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Editorial: Schwerpunktheft zur Photogrammetrie an der
Universität Bonn

Auch dieses Heft der PFG spiegelt die Brei-
te unseres Themenspektrums wider – Pho-
togrammetrie, Fernerkundung und Geoinfor-
mation. Ich freue mich sehr, dass es diesmal
gelungen ist, anlässlich der Pensionierung von
Prof. Dr.-Ing. Dr. h.c. mult. WOLFGANG FÖRST-
NER ein Schwerpunktheft zu gestalten, das
FÖRSTNERs langjährige Arbeiten, vor allem in
seiner Bonner Zeit, mit der Veröffentlichung
von jüngst erreichten Ergebnissen attraktiv
illustriert. Beteiligt haben sich viele seiner
Schüler und er selbst. Ich danke herzlich für
die Wahl der PFG zur Veröffentlichung der
Artikel und für die gute Zusammenarbeit in
der Vorbereitung des Heftes. Den inhaltli-
chen Schwerpunkt des Heftes wirdWOLFGANG

FÖRSTNER anschließend selbst vorstellen.
In letzter Zeit besaßen fast alle Ausgaben

der PFG ein Schwerpunktthema. Wir erin-
nern uns zum Beispiel an hochaufgelöste Sa-
tellitenbilder (PFG 4/12) und photogramme-
trische Bildanalyse (PFG 5/12). Beide Hef-
te waren aus Workshops entstanden, die in
Hannover und München stattgefunden hatten.
Keines der Schwerpunkthefte enthielt aber
ausschließlich Artikel zum Thema. Viele Le-
serinnen und Leser der PFG erwarten in je-
dem Heft ein möglichst breites Spektrum. In
diesem Heft wird der vom Bonner Institut
gesetzte Schwerpunkt „Photogrammetrische
Forschung“ durch drei Beiträge zur Ferner-
kundung und einen zur Geoinformation er-
gänzt.
SUCHENWIRTH et al. haben einen neuen An-

satz zur Analyse von Fernerkundungsszenen
mit Hilfe zusätzlicher geographischer Daten

und des maschinellen Lernens entwickelt.
Mit diesem Ansatz kann die Speicherkapazi-
tät von Auenwäldern für organischen Kohlen-
stoff großräumig bestimmt werden. Das Ver-
fahren wird am Beispiel des österreichischen
Nationalparks Donau-Auen unterhalb von
Wien erprobt.
GNYP et al. bilden eine deutsch-chinesische

Autorengruppe. Sie entwickelten ein Verfah-
ren zur Abschätzung der Biomasse auf der
Basis von Reflexionsmessungen am Bestand.
Dabei werden die Kombination verschiedener
spektraler Bänder und mehrere Indizes mit-
einander verglichen und bewertet.
BANNEHR et al. versuchen Oberflächen in

städtischen Gebieten, vor allem Dächer, mit
Hilfe der Kombination von Messdaten aus
verschiedenen Fernerkundungssensoren ge-
nauer zu bestimmen als bisher möglich. Da-
bei kommen eine Thermalkamera, eine Hy-
perspektralkamera, ein Laserscanner und
eine rgb-Kamera zum Einsatz. Für die Klas-
sifizierung werden Support-Vector-Machines
benutzt. Das Testgebiet ist die Innenstadt von
Oldenburg.
STOTER et al. berichten schließlich über

den aktuellen Stand des Niederländischen
3D-Geodatenstandards. Nach seiner Imple-
mentierung auf der Basis von CityGML sind
nun die Spezifikation, Beispieldatensätze und
Werkzeuge zur Daten-Validierung verfügbar
und werden vorgestellt. Im nächsten Entwick-
lungsschritt soll das Verfahren zur Laufend-
haltung definiert werden.

WOLFGANG KRESSE
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Photogrammetrische Forschung – Eine Zwischenbilanz
aus Bonner Sicht

WOLFGANG FÖRSTNER, Bonn

Die Schwierigkeit liegt nicht darin,
die neuen Ideen zu finden,
sondern die alten loszuwerden.
John M. Kaynes

So wie ein runder Geburtstag im Jahre 2000
Anlass für einen Zwischenbericht in dieser
Zeitschrift über die Forschung nach 10 Jah-
ren Leitung des Instituts für Photogrammetrie
war, so gibt mir meine Pensionierung die Ge-
legenheit, die Entwicklung der letzten Jahre,
wie sie sich aus meiner Sicht darstellt, zu skiz-
zieren, sie mit repräsentativen Arbeiten aus
meiner Arbeitsgruppe in diesem Heft vorzu-
stellen. Selbst bei dieser Beschränkung lässt
sich die Dynamik in unserem in Breite und
Tiefe wachsenden Forschungsfeld beleuchten.
Während wir mit einer Promotion zur

strukturerhaltenden Generalisierung von Di-
gitalen Geländemodellen (BRAUNMANDL 2002)
innerhalb des Sonderforschungsbereichs 350
‚Wechselwirkungen kontinentaler Stoffsyste-
me und ihre Modellierung’ unsere Arbeiten
zur Qualität von Geodaten abschlossen, hat
uns unser zentrales Aufgabengebiet, die Auto-
mation der dreidimensionalen Gebäudeerfas-
sung, bis heute nicht losgelassen. In den 90er-
Jahren stützten sich unsere Arbeiten noch auf
starke geometrische Modelle. Bei ihnen ergab
sich die dreidimensionale Form durch Aggre-
gation von Gebäudeteilen. Sie waren daher so-
wohl für die automatische wie die manuelle
Erfassung geeignet und erforderten daher zur
empirischen Prüfung eigene Konzepte (RAGIA
2001). Sie konnten jedoch die große Vielfalt
realer Objekte nicht beschreiben und verlang-
ten einen neuen Zugang zum Problem der Ge-
bäudemodellierung. Dieser sollte und musste
die alten Konzepte grundsätzlich ablösen, ein
in seinen Folgen bis heute nicht abgeschlosse-
ner Schritt.

Zunächst reduzierten wir die Rigidität der
Modelle, die sich durch die Festlegung auf ma-
nuell erstellte Gebäudeteile ergab und fokus-
sierten auf polyederförmige Oberflächenbe-
schreibungen. SCHINDLER & FÖRSTNER (2011),
durch die Rekonstruktion von Polyedern aus
Punktwolken motiviert, stellen in diesem Heft
ein flexibles Segmentierungsverfahren vor,
das geometrische und radiometrische Infor-
mation integrieren kann. Die Zuwendung zu
Polyedern als elementares Oberflächenmo-
dell von Gebäuden und seiner Erscheinungs-
form in Bildern erforderte eine fundierte Mo-
dellierung der Unsicherheit der mit projekti-
ver Geometrie beschreibbaren geometrischen
Grundelemente und ihrer Transformationen.
Grundlegend dazu waren die Arbeiten von
HEUEL (2004) zum unsicheren geometrischen
Schlussfolgern mit der erforderlichen Erwei-
terung des Kalmanfilter-Updates bei implizi-
ten Funktionen, siehe der Beitrag von STEFFEN.
APPEL (2004) nutzte die projektive Geometrie
zur Integration vom Bildern und Plänen. Die
Arbeit von BEDER (2006) zur Gruppierung un-
sicherer geometrischer Elemente zum Zwecke
der Gebäuderekonstruktion zeigt auch die Li-
mitierungen rein geometrischer Verfahren zur
Rekonstruktion von Polyedern, legt aber auch
die Basis für allgemeinere Gruppierungsauf-
gaben, siehe der Beitrag vonWENZEL.
Die Flexibilisierung der Gebäudemodelle

erlaubte jedoch kaum eine Interpretation der
Bilddaten, in dem Sinne, dass die resultieren-
den Objekte klassifiziert und ihre gegensei-
tigen Beziehungen identifiziert wurden. Mit-
entscheidend für die Arbeitsrichtung in den
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nern lässt, wie die Arbeit von ROSCHER (2012)
zeigt.
Graphische Modelle haben ein außeror-

dentlich breites Anwendungsfeld, nicht nur in
der Geodäsie und Photogrammetrie, siehe der
Beitrag von FÖRSTNER. Sie haben daher einige
unser Arbeiten beeinflusst: bereits sehr früh
zur Klassifikation von Laserdaten (BRUNN
2000), später zur Klassifikation des Gesund-
heitszustands von Pflanzen (BAUER 2011).
DICKSCHEID (2010) modelliert das Problem der
Zuordnung von Bildpunkten und -kanten über
ein Markoff-Zufallsfeld, und kann so auch
Nachbarschaftsrelationen unter den Bild-
merkmalen integrieren, siehe seinen Beitrag
in diesem Heft.
Parallel zu diesen Arbeiten konnten wir,

u.a. in Industriekooperationen unsere Ar-
beiten zur Bildfolgenanalyse fortsetzen. Da-
bei ging es um die Echtzeitauswertung von
Stereobildfolgen für Fahrerassistenzsyste-
me (BARTH 2010, SIEGEMUND 2013). Die Ver-
fügbarkeit leichter unbemannter Flugsysteme
ist nicht nur hoch attraktiv in der Lehre, son-
dern stellt wegen der Gewichtsrestriktionen
besondere Anforderungen an die Auswerte-
technik bei der Bestimmung der Eigenbewe-
gung aus Bildfolgen einzelner Videokame-
ras (STEFFEN 2009). Im Jahr 2011 konnten wir
eine DFG-Forschergruppe zum Thema Map-
ping on Demand einwerben. Zusammen mit
der Robotik (BEHNKE, Bonn), der Computer
Graphik (KLEIN, Bonn), der Computer Vision
(CREMERS, München), der Ingenieurgeodäsie
(KUHLMANN, Bonn) und der Geoinformation
(PLÜMER, Bonn) adressieren wir das Problem
der autonomen Navigation eines mit Kame-
ras, Ultraschallsensoren, Laserabtaster und
GPS/INS ausgestatteten fliegenden Robo-
ters und die durch den Benutzer beauftragte
Erfassung der Umgebung. In diesem Projekt
sind wir für die visuelle Ortung aus synchron
aufgenommenen Bildfolgen von Gruppen von
Fisheye-Kameras zuständig, siehe der Beitrag
von SCHNEIDER. Damit rückt eines der klassi-
schen photogrammetrischen Probleme, das
der Kamerasystemkalibrierung (MITSCHKE

2002) bzw. der Approximation der Aufnahme-
geometrie durch ein Zentralprojektionsmodell
(WOLFF 2006) erneut in den Vordergrund.
Wir freuen uns über die Anerkennung, die

wir durch den DAGM-Preis 2001 und 2010,

letzten Jahren war die Frage eines Gutachters
bei der Beurteilung unserer Arbeiten zur Ge-
bäudeerfassung im Jahr 1995: „Wenn Sie die
Vielfalt der Formen und Strukturen realer Ge-
bäude bei der automatischen Bildauswertung
nutzen wollen, können Sie nicht alle auftre-
tenden Formen manuell modellieren. M.E.
benötigen Sie dazu Methoden des maschinel-
len Lernens.” Wir mussten beginnen zu ler-
nen wie Rechner statistische Modelle lernen
können.
Mit dem von der EU geförderten Projekt

E-Training for Interpreting Images of Man-
Made Scenes (eTRIMS) begannen wir 2006
zusammen mit Kollegen aus der Computer
Vision (RADIM SARA, CMP, Prag), der Mus-
tererkennung (MARIA PETROU, UCL, London)
und der Künstlichen Intelligenz (BERND NEU-
MANN, KOGS, Hamburg) am Problem der In-
terpretation von Fassadenbildern das Problem
der Bildinterpretation neu aufzugreifen. Zen-
tral in diesem Projekt war eine Steuerung der
Interpretation durch ein Fassadenmodell, das
Partonomien, Taxonomien und relationale
Modelle zwischen den Fassadenteilen enthielt
und mit den Bildregionen interagierte. Wir be-
fassten uns in diesem Projekt mit so genann-
ten graphischen Modellen, auf Graphen ge-
stützte stochastische Modelle für Objektteile
und ihre Beziehungen, als Schnittstelle zwi-
schen dem Fassadenmodell und den Bildregi-
onen. Hierbei ging es um die simultane Klas-
sifikation vieler, hierarchisch angeordneter
Bildregionen, was durch bedingte Bayesnetze
oder bedingte Markoff-Zufallsfelder realisier-
bar ist (DRAUSCHKE 2011, YANG 2011). Dazu
kamen statistisch begründete Verfahren zur
Schätzung, d.h. Lernen der freien Parame-
ter des Klassifikationsmodells: Korč (2012)
zeigt in seiner Arbeit, dass diese Parameter-
schätzung auf ein konvexes Optimierungs-
problem führt, wenn man ein so genanntes lo-
gistisches Modell für die Bestimmung der a
posteriori Wahrscheinlichkeiten verwendet.
Dieses Klassifikationsmodell hat sich als au-
ßerordentlich flexibel herausgestellt, da es bei
gleicher Qualität wie Standardverfahren auf
natürliche Weise mehrere Klassen verarbeiten
kann, zuverlässige a posteriori Wahrschein-
lichkeiten liefert und sich wirksam zu einem
inkrementelles Lernverfahren verallgemei-
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zukommenden lohnenden Herausforderungen
geodätisch-photogrammetrischer Forschung
betrachtet.
Ich wünsche dem Leser eine interessante

Lektüre.

