To assess the inluence of scale changes, i.e.

different distances between the stereo system
and the point cloud, on the matching process,
the number s

i,j
is computed. First, the cen-

troids of the point clouds at t = i and t = j are
computed according to (7).



1

1
:k k

n
i i i

i j

kn =

= ∈∑x x x P



1

1
:k k

n
j j j

i j

kn =

= ∈∑x x x P
(7)

The number s
i,j
is then given as a relative

change
 ( )
 ( )

,

min ,

max ,

i j

i j i j
s =

x x

x x

of the distanc-

have identical epipolar angles. The epipolar
angle for a point is given as the intersection
angle of its image ray and an epipolar plane
deined e.g. by the epipole and the optical axis.

Finally, the 3D point cloud is given by a for-
ward intersection for all identiied stereo cor-
respondences.

4.1 Evaluation Criteria

The evaluation of the performance of the pro-
posed matching algorithm follows the scheme
presented in MiKoLaJczyK et al. (2005) where
it is used to compare different image matching
approaches. While MiKoLaJczyK et al. (2005)
analyse the performance of the detection and
the matching step, we concentrate only on the
matching. In our case the detection has been
performed by the stereo reconstruction of the
extracted image features (signalized targets)
and will not be examined any further.
For the evaluation the true number of pos-

sible matches between the point clouds of any
two epochs must be known. In order to provide
such information a bundle adjustment for all
six sequences was performed (three different
motion patterns for two stereo systems A and
B). Within the adjustment the change of orien-
tations iT

0
w.r.t. to a reference epoch t

0
and the

3D coordinates of the point cloud, deined in

the global frame of reference, were estimated.
The inner orientation for all cameras, the rela-
tive orientations of the stereo systems and the
lengths of their baselines were determined in
advance and used as ixed parameters in the

adjustment. Given the adjusted iT
0
the trans-

formation jT
i
for any combinations of two ep-

ochs t = i and t = j can be computed. Then the
point cloud of t = i is transformed into the ep-
och t = j and all possible matches are identiied
using a nearest-neighbour search. This num-
ber is used as ground truth for the evaluation.
To differentiate between different aspects

inluencing the performance of the matching

we irst compute a quality measure q
i,j
and

then three values o
i,j
, v

i,j
and s

i,j
for every com-

bination of epochs characterizing three possi-
ble sources that affect the proposed algorithm:
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lations. Such a motion pattern led to a larger
number of frames and the continuously chang-
ing view directions resulted in more overlap-
ping ields of view than for the translational

motion and thus a larger number of connected
epochs.
Tab. 1 shows that in most of the six experi-

ments about 70–80 % of all possible matches
were identiied based on their respective dis-
tinctive descriptions. The most remarkable
fact is that, at least w.r.t. to the large number
of true matches, almost no false matches were
established. None of these false positives were
used to compute the change of orientation jT

i

between two epochs, because they were all
successfully eliminated by the robust iltering

process given in section 3.5.
For the detailed analysis of the performance

of our proposed matching algorithm in Fig. 3,
the match qualities q

i,j
for any combination of

epochs t = i and t = j are grouped w.r.t. to the
different causes that possibly affect the match-
ing process, i.e. the computed o

i,j
, v

i,j
and s

i,j
.

For the visualization in Fig. 3 the different
groups are plotted on the x-axis and the distri-
bution of the match quality for every group is
plotted on the y-axis.
For clarity of the representation the distri-

bution of the q
i,j
for every group is represented

by the 5 %- and 95 %-quantiles and the me-
dian. The graphs in the Fig. 3 show a repre-
sentative subset of the results for all six image
sequences. No result for the irst experiment