Wer seine Ziele erreicht,
hat sie zu niedrig gewählt.
Herbert von Karajan
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Graphical Models in Geodesy and Photogrammetry

WOLFGANG FÖRSTNER,
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geodetic networks, bundle adjustment, iterative conditional modes, Gauss-Seidel iteration

Summary: The paper gives an introduction into

graphical models and their use in specifying stochas-

tic models in geodesy and photogrammetry. Ba-

sic task in adjustment theory can intuitively be de-

scribed and analysed using graphical models. The pa-

per shows that geodetic networks and bundle adjust-

ments can be interpreted as graphical models, both as

Bayesian networks or as conditional random fields.

Especially hidden Markov random fields and condi-

tional random fields are demonstrated to be versatile

models for parameter estimation and classification.

1 Introduction

For more than 50 years geodetic and pho-

togrammetric networks are classical tools for

point positioning and orientation determination.

They are characterized by a sparse link between

observed data, image coordinates, distances,

angles, height differences, or GPS-coordinates,

on one hand and unknown parameters, mostly

coordinates but also orientation parameters or

additional parameters on the other hand, to cap-

ture various systematic effects. The work horse

for determining the unknown parameters in a

statistically optimal manner is the classical ad-

justment theory, including its Bayesian variants

which allows for including prior information or

sequential estimation.

In the last decades so-called graphical mod-

els, especially Markov random fields, have

found their way into photogrammetric research,

mainly for image interpretation. In contrast to

simple pixel-wise or image region-wise clas-

sifiers these models allow for statistical mod-

elling the spatial neighbourhood between pix-

els or image regions, and lead to an increase in

classification performance.

The tools for finding optimal classifications

based on these graphical models are in no way

related to methods for solving large equation

systems. Even more, in most cases only approx-

imate solutions can be found and the statistical

properties of the results are difficult to charac-

terize.

Therefore the question arises: How is the re-

lation between the current methodology and the

new one? Do they address different problems?

Is there an overlap? Is the current methodology

a special case of the new one? The answer is

clear: Graphical models are a real generaliza-

tion of the well-known tools from statistics and

adjustment theory, in the way they are trained

and used in geodesy and photogrammetry. If

a new methodology comes up, which claims to

be a true generalization of the current one, it

has to prove (a) that the current methods can

be derived from the new ones by specialization

and (b) that there is a relevant potential for suc-

cessfully solving new problems, which cannot
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Zusammenfassung: Graphische Modelle in Geodäsie 
und Photogrammetrie. Der Beitrag gibt eine Ein-
führung in Graphische Modelle und ihren Einsatz 
zur Erstellung probabilistischer Modelle in der 
Geodäsie und der Photogrammetrie. Grundaufgaben 
der Ausgleichungsrechnung lassen sich intuitiv be-
schreiben und analysieren. Der Beitrag zeigt, wie 
geodätische/photogrammetrische Netze als�������
netze oder Markoff-Zufallsfelder interpretiert 
werden können. Besonders bedingte Zufallsfelder 
erweisen sich als flexibel für die Modellierung und 
die Optimierung von Parameterschätz- und Klassifi-
kationsaufgaben. 
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be tackled by the current methodology. The pa-

per mainly addresses the first point. The second

point is sketched and proven in some of this is-

sue’s articles.

Graphical models are probabilistic models

on graphs, the nodes representing single or ag-

gregated random variables, and the edges repre-

senting probabilistic relationships between the

random variables. In case these relations are

directed, the networks fall into the category

of Bayesian networks, otherwise they are so-

called Markov random fields. In the above

mentioned application of interpreting images,

the random variables in the graphical models

are discrete, explaining the conceptually dif-

ferent procedures for finding optimal solutions.

However, graphical models are not restricted to

model and analyse situations with discrete ran-

dom variables, i.e. classification tasks, but also

can handle problems with continuous variables.

A prominent example is the classical Kalman

filter, see Fig. 1. It is a graphical model. It con-

l l l l ll
1 62 3 4 5

x x x x xx
1 62 3 4 5

Fig. 1: A hidden Markov-chain as a special
continuous Bayesian network used as basic
model in Kalman filtering. The joint probabil-
ity of all nodes can be factorized into p(l,x) =

p(x1)
∏6

t=2 p(xt|xt−1)
∏6

t1
p(lt|xt), each factor

depending only on one or two variables. This
eases learning and reasoning. The naming
Markov-chain indicates, that (1) the time series
follows the Markov-property, i.e. future states do
only depend on the present, not on past states,
and (2) the structure of the underlying graph of
the unknown states (white) is a chain, i.e. only
has nodes with maximum two neighbours.

tains two types of nodes xt and lt. The nodes

xt represent the unknown state, shown in white,

varying over time, building a so-called hidden

Markov chain, as the new state only depends

on the previous state, and not on older states.

The nodes lt represent the observations at time

t. Here, we assume observed values are avail-

able, therefore the nodes are shown in grey.

The methods for optimal estimation, predic-

tion and filtering of such a Bayesian network

are well known, not only in geodesy and pho-

togrammetry.

This paper wants to uncover more correspon-

dences between graphical models and geode-

tic and photogrammetric parameter estimation

problems, namely showing the close relation

between geodetic networks and photogrammet-

ric blocks and so-called conditional random

fields, which have shown their power in image

interpretation during the last years.

The paper does not go into the details of

graphical models, which are documented in

quite a number of lectures, e.g. BILMES (2000),

MURPHY (1998) and books, e.g. PEARL

(1988b), LI (2000), BISHOP (2006), WINKLER

(2006).

The paper is organized as follows. We first

give a short introduction into graphical models,

relating the concepts to basic statistical tasks

in geodetic education. Using several exam-

ples, we show the close relation between ad-

justment theory and Bayesian networks. Us-

ing a simple four-node network we on one hand

demonstrate the versatility of graphical models

to describe the probabilistic models for geode-

tic networks and for image interpretation, on

the other hand uncover the intimate link be-

tween independence relations in Markov ran-

dom fields and the sparsity of classical normal

equation matrices.

2 Graphical Models

2.1 Motivation

The complexity of probabilistic models in-

creases exponentially with the number of vari-

ables if no structure is imposed. Take as an ex-

ample a small binary image of 326×119 pixels

as shown in Fig. 2. In order to describe the joint

Fig. 2: Binary image with 326× 119 pixels.

probability of all N = 326 × 119 = 38794
pixels, one would need an enormous number of

2N − 1 = 238794 − 1 ≈ 1011678 probabilities

P (x1, ..., x38794). The number of high resolu-

tion colour images is even larger. In order to get

an impression of the size of this large number
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1011678, one can relate it either to the compara-

bly really microscopic number of 1078 atoms

in the universe, or to the a bit larger number

10130 of possible images taken at any micro-

meter within the universe at any microsecond

of its estimated lifetime in one of 100 million

directions.

Probabilistic models with a large number of

variables usually reveal an internal structure,

which therefore needs to be exploited. The

structure on one hand results from the object

modelled. As an example take the model of

time-dependent processes, which refers to the

states in a sequence of points in time, see Fig.

1, or take the stochastic model of human body

configuration in image analysis, which is re-

lated to the pose of connected limbs.

As geodesists and photogrammetrists we

usually work with a simplified assumption

about the distribution, a Gaussian distribution.

As a consequence the number of parameters

necessary to specify the distribution only in-

creases quadratically with the number of pa-

rameters, which for a million variables would

require the specification of ≈ 1012 entries in the

covariance matrix. The ability to approximate

covariance matrices using covariance functions

of large point clouds suggests that in some ap-

plications much less parameters are necessary

to arrive at an adequate stochastical model. An-

other geodetic approach to reduce the complex-

ity of a stochastical model is the concept of pri-

mary errors, which allows to explain correla-

tions in high dimensional covariance matrices

using only a few causing effects.

2.2 Definition and Types

A graphical model is a probabilistic model

where the dependence structure between the

variables is described by a graph G(N ,E).
The nodes n ∈ N represent stochastical vari-

ables, the edges e = (ni, nj) ∈ E represent

probabilistic relations.

A node may represent a single random vari-

able, say x, following some distribution, e.g.

specified by x ∼ px(x). It may be a set or

vector x of variables or even a more complex

structure of random variables. Random vari-

ables are indicated by an underscore. The in-

dex x in px indicates the name of the variable

the density function refers to, which we omit, in

case there is no confusion. The graphical pre-

sentation shows the name, say x, and possibly

the type of the random variable, e.g. x if it is

a vector. The random variables may be discrete

or continuous, or mixed. The distribution of the

variables may be completely unknown, partially

or fully known. This flexibility of course re-

quires to specify the content of the nodes in the

legend of the graphical model. In the follow-

ing we will assume the nodes to either represent

a vector of continuous random variables, e.g.

standing for measurements or parameters useful

in parameter estimation problems, or a discrete

random variable, e.g. standing for a class name

out of a given set of possible classes useful in

classification or interpretation problems.

The variable of a node may be either un-

known, then the node is drawn with a white

background, or it is observed, equivalent to hav-

ing a sample value of the underlying distribu-

tion, then it is drawn with a grey background.

The edges of the graph are either directed or

undirected. Directed edges are used, in case one

wants to specify conditional probabilities.

Fig. 3 shows several graphical models with

two nodes. For directed networks we show var-

ious variants with observed nodes and repeti-

tions.

y

x

y

x

y

x

y

x

y

x

y

x

a) b) c) d) e)
N

f)

Fig. 3: Graphical models with two nodes. White
nodes: unobserved. Grey nodes: observed.
Black node: fixed value. Undirected edge:
p(x, y) is part of the model. Directed edge:
p(y|x) is part of the model. The rounded box indi-
cates that the two-node network exists N -times.

The essential idea of graphical models is

that the joint probability distribution p(x) =
p(x1, x2, ..., xn, ..., xN ) can be written as a

product

p(x1, x2, ..., xn, ..., xN ) =
1

Z

∏
i

fi(Xi) (1)

of functions fi of small subsets Xi =
{xi1 , ..., xiNi

} of variables, and these sets Xi

can be seen in the graph. The functions either
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result from some statistical knowledge or just

can be chosen such that large values of fi sup-

port the joint probability p(x). The constant

Z, the so-called partition function, sometimes is

necessary to guarantee that the resulting proba-

bility density fulfills
∫
p(x)dx = 1.

In the following we show that classical mod-

els in geodesy and photogrammetry can be

modelled using graphical models.

2.3 Bayesian Nets

2.3.1 The model for collocation

In time series often a noisy signal is observed,

and the original signal is to be recovered. The

problem is known as collocation in geodesy

and photogrammetry, see MORITZ (1978, sec-

tion 4), KRAUS (1972). The signal, say x,

is assumed to be a random vector. Its covari-

ance structure usually is described using co-

variance functions, a modelling tool also hav-

ing found its place in pattern recognition via so-

called Gaussian processes, see RASMUSSEN &

WILLIAMS (2005). The signal is contaminated

by noise, say n. The noise is assumed to be in-

dependent of the signal and again, in case it is

vector valued, may be correlated. The resulting

observed signal, say y, is a function of the un-

known random signal x and the noise n, say by

addition. The Bayesian network in Fig. 4 is a

graphical model for this situation. Observe, the

model only specifies the principal relationship.

The joint probability of all three variables can

y

y

nx y

y

nx

Fig. 4: A model for filtering a noisy signal. The
signal x is contaminated by noise n, indepen-
dent on x. The contaminated signal is y, de-
pending on both x and n. Left: model prior to
an observation. Right: The situation where the
contaminated signal is observed: In case certain
characteristics of the signal x and the noise n are
known, both can be recovered from the observed
signal y.

easily derived from the graph. The nodes with

no parents, x and n are assumed to be indepen-

dent and follow some distribution, the nodes y
is depending on these two nodes, and the con-

ditional probability p(y|x,n) is assumed to be

part of the model. Thus, the joint probability of

all three variables is

p(x,n,y) = p(x) p(n) p(y|x,n) (2)

indicating no specific density p(x) and p(n)
for the independent variables nor for the condi-

tional probability p(y|x,n). Thus, when spec-

ifying the model, there is no need to specify the

densities.

In case all variables are zero mean Gaussian

distributed and the contamination model is ad-

ditive, i.e. y = x+n, the covariance matrix of

the joint vector [x,n,y]T would be

D

⎛⎝⎡⎣ x
n
y

⎤⎦⎞⎠=

⎡⎣ Σxx 0 Σxx

0 Σnn Σnn

Σxx Σnn Σxx + Σnn

⎤⎦
(3)

which follows from variance propagation.

Given an observed value y for the contami-

nated signal, using Bayesian theorem in the

form p(x,n|y) = p(y|x,n)p(x)p(n)/p(y)
one in the general setting can derive the density

p(x|y) of the signal given y and the density

p(n|y) of the noise given y.

In the case of normally distributed variables,

with

Σyy = Σxx + Σnn (4)

we obtain the classical result

E

([
x|y
n|y

])
=

[
Σxx

Σnn

]
Σ−1

yy y (5)

and

D

([
x|y
n|y

])
=

[
Σxx

Σnn

]
Σ−1

yy [Σxx|Σnn]

(6)

indicating the derived signal and noise variables

x|y and n|y are 100 % correlated.

This result can be directly transferred into a

rule interpreting the independence relations in a

Bayesian network. In a three-node network of

the type in Fig. 4 left, the parent nodes x and n
are independent of y, whereas in the right net-

work the parent nodes x and n are condition-

ally dependent given y. This result is indepen-

dent of the type of density functions involved.

The conditional dependency can be used to in-

fer from a subsequent observation of one of the
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two causing variables to the other variable – a

special case of PEARL’s (1988a) so-called ex-
plaining away. Similar interpretation rules ex-

ist for chains and can be used to analyse more

complex networks.

2.3.2 The concept of primary errors

A well-established geodetic principle to obtain

a probabilistic model for the observations with

only a few parameters is the concept of primary

errors (PELZER 1974): Correlations in the high-

dimensional covariance matrix of observations

are explained by a few, say K unknown effects

p
k
, which, besides individual random perturba-

tions e, influence all N variables ln. This also

is the basis for modelling systematic image er-

rors using additional parameters in bundle ad-

justment. With the, in general unknown, mean

values y
n

the general model reads as

p(ln|yn,p) =
∏
n

p(yn)
∏
k

p(ln|pk)p(pk)

(7)

or in an additive setting

ln = y
n
+

K∑
k=1

hnkpk (8)

the random variables y
n

∼ N (μn, σ
2
en) and

p
k

∼ N (0, σ2
pk
) being statistically indepen-

dent. Variance propagation yields the full rank

covariance matrix

Σll = Diag([σ2
yn
]) + H Diag([σ2

pk
])HT

(9)

with H = [hnk]. The number of parame-

ters for specifying this model is in the order of

O(NK), making the model specification effi-

cient if K � N . The random variable l can

easily be described by the graphical model in

Fig. 5.

The exchangeability of the functional (8)

and the stochastical model, using Σll from

(9), has been discussed in the early days of

aerial triangulation, see ACKERMANN (1965)

and SCHILCHER (1980).

The graphical model makes the difference of

modelling systematic errors, as done in bun-

dle adjustment, transparent: Systematic errors

usually are modelled with the second term∑K
k=1 hnkpk, then the causing effects are made

N

y

l
K
p

h

Fig. 5: Graphical model for describing the uncer-
tainty of the N correlated random variables ln us-
ing the primary error concept: The individual ele-
ments ln depend on individual random variables
y
n

and common systematic effects p
k

weighted
by hnk. The rounded boxes indicate that the in-
ternal structure, namely l depending on y and h
on one hand and p and h on the other hand, are
repeated N and K times respectively as made
explicit in (8).

explicit. But they also can be modelled us-

ing a fully correlated observation vector with

covariance matrix Σll in (9), see SCHILCHER

(1980), then not making the causing effects ex-

plicit. Modelling systematic errors in the func-

tional model or the stochastical model only is

equivalent, if the expected values E(p
k
) = 0

for the systematic effects are zero and constant

over time. Obviously, modelling the system-

atic errors in the functional model not only re-

quires less parameters to be specified compared

to modelling them in the stochastical model, but

also allows to model time dependent effects, see

SCHROTH (1986) and to estimate their mean

values and thus learn the parameters from data

within a self-calibration.

2.3.3 The Gauss-Markov model

The Gauss-Markov model is the work horse

in statistical estimation. In its simplest form

it could be written as p(l|x) only specifying

the conditional probability for the observations

given the parameters, thus being of type b) in

Fig. 3. As soon as the observations l are

available, we obtain the graphical model d),

and using the Bayesian theorem we can derive

the unknown parameters as argmaxxp(x|l) =
argmaxxp(l|x)p(x) in case some prior infor-

mation p(x) about the parameters x is avail-

able. Self-calibrating bundle adjustment could

be modelled a bit more expressivly, making the

effect of the three parameter types, scene co-

ordinates k, orientation parameters t, and ad-

ditional parameters p onto the observed image

coordinates l explicit, see Fig. 6.
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k

l

t p

Fig. 6: Graphical model for bundle adjust-
ment with coordinates k, orientation parame-
ters t and additional parameters p influencing
the observations li, e.g. the image coordi-
nates. The joint probability is p(l,k, t,p) =
p(k)p(t)p(p)

∏
i p(li|k, t,p)

0σ

N
x

e w

ly

a

Fig. 7: Gauss-Markov model as Bayesian net-
work. The black nodes represent given infor-
mation, here the coefficients a of the (rows of
the) design matrix, the weights w and the vari-
ance factor σ0. The observations l result from a
contamination of the unknown predicted observa-
tions, denoted by y, and the unknown measure-
ment deviations e. The rounded box indicates the
probabilistic model within the box is repeated N -
times, indicating the independence of the N ob-
served values l. In addition to the N fitted ob-
servations y and the measurement deviations e
the parameter vector x, which couples the fitted
observations via the given coefficients a, is un-
known. Observe, this model contains the additive
filtering model as core.

In case we want to model more details of the

Gauss-Markov model, see Fig. 7, we can spec-

ify the dependency on the rows an of the de-

sign matrix, make the error free observations

yn = aT
nx and the measurement deviations en

explicit, and specify the individual weights wn

and the common factor σ0 to obtain

ln = aT
nx+ en σ2

n = σ2
0/wn (10)

together with the prior information

x ∼ N (x0,Σx0x0) (11)

e.g. representing the coordinates of the control

points together with their uncertainty, assum-

ing very large covariances for the new unknown

scene points. The joint probability is given in

the factorized form

p(l,x) = p(x)
∏
n

p(ln|x) . (12)

Observe, the Gauss-Markov model contains the

filtering model from Fig. 4 as central part

within the area with dashed boundary in Fig. 7,

here in the form l = y + e.

We will not discuss general Bayesian nets

here. Finding the optimal parameters in

Bayesian nets with a tree structure, such as all

examples, is linear in the number of nodes, if

the number of variables per node is fixed. This

high efficiency is exploited e.g. in Kalman fil-

tering.

2.4 Markov Random Fields

Markov random fields are graphical models

with undirected edges. Undirected graphs ap-

pear in image processing, image analysis, point

cloud processing, but also in geodetic and pho-

togrammetric networks.

In image processing the graph is induced by

the regular structure of the pixels, yielding a

regular pattern, see Fig. 8, 	
��� left. In im-

x x

Fig. 8: Graphs of photogrammetric models as
basis for Markov random fields. Left: pixel grid,
neighbouring or adjacent pixels are assumed to
have the same colour or the same class label.
Right: region adjacency graph, neighbouring re-
gions are assumed to have the same class la-
bel (image and segmentation from SCHINDLER &
FÖRSTNER (2013)).

age analysis one often starts with partitioning

the image into regions, the region adjacency
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graph then may be the building block for im-

age interpretation, which is equivalent to as-

signing a class name to each region, see Fig.

8, 	
��� right. In point cloud processing the

graph may result from a triangulation or a seg-

mentation. Bundle adjustment, see Fig. 9

links the observed image coordinates xij , not

to be confused with the unknown parameters,

with scene coordinates ki and orientation pa-

rameters tj via the collinearity constraints 0 =
collij(xij ,ki, tj).

ijx’

1 2 3

k k 43 k k k

t t t
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3
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21

5432121
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3

Fig. 9: Graphs of photogrammetric models as
basis for Markov random fields. Bundle adjust-
ment. Lower left: with 3-cliques (cliques with
three nodes) linking the observations xij with
the coordinates and the transformation parame-
ters (some of the connections are shown dotted
to keep the figure readable). Lower right: with
2-cliques (cliques with two nodes) linking coor-
dinates and transformation parameters, observa-
tions as given values are eliminated, see DEL-
LAERT & KAESS (2006).

A Markov random field having nodes xi is

characterized by the following property: The

probability for a node p(xi|X \ xi) given the

values of all other nodes is identical to the con-

ditional probability p(xi|Ni) given its neigh-

bours:

p(xi|X \ xi) = p(xi|Ni) . (13)

This is a generalization of the Markov property

of time series where the current state xt only

depends on the previous thus neighbouring one

xt−1, explaining the name for the type of graph-

ical model.

The joint probability p(x1, ..., xN ) of all

variables xn in a Markov random field can be

written as the product of factors ψi(Xi) depend-

ing on the cliques in the corresponding graph,

the clique Ci being a fully connected subgraph,

i.e. a subgraph, where all nodes are connected,

inducing the set Ci = {xi1 , ..., xiNi
}:

p(x1, ..., xN ) =
1

Z

∏
i∈C

ψi(Ci) . (14)

The functions ψi(Ci) are called potential func-

tions and are assumed to be positive for all val-

ues the variables in the clique may have. They

conceptually are no probabilities.

A probability of the structure (14) is called

a Gibbs-distribution. The structure of this dis-

tribution is equivalent to the Markov prop-

erty in (13). This follows from a theorem by

HAMMERSLEY & CLIFFORD (1971), see also

BUSCH (1992). In Fig. 8 the 	
��� left network

for the image grid shows only two-cliques, the

	
�er right network of the region adjacency

graph shows two- and three-cliques and the net-

work for the adjustment in Fig. 9 shows three-

cliques or two-cliques, depending on whether

the observational nodes are included or ex-

cluded in the model.

2.4.1 Types of Markov random fields

There are different classes of Markov random

fields (MRF), depending on the way observa-

tions are handled. For simplicity we refer to the

grid type graph with maximal two-cliques, see

Fig. 10.

xi iy

ix
xi

y

Fig. 10: Types of MRF’s. Left: Markov random
field as prior. Middle: hidden Markov random
field, containing directed edges to the observa-
tions yi. Right: Conditional random field.

A Markov random field may be used for

modelling the prior distribution of the image:

p(x) =
1

Z

∏
(i,j)∈E

ψij(xi, xj) (15)
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where only the potential functions ψij(xi, xj)
need to be specified such that likely config-

urations of pairs (xi, xj) obtain large values

ψij(xi, xj) > 0. The key publication by

GEMAN & GEMAN (1984) of the school of

Grenander (GRENANDER 1976), addressed the

problem of image restoration as a global op-

timization problem solved by stochastic relax-

ation in a Markov Chain Monte Carlo scheme.

A hidden Markov random field makes ex-

plicit the fact, that the class labels for the pix-

els are unknown. The naming disregards the

fact that the edges to the observed nodes are di-

rected. The observations yi depend on the cor-

responding class labels xi. Thus, the total prob-

ability p(x,y) of the network is

p(x)p(y|x) = (16)

1

Z

∏
i

p(yi|xi)
∏

(ij)∈E

ψij(xi, xj)

where the prior p(x) is the simple Markov

random field (15). The likelihood p(y|x)
can be factorized into a product of factors

ψi(xi, yi) := pi(yi|xi) for given observations

only depending on individual nodes.

Often one wants to use observations yi which

are taken from a region around the i-th pixel.

Then they are not any more independent. This

is the reason why one uses

Conditional random fields proposed by

LAFFERTY et al. (2001) in the area of language

processing and introduced to image analysis

problems by KUMAR & HEBERT (2006) under

the label discriminative random fields, though

already e.g. GIMEL’FARB (1996) used models

of this structure for texture analysis. The main

idea is the following: one directly models the

posterior probability by conditioning the prob-

abilistic relations in the cliques, here between

neighbouring pixels, on the given observations

p(x|y) = (17)

1

Z

∏
i∈C1

ψi(xi,y)
∏

(ij)∈C2

ψ(xi, xj ,y)

where the one-cliques C1 contain all nodes, and

the two-cliques C2 all edges.

In all cases it is useful to replace the prod-

uct of the probabilities and potentials by a sum

of the negative logarithms. The negative log-

arithm of a probability can be interpreted as

the (self-) information I(x) = − log p(x), be-

ing the relative surprise when observing the

sample (SHANNON & WEAVER 1949). Cor-

respondingly the negative logarithm E(x) =
− logψ(x) of the potentials is called the en-

ergy, as the concept has been developed in

physics. Thus, the complete models can be

written as sums.

When neglecting the given observed, fixed

values y, for the conditional random field

model (17) we obtain

I(x|y) = logZ +
∑
i∈C1

Ei(xi) (18)

+
∑

(ij)∈C2

Eij(xi, xj) .

2.4.2 Tasks

Having fixed the structure of the model several

tasks need to be addressed.

Inference. The first task is inference: In case

the model is fully specified, one is interested

in an estimate x̂ for the optimal set of values

for the unknowns {xi}, e.g. the one which

maximizes the probability p(x|y), leading to

the maximum a posteriori (MAP) estimate, or,

equivalently, the one which minimizes I(x|y).
If the xi represent class labels in an image, this

will lead to an optimal labelling of all pixels or

regions of the image. If the xi represent the

continuous values of the intensities of the pix-

els, one might obtain an optimal restoration of

the image.

The problem in general is intractable, i.e. the

computing time increases exponentially with

the number of nodes, which is plausible when

regarding the large search space, see the dis-

cussion of the number of images above. Only

in very special cases finding the optimum is

tractable: (a) in case the variables are contin-

uous and follow a Gaussian distribution, the

optimal solution can be achieved by solving a

large linear equation system, (b) in case the

variables are binary and the potential functions

obey certain conditions, the problem can be
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mapped to a network algorithm, namely find-

ing the maximum flow or the minimal cut in a

network (BOYKOV & KOLMOGOROV 2004). In

all other cases only suboptimal algorithms exist

(BISHOP 2006).