(pure translation) is shown, as that motion pat-
tern did not give enough variety for the change
of view directions and scale.
For the graphs the groups with a very low

relative frequency are statistically not relevant
and have been omitted. Figs. 3(a)–3(f) clearly
show that the major source of inluence is the

change of the local neighbourhood indicated
by a low overlap between the point clouds.
This is supported by the observation that the
median of the match quality is decreasing and
the distribution is broadening with a reduced
overlap. The Figs. 3(a) and 3(d) show that up
to an overlap of 70 % for 90 % of all connect-
ed epochs, i.e. those between the 5 % and the
95 % quantiles, a match quality in the range
of 60 %–100 % (Fig. 3a) and 55 %–95 %
(Fig. 3(d)) is achieved. For an overlap of 40 %
the median goes down to 70 % (Fig. 3(a)) and

es at t = i and t = j w.r.t. to the centroids, where
the functions min(∙,∙) and max(∙,∙) return the

minimum and maximum values of their re-
spective arguments.
The values o

i,j
, v
i,j
and s

i,j
relect the two ma-

jor inluences on the matching process. On the

one hand, the overlap o
i,j
can be used to assess

the inluence of changing neighbourhoods on

the matching process, because point clouds
with a low overlap usually show large changes
in the local neighbourhood of a point as well.
On the other hand, uncertainties in the 3D po-
sition of points may lead to different quad tree
indices during the computation of the distinc-
tive description. The biggest inluences on the

point uncertainty result from large differences
in the view directions and distance changes.

4.2 Evaluation Results

For the computation of the distinctive descrip-
tion for every point of every point cloud the
parameters deined in section 3 must be set ac-
cording to the point density of the point cloud.
For the experiments the following values are
chosen: maximum radius of local neighbour-
hood r

max
= 750 mm, maximum number of se-

lected neighbours n
max
= 12, minimum num-

ber of neighbours n
max
= 4 and total number of

bins (2p) for the computation of the quad tree
index with p = 64.
A irst impression of the performance of the

proposed matching scheme is given by the re-
sults presented in Tab. 1. Here the number of
connected epochs are those combinations of
epochs where the respective point clouds have
at least three identical points, the possible
matches represent the true number of matches
derived from the results of the bundle adjust-
ment (see section 4.1) and the wrong matches
are the false positives before robust iltering.

The differences in the number of recorded
frames and connected epochs are caused by
the different motion pattern. In the irst ex-
periment the stereo systems were moved in a
straight and direct line down the hallway and
thus only a smaller number of frames is nec-
essary to capture the entire scene. In the last
experiment, the systems were carried by hand
and moved forward and backward along the
corridor with changing rotations and trans-
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5 Conclusions and Future Work

A new approach to establish correspondenc-
es between points of sparsely populated and
varying point clouds is presented in this pa-
per. The identiied matches can be used e.g. to

estimate the change of orientation jT
i
between

two epochs t = i and t = j. The proposed algo-
rithm is based on the known basic principles
of matching using distinctive feature descrip-
tions and extends them in a way that they can
be used to identify corresponding 3D points
in sparse and varying point clouds. The algo-
rithm is an extension of the spin images (John­
son & heBeRt 1999). It exploits the fact that
applying the spin image algorithm to sparse
point clouds gives a sparse 2D distinctive de-
scription that can be compressed further. The
resulting compact 1D description is designed
in a way that it allows an eficient matching of

two descriptions.

50 % (Fig. 3(d)) respective 70 % and 90 %
of all connected epochs achieve a match
quality in the interval from approximately
30 %–95 %.
The position uncertainty of a 3D point does

not seem to have a strong inluence on the

match quality. Figs. 3(b), 3(c), 3(e) and 3(f)
show that a change of the respective inluence

parameter does not change the median or the
shape of the distribution signiicantly.

Larger changes in the local neighbourhood,
caused by missed detections or points moving
in or out of the stereo system’s ield of view,

obviously have the effect that the similarity
measure computed for two actually matching
points is below the lower threshold t

i
deined

in section 3.4 and as a result that match is re-
jected incorrectly.

(a) Distribution of match
quality q

i,j
w.r.t. overlap of

point clouds (E2 A)

(b) Distribution of match
quality q

i,j
w.r.t. change of

view direction (E2 A)

(c) Distribution of match
quality q

i,j
w.r.t. change of

scale (E2 A)

(d) Distribution of match
quality q

i,j
w.r.t. overlap of

point clouds (E3 B)

(e) Distribution of match
quality q

i,j
w.r.t. change of

view direction (E3 B)

(f) Distribution of match
quality q

i,j
w.r.t. change of

scale (E3 B)

Fig. 3: The graphs show the dependency between the achieved match qualitites q
i,j

and the differ-
ent sources inluencing the matching. The bars at the bottom represent the relative frequency of
the respective group. The lines in the graph represent the distribution of the grouped matching
quality using the 5 %-, 95 %-quantiles and the median. Groups with a relative frequency smaller
than 5 % are not considered.
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the computation of the distinctive description
must be approximately planar. The basic prin-
ciples used here can be transferred easily to
the case of arbitrary 3D neighbourhoods. It re-
mains to be investigated how much the chang-
ing 3D neighbourhood effects the results.