None of the algorithms yields the probability

p(x|y) as this would require the determination

of the normalization constant Z, which is Z =∑
x p(x|y), the sum over all possible images.

One simple algorithm uses the Markov prop-

erty and iteratively determines the locally best

estimate given all neighbours:

x̂
(ν+1)
i = argmaxxi

p
(
xi | N (ν)

i

)
(19)

where (ν) indicates the iteration number. The

algorithm is known as iterative conditional
modes (ICM). It often yields good results, but

may get stuck in a local minimum of I(x|y).
We will relate this algorithm to one used in ad-

justment theory.

As graphical models factor the joint proba-

bility into small factors, see (1) and its special-

ization for Bayesian nets and Markov random

fields, see (16), they can be represented as so-

called factor graphs, which allow for a homo-

geneous algorithmic handling of Bayesian nets

and Markov random fields (KSCHISCHANG et

al. 2001).

Learning. The second task is learning. It re-

sults from the difficulty in specifying the poten-

tials in real world problems completely. Take

an example: As we are free to choose the po-

tential functions we could use posterior prob-

abilities p(xi|yi) and p(xi, xj |yij) of classi-

fiers for labels xi or label pairs (xi, xj). Both

depend on the corresponding observed features

yi and yij , and possibly global parameters yg ,

collected in the vector y. Usually they are

parametrized, e.g. in case one uses a maximum

likelihood classifier based on a Gaussian dis-

tribution. Then the parameter vector u would

contain the mean vectors and covariance matri-

ces of the classifier to be learnt. Thus, we would

obtain

ψi(xi|u) (20)

= p(xi|yi,u1)ψij(xi, xj |yij ,u2)

where the parameters u = (u1,u2) need to

be learned from the data. The complete model,

now written using negative logarithms then is

I(x|y,u) = logZ(u) + (21)

+
∑
i∈C1

Ei(xi,u1) +
∑

(ij)∈C2

Eij(xi, xj ,u2)

where the normalization factor 1/Z(u) also de-

pends on the unknown parameters. Given a

large enough set of training data (xi,yi) and

(xi, xj ,yij) the task is to learn, i.e. to estimate

optimal parameters for u. Again, the problem

of estimating optimal parameters is intractable

in general and only suboptimal solutions are

known.

The following example wants to demonstrate

the possibility to map classical geodetic net-

works to Markov random fields

2.5 A Four-Node Network

In order to demonstrate the flexibility of graph-

ical models, especially of conditional random

fields, we use a four-node graph with one edge

missing as an example. We do not show the ob-

servational nodes, which would be linked to all

four nodes, see Fig. 11.

2.5.1 A levelling network

The graph with four nodes representing

the 1-cliques C1 = {1, 2, 3, 4} and five

edges representing the 2-cliques C2 =
{(1, 2), (2, 3), (3, 4), (1, 4), (2, 4)}, has two 3-

cliques C3 = {(1, 2, 4), (2, 3, 4)} as there are

only two fully connected triangles. Interpret-

ing the graph as a levelling network restricts

the modelling to 1- and 2-cliques, as we only

have measured heights li, i = 1, 3 of the two

control points and the five height differences

lij , (i, j) ∈ C2.

We now model the joint probability with

maximal cliques, thus by 2-cliques only. This

is achieved by taking the potentials for the ob-

served control points into on the potential of

one of the corresponding the 2-cliques. The

joint probability therefore is

p(x) = p(x1, x2, x3, x4)

∝
∏

(i,j)∈C2

ψij(xi, xj)

∝ ψ12(x1, x2).....ψ34(x3, x4) .
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1 2

34

1 2

34

1 2

34

Fig. 11: Left: Leveling network as a conditional
random field. The triangles indicate reference
points with given heights h1 and h3, in princi-
ple being uncertain. The two unknown heights
h2 and h4 are indicated by white circles. The
edges in the graph indicate probabilistic relations
between the two nodes in concern, which practi-
cally express the uncertainty of the five observed
height differences. No observations relate three
heights simultaneously, i.e. only two-cliques in
the graph give rise to potentials. Middle: Angular
network as a conditional random field. The trian-
gles now represent control points in 2D with their
uncertain Cartesian coordinates x1 and x3. The
coordinates x2 and x4 are unknown. The five
edges in the graph again represent probabilis-
tic relations between the corresponding nodes.
Each angle measurement is indicated by arrows
and depends on three points. Only two three-
cliques in the graph give rise to potentials. Right:
Classification of four parcels as a conditional ran-
dom field. The nodes represent the unknown
classes of the four fields. There may be prior
probabilities on the classes, known from the type
of geographic region. The edges again proba-
bilistically constrain the corresponding classes,
stating neighbouring fields to more likely belong
to the same class than to different classes, which
may be made dependent on observations, e.g. of
the appearance of the field boundaries.

In order to choose adequate potential func-

tions we assume the heights and the height dif-

ferences to be normally distributed

li ∼ N (μxi , w
−1
xi

) , i ∈ C1 (22)

lij ∼ N (μxj − μxi , w
−1
ij ) , (i, j) ∈ C2

where we used the weights w = 1/σ2. There-

fore, we choose the following potential func-

tions, being able to neglect the constant factors

of the normal distribution

ψ12 = e
− 1

2 (x2−x1−l12)
2w12e

− 1
2 (x1−l1)

2w1

ψ14 = e
− 1

2 (x4−x1−l14)
2w14 (23)

ψ23 = e
− 1

2 (x3−x2−l23)
2w23

ψ24 = e
− 1

2 (x4−x2−l24)
2w24

ψ34 = e
− 1

2 (x4−x3−l34)
2w34e

− 1
2 (x3−l3)

2w1 .

Observe, we only used 2-cliques and integrated

the prior information about the control points

into one of the neighbouring 2-cliques. The

potential functions essentially depend on the

weighted squares of the differences vi and

vij between the unknown parameters and the

measurements. Taking negative logarithms we

therefore obtain the – not really surprising – re-

sult: We need to find the minimum of

I(x|l) =
∑

(i,j)∈C2

wijv
2
ij(xi, xj) (24)

here with v2 := −2 logψ, thus v212 and v234
containing the squared residuals at the con-

trol points. The leveling network is a special
Markov random field, namely a Gaussian ran-
dom field.

We now apply the iterative conditional mode

algorithm to this problem. The normal equation

system, resulting from setting ∂I/∂x = 0 and

assuming weights wi = wij = 1 is⎡⎢⎣ 3 −1 0 −1
−1 3 −1 −1
0 −1 3 −1
−1 −1 −1 3

⎤⎥⎦
⎡⎢⎣ x1

x2

x3

x4

⎤⎥⎦ =

=

⎡⎢⎣ −l12 − l14 + l1
l12 − l23 − l24
l23 − l34 + l3
l34 + l14 + l24

⎤⎥⎦ =

⎡⎢⎣ h1

h2

h3

h4

⎤⎥⎦ . (25)

The best estimate for the individual unknowns,

given the others, therefore are

x
(ν+1)
1 =

1

3
(h1 + x

(ν)
2 + x

(ν)
4 )

x
(ν+1)
2 =

1

3
(h2 + x

(ν+1)
1 + x

(ν)
3 + x

(ν)
4 )

x
(ν+1)
3 =

1

3
(h3 + x

(ν+1)
2 + x

(ν)
4 )

x
(ν+1)
4 =

1

3
(h4 + x

(ν+1)
1 + x

(ν+1)
3 + x

(ν+1)
2 )

again with the iteration index (ν). This method

of solving the normal equations iteratively is

known as Gauss-Seidel method. It is guaran-

teed to converge in this case, as the normal

equation matrix is symmetric and positive defi-

nite. This criterion of course is difficult to gen-

eralize for non-Gaussian situations. This pro-

cedure is equivalent to the so-called method of
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iterative conditional modes for iteratively find-

ing the optimal solution in a general Markov-

random field using (13) in the form (BUSCH

1992)

x
(ν+1)
i := argmaxxi

p(xi | N (ν)
i (xi)) . (26)

A final remark refers to the sparsity of the

model. In spite of the small size of the net-

work the graph is not fully connected, as edge

(1, 3) is missing. This is reflected in the zero-

entry N13 = 0 of the normal equation ma-

trix. The zero at the (1, 3) position indicates

that given the other variables x2 and x4 the

variables x1 and x3 are independent: formally

p(x1, x3|x2, x4) = p(x1|x2, x4)p(x3|x2, x4),
as then the resulting normal equation system for

x1 and x3 is diagonal. This is indicated by the

boldtype numbers in the normal equation ma-

trix in (25). The conditional independence re-

sults in a sparse graphical model. In adjustment

theory it regularly is exploited for increasing

the efficiency of computation of large networks.

The sparseness of the normal equation matrix

however is an indication for the sparsity of the

complete model resulting from the type of mea-

suring design, which therefore in a natural way

leads to a sparse graphical model.

2.5.2 An angular network

We now use the same graph to represent a 2D

network with measured angles. The nodes then

represent random 2-vectors xi. The observa-

tions lijk are the angles lijk := αijk = φjk −
φji and depend on the coordinates of the points.

Thus, we will need the two 3-cliques to repre-

sent the probability of the complete network:

p(x|l) (27)

=
1

Z
ψ124(x1,x2,x4)ψ234(x2,x3,x4) .

We assume the control point coordinates to be

Gaussian distributed

li ∼ N (μxi
, w−1

i I2) , i = 1, 3 . (28)

Again we assume the angular measurements to

be normally distributed

lijk ∼ N (αijk(xi,xj ,xk), w
−1
ijk) (29)

with (i, j, k) ∈ A = {(4,1,2), (1,2,4), (2,4,1),

(3,4,2), (4,2,3)} . This yields the potentials

ψ124(x1,x2,x4) = (30)

e
− 1

2 (|α421−l421|2w421+|α142−l142|2w142)

.e− 1
2 (|α214−d214|2w214+|x1−l1|2w1)

and

ψ234(x2,x3,x4) = (31)

e
− 1

2 (|α243−l243|2w243+|α324−l324|2w324)

.e− 1
2 (|x3−l3|2w3) .

2.5.3 A classification network

We finally use the graph for modelling a classi-

fication task. Let four agricultural fields be ar-

ranged as shown in the Fig. 11 right. The graph

then represents the region adjacency.

One usually takes some spectral or texture

features yi in each region from the underly-

ing image (not shown) as observations, and per-

forms a Bayesian classification, i.e. labelling of

the regions. This is achieved by maximizing the

posterior probability p(xi|yi) ∝ p(yi|xi)p(xi)
using the likelihood L(xi) := p(yi|xi), which

is to be learnt from training data and some prior

p(xi) on the occurrence of the different classes

xi ∈ {1, 2, ...}. It corresponds to four inde-

pendent Bayesian nets of the type Fig. 3 d.

The joint prior of all four nodes just is p(x) =∏4
i=1 p(xi), as the class membership or the la-

belling of the regions is assumed to be indepen-

dent.

In case one can assume neighbouring re-

gions often belong to the same class, a simple

model for the prior would therefore be to as-

sume neighbouring regions are likely belonging

to the same class, and unlikely belonging to dif-

ferent classes. Assuming the probability for the

complete network for both cases should differ

by a factor 10, this can be expressed by the po-

tential function for each edge

ψ(xi, xj) =

{
1, if xi = xj

0.1, if xi �= xj
. (32)

The prior for all nodes then is

p(x) =
1

Z

∏
(ij)∈C2

ψ(xi, xj) (33)
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which leads to the complete probability

p(x,y) =
1

Z

∏
i∈C1

p(xi|y)
∏

(ij)∈C2

ψ(xi, xj) .

(34)

This is the so-called Potts model for the prior in

classification using a Markov random field. As

discussed above, finding an optimal labelling is

intractable. Examples with a small network are

given by KORČ (2012).

3 Outlook and Conclusion

Graphical models are a powerful tool for com-

municating between users of a statistical model

and experts in statistics. The paper showed var-

ious examples for models used in geodesy and

photogrammetry where graphical models give

insight into the internal structure of the mod-

els, especially making fixed, observed and un-

known parameters explicit and showing the in-

dependence assumptions made.

For a graphical model, where the relation-

ships are linear and the distributions are Gaus-

sian, reasoning, especially optimization, leads

to a linear equation systems guaranteeing a

unique solution. For statistical optimization

problems resulting from a graphical model in

general no unique method exists. This does not

only hold for parameter estimation problems,

e.g. in the presence of outliers, but – with only

few exceptions – for all classification problems

due to the discrete nature of the search of the

parameter space.

The paper shows various relations between

modelling and estimation in geodetic and pho-

togrammetric networks. The parsimony of the

used models results from the special structure

of most networks. Interpreting such networks

as Markov random fields allows one to see

the more general structure of the problems at

hand. Examples are the modelling of cycle slips

in GPS observations, where discrete and con-

tinuous variables occur simultaneously, or the

change of the type of distribution, e.g. from

Gaussian to Laplace, or the type of prior knowl-

edge. These abilities not only build a bridge be-

tween models in geometry and in classification,

but also between photogrammetry and remote

sensing.
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A Trainable Markov Random Field for Low-Level Image
Feature Matching with Spatial Relationships

TIMO DICKSCHEID & WOLFGANG FÖRSTNER,

Keywords: local features, feature matching, wide baseline stereo, image orientation

Summary: Many vision applications rely on local

features for image analysis, notably in the areas of ob-

ject recognition, image registration and camera cali-

bration. One important example in photogrammetry

are fully automatic algorithms for relative image ori-

entation. Such applications rely on a matching algo-

rithm to extract a sufficient number of correct feature

correspondences at acceptable outlier rates, which is

most often based on the similarity of feature descrip-

tions. When the number of detected features is low,

it is advisable to use multiple feature detectors with

complementary properties. When feature similarity

is not sufficient for matching, spatial feature relation-

ships provide valuable information. In this work, a

highly generic matching algorithm is proposed which

is based on a trainable Markov random field (MRF).

It is able to incorporate almost arbitrary combinations

of features, similarity measures and pairwise spatial

relationships, and has a clear statistical interpretation.

A major novelty is its ability to compensate for weak-

nesses in one information cue by implicitely exploit-

ing the strengths of others.

Zusammenfassung: Ein trainierbares Markoff-
Zufallsfeld für die Zuordnung lokaler Bildmerkmale
unter Berücksichtigung ihrer räumlichen Beziehun-
gen. Viele Anwendungen im Bereich des maschi-

nellen Sehens nutzen lokale Merkmale für die Bild-

analyse, insbesondere in den Bereichen Objekter-

kennung, Bildregistrierung und Kamerakalibrierung.

Ein wichtiges Beispiel in der Photogrammetrie sind

vollautomatische Algorithmen für die relative Ka-

meraorientierung. Dazu muss aus den Bildmerkma-

len verschiedener Bilder anhand eines Matchingal-

gorithmus eine ausreichende Anzahl von Zuordnun-

gen mit vertretbarem Ausreißeranteil gewonnen wer-

den. Die Suche nach Zuordnungen basiert dabei meist

auf der Ähnlichkeit von Merkmalsbeschreibungen.

Wenn die Anzahl der extrahierten Merkmale gering

ist, macht es Sinn, mehrere möglichst komplementäre

Merkmalsdetektoren gleichzeitig einzusetzen. Ist die

Ähnlichkeit von Bildmerkmalen kein ausreichendes

Kriterium für die Zuordnung, liefern räumliche Be-

ziehungen von Merkmalen zusätzlich wertvolle In-

formation. In dieser Arbeit stellen wir ein allge-

meines Matchingverfahren vor, das auf einem trai-

nierbaren Markoff-Zufallsfeld basiert. Es ermöglicht

die gleichzeitige Berücksichtigung nahezu beliebiger

Arten von Bildmerkmalen, Ähnlichkeitsmaßen und

paarweisen räumlichen Beziehungen, und lässt sich

statistisch klar interpretieren. Eine Besonderheit die-

ses Verfahrens ist seine Eigenschaft, Schwachpunkte

einer Informationsquelle durch die Stärken einer an-

deren implizit auszugleichen.

1 Introduction

Many vision applications use local image fea-

tures as a sparse representation of image con-

tent. In photogrammetry, local image fea-

tures have been used successfully to build au-

tomatic algorithms for relative image orienta-

tion (POLLEFEYS et al. 2000, MAYER 2005,

LÄBE & FÖRSTNER 2006, SNAVELY et al.

2006). In general, bundle adjustment benefits

from feature matching for automatic extraction

of tie points, if outliers are handled in a reliable

way.
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Fig. 1: Set of complementary image features
covering an indoor scene. The plot includes
junctions (FÖRSTNER et al. 2009) represented
by crosses, blobs (LOWE 2004) represented by
circles and straight line segments (FÖRSTNER
1994).

Typical image features used as tie points in-

clude corners, junctions, dark and bright blobs

or line segments Fig. 1. Selecting an appropri-

ate detector is crucial, because the importance

of properties like repeatability, localization ac-

curacy, coverage or computational complexity

depends on the task at hand. If the amount of

detected features is too small, it becomes nec-

essary to combine multiple detectors. In such a

case, complementarity of features is an impor-

tant aspect (DICKSCHEID et al. 2010).

An image feature defines a local image

patch with a particular location, orientation,

shape and size. In many applications, feature

correspondences can be reliably determined

by analysing the similarity of those patches

(appearance-based matching, see section 2).

Feature detection and matching have to reflect

the expected range of image poses. We assume

the general case of arbitrary mutual rotation and

possibly large scale differences, referring to all

close range applications or cases where no prior

knowledge on the exterior orientation is avail-

able.

Feature appearance alone is not sufficient for

reliable matching if many features have simi-

lar appearance, or if the descriptors have poor

distinctiveness. In such cases the use of spatial

feature relationships is known to improve the

matching results. For example, consider the il-

lustration in Fig. 2. Here, the blob feature patch

p1 in the left image has very similar appearance

to p′
1 in the right image if one allows for arbi-

trary rotations, but this is obviously not the right

candidate. However, as p1 is left of p2 in I, but

I

p1
p2

I′

p′
2

p′
1

Fig. 2: Feature similarity and spatial appearance:
p′
1 in image I′ has high similarity to p1 in image

I, although it is not the right candidate. Incon-
sistency of the spatial relationship “is left of” with
(p2,p

′
2) indicates this.

p′
1 is right of p′

2 in I ′, the spatial alignment

gives us evidence about a possible misassign-

ment.

A number of sophisticated methods for in-

cluding spatial relationships into the matching

process have been proposed, but most of them

are tailored to a specific type of spatial rela-

tionship, feature type, or image data. They

are therefore difficult to adapt to new matching

problems.

In this work, a highly generic matching algo-

rithm is proposed which is based on a trainable

Markov random field (MRF). It is able to in-

corporate almost arbitrary combinations of fea-

tures, feature descriptions, similarity measures

and pairwise spatial relationships. The solution

has a clear interpretation as the maximum a pos-

teriori estimate of a binary classification prob-

lem, which consists in choosing a good sub-

set from a coarse initial preselection of puta-

tive matches. A major novelty of this algorithm

is its ability to compensate for weaknesses in

one information cue by implicitly exploiting the

strength of others.

Notation

We assume that we are given two images I and

I ′. Feature detection and description gives us

two sets P and P ′ of features. Each feature

pi ∈ P is itself a set {(xi, yi), σi, αi,di, λi},

where (xi, yi) is its location in the image given

in pixels, usually referring to the centre of the

local patch, σi is the scale given in pixels, which

we assume to be proportional to the (mean) di-

ameter of the local patch, αi is its dominant ori-

entation in radians, di is the descriptor for the

local patch, and λi denotes the type of detec-

tor used. The features also carry uncertainty in-

formation for their elements. We will discuss
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this aspect in section 3.2. A feature correspon-

dence is a pair vn = (pi,p
′
j) where pi ∈ P

and p′
j ∈ P ′. Dissimilarity is one property of

a correspondence, expressed by a distance mea-

sure sn = d(di,d
′
j) on the descriptors.

2 Appearance-Based Feature
Matching

In appearance-based feature matching, one usu-

ally assumes that two features are likely to cor-

respond if (1) the similarity of their patches

is high and (2) the similarity to other patches

is significantly smaller, which directly corre-

sponds to the criteria “similarity” and “exclu-

sion” that ULLMAN (1979) already identified

for a good visual mapping. To measure similar-

ity, robust and distinctive descriptors are com-

puted from the local patches. Corresponding

image features can then be found by nearest

neighbour search in the space of these descrip-

tors. A de-facto standard, often denoted as best
matching, works as follows:

1. Determine for each descriptor in one view

its two nearest neighbours belonging to the

other image.

2. Select the nearest neighbour as a correspon-

dence only if the ratio between the two dis-

tances is significantly different from 1.

A more general formulation of this algorithm

leads to the BESTMATCH-K algorithm: Instead

of evaluating the ratio of distances to the best

and second best neighbour (BESTMATCH-2),

one may consider the distances to the (k−1)-th
and k-th best neighbours. In the special case of

k = 1, the nearest neighbour is always selected.

3 Spatial Relationships for Feature
Matching

3.1 Related Work

In their early work, BARNARD & THOMPSON

(1980) use an iterative relaxation labelling tech-

nique to select matches with locally similar

image disparities. FÖRSTNER (1986) accepts

only matches that are consistent under a global

affine transformation, assuming that the scene

can be reasonably approximated by a tilted

plane. In the relational matching approach

of (SHAPIRO & HARALICK 1987), an optimal

matching is found by minimizing the number

of arbitrary spatial relationships that are not

preserved by a final assignment. AGUILAR et

al. (2009) proposed an iterative algorithm that

constructs a consistent set of matches in terms

of spatial nearest neighbourhood relationships.

BAY et al. (2005) match straight line segments

by first selecting the three most similar candi-

dates per feature, and then iteratively removing

matches that cause the highest number of sid-

edness violations (section 3.3). A remarkable

feature of their algorithm is the boosting step,

where previously discarded candidates are ex-

plicitly reintroduced in a post processing man-

ner in case they become spatially consistent af-

ter the initial filtering. Most of these methods

treat spatial consistency as a hard constraint,

and tend to eliminate a significant amount of in-

liers.

To exploit appearance and spatial layout si-

multaneously, DELPONTE et al. (2006) exploit

the properties of a singular value decomposi-
tion (SVD) to amplify the values of favourable

matches in a proximity matrix G ∈ R
|P|×|P′|,

which captures the proximity and similarity

of all pairs of features. TELL & CARLSSON

(2002) proposed an interesting feature descrip-

tor that itself captures aspects of spatial layout.

Some recent methods cast spatial inconsistency

and feature dissimilarity into a combined en-

ergy function to find the best matching as the

one with minimum energy (SCHELLEWALD &

SCHNÖRR 2005, CHOI & KWEON 2009, TOR-

RESANI et al. 2008).

These algorithms provide no straightforward

way to bring larger sets of relationships and fea-

ture dissimilarity measures with possibly sig-

nificantly different strengths into such a joint

formulation. Furthermore, the relative weight-

ing of appearance and spatial consistency is not

intuitive in most of these works.

3.2 Homogeneous Point and Line
Representations

To derive spatial relationships for different

types of features, we assume that we can al-

ways construct the normalized 2D homoge-

neous point xi = [xi, yi, 1]
T

with 3 × 3
covariance matrix Σxx representing the posi-

tion of an image feature pi. For line seg-

ments, we will use the midpoint for construct-
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I

αnm

p. i

p. k

I ′

p.
′
l

α
′
nm

p.
′
j

Fig. 3: Computation of the pairwise orienta-
tion difference tαnm = min(|αnm − α′

nm|, 2π −
|αnm−α′

nm|) for two matches vn = (pi,p
′
j) and

vm = (pk,p
′
l).

ing xi, which usually has a strong localiza-

tion error along the line, and a small error per-

pendicular to it. In a similar manner, we as-

sume that the uncertain 2D homogeneous line

li = ± [cosαi, sinαi,−d]
T

with covariance

matrix Σll can be constructed from each feature

pi. For point-like features, we use the centroid

representation of straight line segments (MEI-

DOW et al. 2009, 3.1.2), where the centroid is

the image location of the original point feature,

and the direction is identified with the dominant

gradient orientation within the local patch, as

stored in the SIFT descriptor. As pointed out by

LOWE (2004, section 5), we must expect this

direction to have a standard deviation of about

three degrees. Using these conversions, we de-

fine explicit operators x(pi) and l(pi), which

return the uncertain homogeneous 2D point or

line representation for a feature pi.

3.3 Some Uncertain Spatial
Relationships

Here we give a short description of three dif-

ferent kinds of relationships, leading to statisti-

cally motivated soft constraints for the match-

ing.

Consistency of angles

Consider the angle between two oriented fea-

tures Fig. 3. We assume that the difference be-

tween these angles is rather small for valid pairs

of correspondences, so that large differences in-

dicate outliers. For two putative matches vn =
(pi,p

′
j) and vm = (pk,p

′
l), we compute the

enclosing angles

αnm = α(pk)− α(pi) mod 2π (1)

α′
nm = α(p′

l)− α(p′
j) mod 2π . (2)

The difference tαnm ∈ (0, π) of the angles

spanned in the two images is then given by

tαnm = min(|αnm−α′
nm|, 2π−|αnm−α′

nm|) .
(3)

In case that the uncertainty of feature orienta-

tions varies significantly, the distances should

additionally be normalized based on their stan-

dard deviations.

Consistency of distance

If two features are located close to each other in

one view, we also expect their correspondences

in another view to be close. This simple reason-

ing based on proximity was already suggested

by ULLMAN (1979). We measure the distance

between two feature locations, normalize it by

the length of the image diagonal, and compare it

to the same normalized distance of the two cor-

responding features in the second image, lead-

ing to the inconsistency measure

tdnm = td(vn, vm) = td(pi,p
′
j ,pk,p

′
l) (4)

=
|x(pi)− x(pk)|√
(Nx)2 + (Ny)2

−
|x(p′

j)− x(p′
l)|√

(N ′
x)2 + (N ′

y)2
,

using the vertical and horizontal dimensions

Nx, Ny of an image I in pixels, with td ∈
(−1, 1). Again, an additional benefit can be

gained by replacing the Euclidean distances

with the proper test statistic, i.e. by normalizing

the distances using their standard deviations.