References

BaRnea, s. & FiLin, s., 2010: Geometry-Image-In-

tensity Combined Features for Registration of

Terrestrial Laser Scans. – International Archives

of Photogrammetry and Remote Sensing 38 (3a):

145–150.

Bay, h., ess, a., tuyteLaaRs, t. & van GooL, L.,

2008: Speeded-up robust features (SURF). –

Computer Vision and Image Understanding 110

(3): 346–359.

BesL, p.J. &McKay, n.d., 1992: AMethod for Reg-

istration of 3-D Shapes. – IEEE Transactions on

Pattern Analysis and Machine Intelligence 14

(2): 239–256.

BRown, L., 1992. A Survey of Image Registration

Techniques. – ACM Computing Surveys 24:

325–376.

caLondeR, M., Lepetit, v. & Fua, p., 2008: Key-

point signatures for fast learning and recogni-

tion. – FoRsyth, d., toRR, p. & zisseRMan, a.

(eds.): Computer Vision – ECCV 2008, LNCS

5302: 58–71, Springer.

caLondeR, M., Lepetit, v., Fua, p., KonoLiGe, K.,

BowMan, J. & MiheLich, p., 2009: Compact sig-

natures for high-speed interest point description

and matching. – 2009 IEEE 12th International

Conference on Computer Vision: 357–364.

chua, c. & JaRvis, R., 1997: Point Signatures: A

New Representation for 3D Object Recognition.

– International Journal of Computer Vision 25

(1): 63–85.

FinKeL, R. & BentLey, J., 1974: Quad trees: a data

structure for retrieval on composite keys. – Acta

informatica 4 (1): 1–9.

FischLeR, M.a. & BoLLes, R.c., 1981: Random

sample consensus: a paradigm for model itting

with applications to image analysis and auto-

mated cartography. – Communications of the

ACM 24 (6): 381–395.

FLint, a., dicK, a. & van den henGeL, a., 2008:

Local 3D structure recognition in range images.

– Computer Vision, IET 2 (4): 208–217.

GeLFand, n., MitRa, n.J., GuiBas, L.J. & pott­

Mann, h., 2005: Robust global registration. –

Third Eurographics Symposium on Geometry

processing: 197–206.

The evaluation of image sequences record-
ed by two stereo systems shows that our ap-
proach allows an eficient and reliable match-
ing of 3D points. The number of true positives
is mostly above 70 % and the number of false
positives is much smaller than 1 %. The false
positives are all eliminated successfully by ro-
bust iltering of the established matches.

A limiting prerequisite of the presented
matching scheme is that the point clouds at
different epochs t = i and t = j must have the
same scale as absolute distances are used in
the computation of the distinctive description.
For a more general variant of the description
it would be possible to use ratios of distances
that are invariant against scale changes. Such
a variant of the compact distinctive descrip-
tion could be used to extend existing image
based matching approaches like SIFT (e.g.
Lowe 2004). The identiied correspondences

between two images can be used to compute
3D model coordinates. Based on these model
coordinates a scale invariant distinctive de-
scription could be used differently:

Application for checking image based
matching

Possible matches with further images are irst

established using the known image based
matching algorithms and then they are ad-
ditionally veriied using a scale invariant

distinctive description for 3D points. Only
matches passing both approaches are accepted
and the number of false positives might be re-
duced.

Application for connecting images
with large perspective change

Usually the image based approaches have
problems to correctly identify correspond-
ences for larger perspective changes. Here a
distinctive description for 3D points might be
helpful to ind additional correspondences.

It becomes apparent that it might be advan-
tageous to combine image based distinctive
descriptions with the proposed description for
3D data. Such a combination of 2D and 3D
data is also presented inwu et al. (2008).
A further extension would be the lifting of

the constraint that the neighbourhood used for