Consistency of pairwise sidedness

Consider again the example in Fig. 2. As p1

is left of p2, while p′
1 is right of p′

2, the spa-

tial relationship “is left of” is inconsistent. This

relationship is often denoted as sidedness or or-
dering constraint. In most existing algorithms,

it is modelled as a hard constraint, based on a

tolerance of a few pixels. We propose to imple-

ment a statistical test instead, which takes the

orientation accuracy into account, leading to a

third, binary-valued inconsistency measure

tsnm ∈ {0, 1} . (5)

For example, in Fig. 4, we would obtain ts12 = 0
indicating that the sidedness relations of v1 and

v2 are identical in both images. Accordingly,
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the inconsistency of v1 and v3 would produce

ts13 = 1. How to determine the sidedness is

explained in more detail in DICKSCHEID (2010,

section 4.3.5).

4 A Trainable Markov Random
Field for Feature Matching

4.1 Feature Matching as a Labelling
Problem

Our goal is to find the most probable matching

under a number of reasonable assumptions. Our

method is based on the assumption that it is easy

to obtain an initial set V = {v1, · · · , vN} of

putative feature correspondences that contains

most of the true positives. This could be the set

V0 = {(pi,p
′
j) | pi ∈ P,p′

j ∈ P ′, λi = λ′
j}
(6)

of all correspondences between features of the

same type. In practice however, a significantly

smaller set V ⊂ V0 can be used which still

contains the majority of true correspondences.

It has been shown empirically in DICKSCHEID

(2010, section 2.4) that an effective way to do

so is to use the BESTMATCH-K algorithm, with

the matching rank k varying for each type of

detector and descriptor.

Feature matching can then be interpreted as

the selection of a good subset of V by assigning

a label l from the set L = {0, 1} to each ele-

ment in V . Then each element vn of V takes the

role of a binary random variable defined over

the set L. If ln = 1, we say that “match n is se-

lected”, otherwise “match n is discarded”. For

simplicity we use the notation vn for denoting

the particular event vn = ln. A labelling

l = f(V) = {v1, · · · , vN} (7)

of all variables is a configuration. The principle

of interpreting feature matching as a labelling

problem is illustrated by an artificial example

in Fig. 4.

4.2 Statistical Model with Pairwise
Spatial Relationships

Appearance-based matching with descriptors,

as described in section 2, computes for each

putative match vn ∈ V the dissimilarity

v1
�

v2
�

v3
E

Fig. 4: Two artificial images of a scene with a
cube, overlaid by three features represented by
black ellipses and arrows. The features may
lead to a set of three putative matches V =
{v1, v2, v3}. The task is then to select an optimal
subset of V by labelling each putative match. In
this example, the labelling f(V) = {v1 = 1, v2 =
1, v3 = 0} is the desired solution, eliminating the
spatially inconsistent match v3.

sn ∈ R, which we collect in the vector s =
[s1, · · · , sN ]. It then treats the decision about

a match vn without taking any spatial relations

into account. In the following, we use the in-

dex set N = {1, · · · , N} over V and consider

pairs of correspondences defined by index pairs

C2 ⊆ N ×N .

At this point, and without loss of general-

ity, we will ignore that features and descriptors

might be of different type. We will come back

to this aspect again in section 5.

Considering the set T 2 = {tnm|(n,m) ∈
C2} of pairwise spatial inconsistencies reveals

statistical dependencies between the variables.

Note that |tnm| = G is the number of differ-

ent spatial relationships used. For example, the

inconsistency ts13 referring to “sidedness” be-

tween v1 and v3 is high for the two putative

correspondences v1 and v3 in Fig. 4. We must

therefore expect that one of them is an outlier,

even though the descriptor dissimilarities s1, s2
and s3 might be small. In other words, after

observing the spatial inconsistency, it would be

naive to make independent decisions for each

putative match.

In a statistical treatment, we would say that

the random variable v1 is now dependent on

v2. It also depends on its directly related ob-

servations, s1 and ts12. This can be expressed

by an undirected graphical model as shown by

the factor graph in Fig. 5. Each white node of

this graph represents one putative feature cor-

respondence, while shaded nodes represent ob-
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v1v2

v3

s1s2

s3

tg12

tg23 tg13

G

G G

Fig. 5: Graph representing the information used
for feature matching corresponding to the illustra-
tion in Fig. 4. Both descriptor dissimilarities sn
and inconsistencies tnm of pairwise spatial rela-
tionships are taken into account. We follow the
notation in (2006): Observed values are
represented by shaded nodes, maximum cliques
(fully connected subgraphs) with more than two
nodes are represented by a common black rect-
angle (factor graphs), and plates are used to illus-
trate multiple independent spatial inconsistency
measures tgnm, with G being the number of dif-
ferent types of spatial relationships. The factor
node in the centre expresses the joint prior prob-
ability for all vn.

served dissimilarity measures. Here, values sn
refer to descriptor dissimilarities, which relate

to one correspondence, while values tnm re-

fer to spatial inconsistency measures, defined

over pairs of correspondences. Statistical de-

pendencies between entities are represented by

the edges of the graph. The black squares de-

note maximum cliques - fully connected sub-

graphs where all elements are conditionally de-

pendent on each other.

In general, we make the following condi-

tional independence assumptions:

1. All observations are mutually conditionally

independent, given the correspondences.

2. The label of a putative match vn does not

depend on observations sm or tm,o with

m, o �= n.

This model nicely supports our practical setup,

as its statistical dependencies can be derived

from training data.

We propose to solve the labelling problem by

computing the maximum a posteriori estimate

(MAP) of the variables in this model, given the

observed data. Referring to the simple example

in Fig. 4, this can be done by maximizing the

probability

p(v1, v2, v3, s1, s2, s3, t12, t13, t23) (8)

= P (v1, v2, v3)

[
3∏

n=1

p(sn|vn)
]

· p(t23|v2,v3)p(t13|v1,v3)p(t12|v1,v2)

= P (v1, v2, v3)

[
3∏

n=1

p(sn|vn)
]

·
G∏

g=1

p(tg12|v1,v2)p(t
g
13|v1,v3)p(t

g
23|v2,v3)

The first simplification is obtained by ex-

ploiting our conditional independence assump-

tions, using the fact that p(a|b, c) = p(a|b) in

case that a is conditionally independent of c.

The expansion of tnm in (8) also uses the as-

sumption that all observations are mutually in-

dependent.

For a general problem with |V| = N putative

matches, we will obtain a graph having N bi-

nary cliques (vn, sn) and G|C2| ternary cliques

(vn, vm, tgnm). The general joint probability of

the variables reads

p(l, s, T2) (9)

= p(v1, . . . ,vN, s1, . . . ,sN, t12, . . . ,t(N−1)N )

= P (l)

[ ∏
n∈N

p(sn|vn)
] ∏

(n,m)
∈C2

p(tnm|vn, vm).

The factor P (l) in (9) imposes a practical

problem: It depends directly on the number

of putative matches, which is unknown in ad-

vance. To make the formulation tractable for

practical problems, we therefore make the fol-

lowing assumption for the joint probability:

P (l) = P (v1, . . ., vN )
.
=

1

Z ′
∏

(n,m)
∈C2

P (vn, vm)

(10)

It leads to a significant simplification of the

model, which now reads

 
 
 BBISHOP
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p(l, s, T2) =
1

Z ′

[ ∏
n∈N

p(sn|vn)
]

(11)

·
∏

(n,m)
∈C2

p(tnm|vn, vm)P (vn, vm) .

As we will see later, we do not require specific

knowledge about the partition function Z ′, be-

cause it does not affect the final solution.

By going from (9) to (11), we make an
explicit model assumption. This leads to a

restricted stochastic model which still corre-

sponds to the original graphical model. The

model assumption effectively drops the higher

order cliques between putative matches vn
(i.e. the clique (v1, v2, v3) in Fig. 5) in favour

of a change of the pairwise potential functions

(last factor of (11)).

4.3 Global Minimization Problem

By maximizing the density function (11) we

realize a MAP estimate of the involved vari-

ables. This is equivalent to minimizing the en-

ergy function

E(l, s, T2) = −
∑
n∈N

log p(sn|vn) (12)

−
∑
(n,m)
∈C2

[
logP (vn, vm) + log p(tnm|vn, vm)

]

where we omit the term 1/Z ′ of the partition

function, as it does not affect the solution. It

is essentially a sum over functions of unary

and binary cliques over V , given the graphical

model, and can therefore be directly interpreted

as a Markov Random Field. Defining unary po-

tentials θ1
n;vn

and binary potentials θ2
nm;vnvm

as

θ1
n;vn

= − log p(sn|vn) (13)

θ2
nm;vnvm

= − log p(vn, vm) (14)

− log p(tnm|vn, vm) ,

λn = Blob̂P (sn | vn,λn)

0.00

0.04

0.08

0.12

0.16

0.20

vn = 0
vn = 1

p̂ (sn | vn,λn)

0
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27

34

− log[ε+(1−ε)p̂ (sn | vn,λn)]

−4
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0
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4

7

0.000 0.025 0.050 0.075 0.100

sn

Fig. 6: Top: Normalized histograms of dissimi-
larities sn for good (vn = 1) and bad (vn = 0)
blob feature correspondences, computed by nor-
malized Euclidean distances of SIFT descriptors.
Middle: Approximation of the histograms using
a Beta distribution, which is used as a paramet-
ric approximation p̂ (sn|vn,λn) of the likelihood
function. Bottom: Bounded negative log likeli-
hood derived from p̂ (sn|vn,λn), which we use
for the energy potentials. The observations re-
fer to the training dataset (section 6.1). Note
that the theoretical range of the observations is
(0, 1), and that the Beta distribution is defined
over the range [0, 1]. Here we only plot the rel-
evant range; the densities are practically zero
above sn 
 0.13. The bound ε within the log-
arithm theoretically prevents the log likelihoods
from reaching a limiting value for very rare values
sn > 0.13.

we can use the notation

E(f(V), s, T2;θ) (15)

=
∑
n∈N

θ1
n;vn

+
∑
(n,m)
∈C2

θ2
nm;vnvm ,

which is very common in MRF theory. Note

that we used l = f(V) according to (7). To

find a good solution for the matching problem,

given an initial set V of putative matches and

observations D = {s, T2}, we finally search

for a configuration with minimum energy (12),
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so we look for an optimal solution

f∗(V) = argmin
f(V)

E(f(V), s, T2;θ) . (16)

We actually apply the LP-S linear programming

relaxation going back to SCHLESINGER (1976)

to solve (16), which gives a very good approx-

imation of the global optimum (KUMAR et al.

2009). We use the commercial Mosek pack-

age (http://www.mosek.com) for solving the re-

laxed minimization problem, which provides an

efficient implementation of the interior point al-

gorithm for linear programs with up to thou-

sands of variables. The practical complexity is

polynomial with very good convergence prop-

erties. For sets V of putative correspondences

with N = |V| < 500, we usually solve

the matching problem in a few seconds on a

2.4 GHz CPU. For sparsely textured scenes, N
is typically smaller than 200, leading to negligi-

ble computation times for obtaining the optimal

solution.

5 Learning the Potential Functions

Ground truth labellings for the data are obtained

based on homographies (MIKOLAJCZYK et

al. 2005), manually, or using the surface-

based automatic annotation setup described in

DICKSCHEID (2010, section 5). The latter

one uses 3D point clouds from Laser scans as

ground truth for the surfaces, which requires

registration of the point clouds to the camera

coordinate systems. The methods are indicated

in the first row of Tab. 1.

For minimizing (15) one basically has to col-

lect the potentials (13) and (14) for each node

of the corresponding graph and feed them into

the software. They are composed of the like-

lihoods of observed values, given the unknown

labels and the prior probability P (vn, vm). We

will now derive some trainable parametric mod-

els for these potentials using the setup of de-

tectors and descriptors described in section 6.1

and the spatial relationships introduced in sec-

tion 3.3. We used 24 image pairs from indoor

and outdoor architectural scenes for the train-

ing (section 6.2), where ground truth labellings

of feature correspondences are computed using

the setup described in DICKSCHEID (2010, sec-

tion 5). For model fitting from ground truth data

̂P (vn, vm | λn,λm)

(0, 0) (0, 1) (1, 0) (1, 1)

0

0.5

1.0

λm

Segment Affine Blob Junction

Fig. 7: Empirical fraction of pairs of putative
matches, where the first match refers to straight
line segments (λn = Segment) for different la-
bellings ln, lm as observed on the training data.
We obtain four groups, referring to the events
(vn = 0, vm = 0), (vn = 1, vm = 0), (vn =
0, vm = 1) and (vn = 1, vm = 1). For example,
if we select two matched line segments and two
matched junction features from the set of putative
matches, chances are around 70 percent that the
line segment match is an outlier (label 0) accord-
ing to the group of bars shown on the right.

we used the Statistics module of the Boost C++

Library’s Math Toolkit (http://www.boost.org).

We also tried independent datasets of the same

image category and arrived at the same mod-

els with slightly different parameters. We did

not investigate the dependence of the models

on different image categories, so the potential

functions that we present here should be con-

sidered as one particular realization of the al-

gorithm with a focus on man-made scenes. We

will evaluate this realization in section 6.

Dependency on the feature type

Our main motivation is to combine complemen-

tary feature types, descriptor dissimilarity mea-

sures with significantly different properties, and

a whole range of spatial relationships simulta-

neously. Then the likelihoods depend formally

on the type of feature λF , the type of descriptor

λD, and the type of dissimilarity measure λM .

We collect these for each putative match vn
in a tuple λn = (λF

n , λ
D
n , λM

n ) . The like-

lihoods defining the unary and binary poten-

tials therefore actually read pn(sn|vn,λn) and

p(tnm|vn, vm,λn,λm). The prior becomes

P (vn, vm,λn,λm) accordingly.

5.1 Unary Potentials

Take a look at the normalized histogram on top

of Fig. 6. It shows the dissimilarities of good
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Tab. 1: Properties of the datasets used for our experiments.

Dataset CLASS BOAT GRAFFITI BLANK-12 BLANK-22 DRAGON

Ground Truth manual homography homography manual manual surface-based

Texture sparse strong strong very sparse very sparse sparse

3D structure multiplanar quasiplanar planar multiplanar multiplanar complex

Distortion affine rotation+scale strong affine affine affine affine

Overlap ∼ 60% ∼ 100% ∼ 100% ∼ 90% ∼ 90% ∼ 100%
# Images 8 6 6 12 22 6

Resolution 752× 500 213× 170 213× 170 1203× 800 752× 500 800× 600

Example

(vn = 1) and bad (vn = 0) blob feature corre-

spondences, referring to normalized Euclidean

distances of SIFT descriptors.

Due to the normalization, the histogram

shapes can be reasonably approximated by a

Beta distribution Beta(sn|a, b). We estimate its

two parameters from training data (section 6.2)

separately for the inlier and outlier distribu-

tions to obtain estimates for the class condi-

tional likelihood functions p̂ (sn|vn = 0,λn)
and p̂ (sn|vn = 1,λn), as shown in the middle

of Fig. 6 for blob features.

The negative log likelihood

− log p̂ (sn|vn,λn) that we actually use

in the energy function (12) is shown in the

bottom plot of Fig. 6. Note that we intro-

duce a bound on the log likelihood by using

− log[ε + (1 − ε)p̂ (sn|vn,λn)] with a small

threshold ε = 0.001. In practice, the bound

only affects values sn very close to the limits

of the domain [0, 1], which occur very rarely in

practice.

We also model the dissimilarity likelihoods

for other features by Beta distributions, as de-

scribed in (DICKSCHEID 2010, section 4.3.3).

5.2 Binary Potentials

Priors

For each feature in one image, we preselect

the k most similar features in the other image

as its putative matches, where the parameter

k differs between feature types λ. For exam-

ple, we select more putative matches per fea-

ture for straight line segments than for blob fea-

tures, following the empirical investigations in

DICKSCHEID (2010, section 2.4). We must

therefore expect different prior probabilities

P (vn, vm,λn,λm). The relative frequencies

within the training data for pairs of matches,

where the first match is a line segment, are

shown in Fig. 7. Indeed we see the strong influ-

ence of different preselection criteria per feature

type on the prior: For pairs containing one line

segment match and one match of another type,

it is most likely that the line segment match is

an outlier. This reflects the fact that k is largest

for the line segments. As P (vn, vm,λn,λm) is

a discrete probability, we can model it as a bino-

mial distribution and use those relative frequen-

cies within the binary potentials θ2
nm;vnvm

.

Likelihoods for pairs of correspondences

As an example for the likelihood

p(tnm|vn, vm, λn, λm), we discuss the

inconsistency tα of angles spanned by two

features (section 3.3). It is obvious that

we can neither expect angles between pairs

of correct matches to be always equal, nor

angles between outliers to be always largely

different. When investigating the empirical

distribution of the consistency measures tα

on our training dataset, we see that they carry

valuable information for our problem, though.

The distribution for pairs of blob and junction

feature matches is shown in the top row of

Fig. 8. As in case of the unary potentials,

we modelled the likelihoods using a Beta

distribution, which corresponds strongly to the

empirical distributions.

The distribution indicates that for small in-

consistencies tα between feature correspon-
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̂P (tαnm | vn, vm,λn,λm)
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Fig. 8: Top: Normalized histograms of obser-
vations tαnm between blob and junction feature
correspondences, denoting inconsistency of an-
gles between pairs of oriented features. We
obtain four distributions, referring to the events
(vn = 0, vm = 0), (vn = 1, vm = 0), (vn =
0, vm = 1) and (vn = 1, vm = 1). Middle:
Approximation of the histograms by Beta distri-
butions, used as an estimate for the likelihood
p(tαnm | vn, vm,λn,λm). Bottom: Bounded
negative log likelihood derived from p̂ (tαnm |
vn, vm,λn,λm), which we use for the energy
potentials. The observations refer to the training
dataset. Note that the theoretical range of the
observations is (0, 1), and that the Beta distribu-
tion is defined over the range [0, 1]. Here we only
plot the range of values that we observed on the
training dataset.

dences of this type, it is most likely that both

matches are inliers, referring to this observa-

tion only. Hence, stronger feature types will

implicitly motivate the selection of weaker ones

when the angular consistency is high. With in-

creasing inconsistency, it becomes more prob-

able that the blob correspondence is an outlier.

This corresponds strongly to our initial assump-

tions. For very high inconsistencies, the la-

belling (0, 0) is motivated, which means that

both correspondences are likely to be outliers.

Very similar observations can be made for

other combinations of feature types. The Beta

BestMatch-2

TopoMatch

MapMatch

Fig. 9: Visual matching results for an image pair
of the CLASS dataset for the three methods de-
scribed in section 6.1. Features depicted in white
are correctly matched, features in grey are out-
liers. We see that the simple BESTMATCH-2
approach gives quite many outliers, especially
among the line segments which have the weak-
est descriptors. Using a topological filter and
boost stage (TOPOMATCH) removes a significant
number of those. The results for our approach
(MAPMATCH) contain more inliers, and at the
same time the lowest outlier rate. Detailed results
from more image pairs of the dataset are listed in
Fig. 10.

distribution is a good continuous model for

all real-valued dissimilarity and inconsistency

measures that we investigated, however, other

measures might require a different model.

6 Experiments

We will show that the feature matching al-

gorithm with the parametric models derived

in section 5 allows for significantly better

matching results on sparsely textured scenes

than the standard best-matching approach

(BESTMATCH-2), which only takes descriptor

dissimilarities into account. We also want to

make sure that our results are comparable to

the results obtained with the method of (BAY et

al. 2005), which is specifically designed for

sparsely textured scenes. We search for a

matching algorithm that maximizes the number

  ����
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of correct correspondences while not exceed-

ing a critical outlier rate. Focussing on typical

image orientation algorithms with a RANSAC

scheme, the critical rate is at about 50%. So, if

one matching algorithm returns 20 correct cor-

respondences with no outliers, and another one

returns 50 correct correspondences with 15 out-

liers, we consider the latter one to be better.

6.1 Experimental Setup

Intentionally we select a set of popular feature

detection algorithms with high complementar-

ity, and use descriptors with different distinc-

tiveness and invariance properties in order to

demonstrate the potential of our method. By

keeping the set of detectors and descriptors to-

gether with their parameter settings fixed, all

methods shown here have to cope with the

same strengths and shortcomings of the fea-

tures. Nevertheless, our experiments must not

be understood as a comparison of detectors,

but as a comparison of wide baseline matching

methods.

Detectors

The classical LOWE blob detector (LOWE 2004)

is based on the Laplacian and known to have

very good scale and rotation invariance. We use

the original implementation kindly provided by

the author, starting with the original instead of

the double image resolution for building the

scale space pyramid. The FOP0 detector ex-

tracts junction points using the framework of

FÖRSTNER (1994). These features are not scale

invariant, and also sensitive to affine distortions.

We use the original implementation of the au-

thor, with a manually determined but fixed es-

timate of 0.015% for the standard deviation of

the image noise, related to an intensity range

of 1. The MSER detector of MATAS et al.

(2004) detects segmentation regions with com-

plex shape. We use the widely used imple-

mentation provided by MIKOLAJCZYK et al.

(2005), however approximate the local patches

by a circular shape covering an equally sized

area around the same centroid. As the affine

invariance that MSER itself is able to pro-

duce gets lost hereby, we denote the features as

MSER
◦ instead. The EDGE detector from the

framework of FÖRSTNER (1994) is included as

a typical straight line segment detector.

Descriptors

For all but the EDGE features, we use SIFT de-

scriptors computed using the original software

provided by LOWE (2004). The feature orienta-

tions are taken from the dominant gradient ori-

entation that is assigned to the descriptor. De-

scriptors for the FOP0 points are computed with

a fixed window size of 3s = 12(pixel). The

straight line segments are coupled with our own

implementation of the colour-histogram based

descriptors of BAY et al. (2005). These de-
scriptors are significantly less distinctive than
the SIFT descriptors. Our implementation has

been carefully compared to the implementation

of the authors and leads to very similar results.

Following BAY et al. (2005), the orientation of

the line segments is defined by choosing the

side with brighter image intensities to be left of

the segment.

Matching Strategies

We show results for three different wide base-

line stereo matching algorithms. The simplest

and most common one is a classical descriptor-

based best matching approach (BESTMATCH-

2) with a 70% threshold, as described in sec-

tion 2. Furthermore, we use a reimplementation

of the method proposed by BAY et al. (2005),

which will be denoted as TOPOMATCH in the

following. It includes both the three-point- and

the point-line topological filtering stages de-

scribed in the paper, as well as the boosting

step. Although we reimplemented the method
carefully, we cannot claim that the results apply
directly to the original implementation of the
authors. Our own method is denoted as MAP-

MATCH in the following.

6.2 Image Data

For training the likelihood functions and priors,

we use observations measured from 24 pairs of

images showing indoor and outdoor architec-

tural scenes, which remain constant across all

experiments. The training images are not part

of the evaluation, i.e. we do not perform image

specific training.

We show results based on five different

datasets. The properties of the datasets are sum-

marized in Tab. 1. The CLASS, BLANK-12
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Fig. 10: Matching results for all neighbouring image pairs of the CLASS dataset, computed with the
three wide baseline stereo matching algorithms described in section 6.1. Shown are the number of
correct correspondences and the percentage of outliers for each feature type. The annotation has
been done manually. We see that our approach (MAPMATCH) most often yields higher numbers of
inliers than the others at slightly higher but acceptable outlier rates.

and BLANK-22 datasets used a fisheye lens,

and have been corrected for radial distortion.

As the complexity of the TOPOMATCH and

MAPMATCH methods is too high for process-

ing high resolution images with strong texture,

we have downsampled the BOAT and GRAFFITI

datasets (MIKOLAJCZYK et al. 2005) to reduce

the amount of features in a mostly natural way.

6.3 Results

For investigating the success of a method refer-

ring directly to the extracted feature correspon-

dences, we report the number of good corre-

spondences (inliers) and the percentage of out-

liers for each matched image pair. Although we

report the statistics separately for each feature

type, the matching has been performed on all

feature types simultaneously.

Sparsely textured datasets

Referring to the datasets with sparse texture,

our approach MAPMATCH shows mostly su-

perior matching results. The image pair of

the CLASS dataset depicted in Fig. 9 provides

a visual impression of the matching results

for the different methods. The BESTMATCH-

2 approach, relying only on descriptors, can-

not compensate the weakness of the line seg-

ment descriptors, which results in many outliers

among the line segment correspondences. Us-

ing the topological filter in the TOPOMATCH

method filters many of those outliers, but does

not lead to a higher number of point feature

correspondences. The MAPMATCH approach

(bottom) achieves both effects quite well.

Fig. 10 shows detailed results for more im-

age pairs of the CLASS dataset. Our approach

yields a consistently higher number of inliers.

The results for straight line segments are espe-

cially notable, as our algorithm also produces

the overall smallest outlier rates. For other fea-

ture types however, it tends to have higher out-

lier rates than other methods.

For the BLANK-12 dataset Fig. 11, one ob-

tains similar observations. The number of in-

liers is significantly higher for MAPMATCH

over all considered image pairs and feature

types, while the outlier rates are acceptable,

sometimes even better than for the other two

methods. In particular, MAPMATCH would

allow to compute the epipolar geometry of

the third pair 6/9 quite robustly, with a to-

tal of 36 correct point matches (ignoring the

line segments), while TOPOMATCH with 6

point matches is clearly at the borderline, and

BESTMATCH-2 with 21 point matches signif-

icantly weaker. The TOPOMATCH implemen-

tation does not yield significantly more in-

liers than BESTMATCH-2, but has lower out-

lier rates. This is intuitive, considering that it

removes matches with inconsistent spatial rela-

tionships.
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Fig. 11: Results for three image pairs with
increasing baseline taken from the BLANK-12
dataset. The number of inliers is significantly
higher for MAPMATCH, while the outlier rates are
still good, sometimes also better than for the
other two methods. In particular, MAPMATCH
would allow to compute the epipolar geometry of
the third pair 6/9 quite robustly, with a total of
36 correct point matches (ignoring the line seg-
ments), while TOPOMATCH with 6 point matches
is clearly at the borderline, and BESTMATCH-2
with 21 point matches significantly weaker.

Standard datasets

The results for the BOAT dataset Fig. 12 show

that our approach yields comparable results to

the classical BESTMATCH-2. Note that here

the image pairs are sorted by increasing scale

and rotation difference between the images. For

strong distortions, MAPMATCH yields more in-

liers than the BESTMATCH-2 approach, at the

cost of a slightly higher outlier rate. Never-

theless it has a tendency to extract too many

outliers at times, as can be seen in case of

the affine region features for image pairs 1/4

in Fig. 12, and in case of the blobs for pair

1/6. The TOPOMATCH approach yields very

similar results to BESTMATCH-2, with a ten-

dency to extract even less matches. Note that al-

though the line segments were used for match-

ing in all of our experiments, they are not listed

for the GRAFFITI and BOAT dataset, as the

homography-based annotation cannot evaluate

them automatically.

Results for straight line segments

The straight line features play a special role, as

the matching of lines is in general more dif-

ficult due to the uncertainty of the location of

the start-/endpoints, and in particular more dif-

ficult due to the weak descriptors used here.
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Fig. 12: Matching results for all image pairs con-
taining the first image of the BOAT dataset, com-
puted with the three wide baseline stereo match-
ing algorithms described in section 6.1. The an-
notation has been done based on plane homo-
graphies, which works only for point features.
The image scale and rotation difference per im-
age pairs increases significantly from left to right.
Due to the strong scale differences, the number
of FOP0 correspondences is so small for all meth-
ods that we don’t show them here.

On the investigated datasets, the MAPMATCH

approach shows better results than both other

methods referring to the line segments. At

the same time, the TOPOMATCH method of-

ten shows better results for matching lines than

BESTMATCH-2. We can therefore conclude

that the spatial relationships seem to play in-

deed an important role for matching features

with weak descriptors.

7 Conclusions and Future Work

It can be reasonable to use multiple comple-

mentary detectors in a vision system for in-

creasing the amount of detected features. If the

distinctiveness of feature descriptors is rather

weak, as in case of sparsely textured scenes, or

simple descriptors, spatial relationships provide

important additional information for matching.

We have developed and described a generic

method for modelling the matching problem

with different detectors, descriptors and pair-

wise spatial relationships, which takes the

structure of a binary classification problem and

is consistent with MRF theory. Its potential

functions have a clear statistical interpretation

and can be trained from data using simple para-

metric models. The method therefore adapts
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Fig. 13: Results for overlapping image pairs for the DRAGON dataset. The matching of EDGE features
seems to be particularly difficult here for all three methods. The MAPMATCH approach solves it
significantly better, though still not satisfyingly. For the other feature types, the MAPMATCH approach
shows consistently better results in terms of higher number of inliers at comparable and satisfying
outlier rates. Observe especially the affine blobs, where MAPMATCH extracts between 7 and 10
times more inliers, at a only slightly higher outlier rate.

very well to new matching problems and is

straightforward to implement. We have imple-

mented a particular instance of the algorithm

which is able to produce better matching results

on sparsely textured scenes compared to exist-

ing standard and specialized methods.

Simple descriptor-based matching is faster

than our approach and still effective in case that

many features are available. Therefore, we pro-

pose to fall back to this standard method when

the amount of detected features is high.

Preselecting putative matches based on de-

scriptor similarity is the most heuristic part of

the proposed algorithm, so an investigation of

more sophisticated criteria would be interest-

ing. One may also achieve better results when

choosing closer parametric approximations of

the empirical likelihood distributions, perhaps

by introducing mixture models. Finally, select-

ing more specific training images for particular

matching problems can potentially give more

accurate results. We have not yet investigated

the effect of different training sets.
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DijkstraFPS: Graph Partitioning in Geometry and
Image Processing
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Summary: Data partitioning is a common problem
in the field of point cloud and image processing ap-
plicable to segmentation and clustering. The gen-
eral principle is to have high similarity of two data
points, e.g. pixels or 3D points, within one region and
low similarity among regions. This pair-wise simi-
larity between data points can be represented in an
attributed graph. In this article we propose a novel
graph partitioning algorithm. It integrates a sampling
strategy known as farthest point sampling with Dijk-
stra’s algorithm for deriving a distance transform on
a general graph, which does not need to be embedded
in some space. According to the pair-wise attributes
a Voronoi diagram on the graph is generated yielding
the desired segmentation. We demonstrate our ap-
proach on various applications such as surface trian-
gulation, surface segmentation, clustering and image
segmentation.

Zusammenfassung: DijkstraFPS: Graphpartitio-
nierung in Geometrie und Bildverarbeitung. Daten-
partitionierung ist eine elementare Aufgabe im Be-
reich Punktwolken- und Bildverarbeitung, vor allem
zur Segmentierung und zum Clustern. Das generel-
le Prinzip ist es, hohe Ähnlichkeit zwischen zwei
Datenpunkten derselben Region und geringe Ähn-
lichkeit zwischen verschiedenen Regionen zu errei-
chen. Diese paarweise Ähnlichkeit kann als attri-
butierter Graph auf den gegebenen Daten repräsen-
tiert werden. In diesem Artikel stellen wir einen
neuen Graphpartitionierungsalgorithmus vor. Er inte-
griert eine Samplingstrategie namens Farthest Point
Sampling mit dem Verfahren von Dijkstra zur Ab-
leitung einer Distanztransformation auf einem allge-
meinen Graphen, der nicht in einen Raum eingebettet
sein muss. Gemäß der paarweisen Attribute wird ein
Voronoi-Diagramm auf dem Graphen generiert, das
die gewünschte Segmentierung liefert. Wir demons-
trieren unseren Ansatz für verschiedene Anwendun-
gen, wie die Oberflächentriangulierung, die Ober-
flächensegmentierung, das Clustering und die Bild-
segmentierung.

1 Introduction

In the fields of point cloud and image pro-
cessing many applications require the partition-
ing of the underlying data as a pre-processing
step. For both, surface and image segmenta-
tion, a 2D manifold is to be partitioned into
non-overlapping regions. But also line parti-
tioning, reconstructing, i.e. triangulating, sur-
faces as well as clustering data points in high
dimensional feature space involve partitioning
the geometric or the feature space.

The number of possible partitionings of a
dataset is extremely large. Already for a bi-

nary partitioning of an image with N pixels into
foreground and background one has 2N possi-
ble partitionings. Therefore, no generally opti-
mal technique for partitioning exists.

Methods for partitioning fall into two types.
Split and/or merge techniques start from a
dissimilarity and/or similarity measure within
and/or between regions which are iteratively
found by splitting the complete dataset and/or
by merging the individual elements. A large
number of partitioning techniques exists, e.g.
based on quad- or octrees, normalized cuts
(SHI & MALIK 2000) – which are only optimal
for one partitioning – or graph-cut based meth-
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ods (BOYKOV & FUNKA-LEA 2006) – which
are only optimal for binary partitioning and spe-
cial similarity functions. Split and merge tech-
niques are only describable by the local proper-
ties of the individual iteration steps and do not
possess a global property.

Partitioning can be interpreted as clustering
in a feature space, the features depending on
the original data (FORSYTH & PONCE 2002).
This immediately suggests to seek for modes
of the density function induced by the features
and finding the valley lines (COMANICIU &
MEER 2002). The principle of watershed algo-
rithms is the inverse (SZELISKI 2010): Regions
are catchment areas bounded by the watershed
lines of a gradient image, the gradient measur-
ing the dissimilarity between neighbouring el-
ements (VINCENT & SOILLE 1991, MEINE &
KÖTHE 2005). The quality of the mean shift
and watershed partitioning depends on the abil-
ity to define problem adequate features, why
these methods often lead to oversegmentation,
i.e. a too large number of regions requiring a
subsequent merging step. However, both meth-
ods can be described by the global properties of
their solution.

A segmentation is either used to reduce the
complexity of subsequent algorithms as the
number of basic elements usually is several or-
ders of magnitudes larger than the number of
regions, recently consequently named super-
pixels (VEKSLER et al. 2010, MESTER et al.
2011, ACHANTA et al. 2012). Alternatively,
segmentation is understood as a first step to-
wards a symbolic image description, where the
regions are basic units for a subsequent image
interpretation. In the last years this lead to the
concept of semantic image segmentation, where
the segmentation is understood and realized as
supervised classification (ROTHER et al. 2004,
ROSCHER 2012, ARBELAEZ et al. 2012).

Most techniques can be interpreted as graph
partitioning. The graph is either given by the
structure of the data as for digital images, or de-
rived from the data by some similarity measure
based on geometry alone as in point cloud pro-
cessing, on feature similarity as in clustering, or
on semantic closeness as in semantic segmenta-
tion.

We propose a new efficient split and merge
type graph partitioning algorithm, which itera-

tively determines a set of Voronoi cells based on
an application dependent metric. The strength
of the algorithm lies in its ability to overwrite
the partitioning of the previous step within the
sequence of split and merge steps. Due to a
careful choice of the similarity metric for the
graph’s edge attributes we are able to control
the alignment of Voronoi edges according to
our objective. We will describe how to choose
the edge attributes for different applications like
curve and surface reconstruction, curve and sur-
face segmentation, clustering and image seg-
mentation.

In section 2 we will recapitulate previous
work on marching front based sampling and
partitioning methods before we formulate a
generalized graph partitioning algorithm in sec-
tion 3. We demonstrate our graph partitioning
method on various applications in section 4 and
conclude in section 5.

2 Background and related Work

Our graph partitioning method is based on com-
puting Voronoi diagrams on an edge attributed
graph, the attributes containing some applica-
tion dependent distance between two nodes. In
discrete geometry there are two common algo-
rithms for deriving a distance map: Dijktra’s
algorithm (DIJKSTRA 1959) and fast marching
method (FMM, SETHIAN 1996).

Given one or more seed points, Dijkstra’s al-
gorithm computes the shortest path along exist-
ing graph edges from each vertex to its closest
seed point yielding a distance map. Implicitly
this yields path lengths, also called intrinsic or
geodesic distances. Note that the distance is not
necessarily the spatial distance, but the sum of
all edge attributes along the path.

FMM, especially its formulation for meshed
manifolds (KIMMEL & SETHIAN 1998), com-
putes surface intrinsic distances on meshed sur-
faces. In contrast to Dijkstra’s algorithm, how-
ever, paths can pass through triangles, thus are
not restricted to triangular edges. Technically,
both Dijkstra’s algorithm and FMM solve the
so-called Eikonal equation |∇d(x)| = F (x)
with the boundary condition d(x0) = 0. In
terms of distances on meshed manifolds its in-
terpretation is as follows: Given a seed point
x0 and a function F defining the friction at
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(a) Fast marching (b) Dijkstra

(c) Adaptive friction (d) Second front

(e) 20 iterations (f) Final segmentation

Fig. 1: (a): Demonstration of surface segmen-
tation as proposed in

Starting from a random seed point
the geodesic distance to each other surface
point is computed via fast marching

(b): The distance is colour-
coded from near (blue) to far (red). This dis-
tance map can be approximated with Dijkstra’s
algorithm. (c): Using a curvature adaptive fric-
tion function F (x) we obtain small increases
along planar regions and large gradients at sharp
edges. (d): Adding the farthest point as new
seed point and repeating Dijkstra’s algorithm we
obtain a segmentation into two segments. (e):
The second wave front stops somewhere in the
middle when newly computed distances exceed
distances from the first iteration. After 20 iter-
ations we clearly observe an oversegmentation.
(f): To eliminate small segments along the edges
we proposed a decremental segmentation step
yielding the desired result with 6 segments only.
The combination of incremental and decremental
segmentation turned out to increase both robust-
ness to data noise and independence of the ran-
dom location of the first seed point

each point x on the manifold, FMM yields the
distance map d(x) such that the gradient mag-
nitude |∇d(x)| is identical to the local fric-
tion F (x). Then, the distance d(x) is pro-
portional to the arrival time of a propagating
wave front starting at point x0 in case the lo-
cal friction is inversely proportional to the local
speed of the wave front. Both algorithms run in
O(N logN) on sparse graphs, Dijkstra’s algo-
rithm of course only achieving an approximate
solution.

Exploiting FMM for calculating exact dis-
tance maps on surfaces, MOENNING & DODG-
SON (2003a,b) propose a strategy for surface
segmentation called fast marching farthest point
sampling (FastFPS). It tries to find a set of
seed points such that the corresponding Voronoi
cells correspond to the desired partitioning of
a surface. Their method starts from a random
seed point x0. Every next seed point will be
the point x∗ with largest distance after updat-
ing the distance map d via FMM. After N it-
erations they obtain N seed points xn, n =
1 . . . N , a distance map representing the dis-
tance to the closest of all N seed points and
implicitly a Voronoi segmentation. PEYRÉ &
COHEN (2004, 2006) apply a similar farthest-
point strategy on meshed surfaces for segmen-
tation, re-meshing and surface flattening using
geodesic distances.

In SCHINDLER & FÖRSTNER (2011) we
proposed FPS with Dijkstra’s algorithm to ro-
bustly segment meshed surfaces (Fig. 1), taking
into account the sub-optimality of Dijkstra’s al-
gorithm to generate a distance map. We also
proposed an application specific stopping crite-
rion to automatically determine a suitable num-
ber of seed points N . Such a stopping criterion
can be found for other applications as well, but
is out of scope of this paper. Further, we in-
troduced a decremental segmentation strategy:
We iteratively remove small segments by set-
ting their vertex distances to infinity and re-run
Dijkstra’s algorithm starting from neighbouring
segments.

Although FMM yields more accurate results,
it is limited to manifolds. Dijkstra’s algo-
rithm approximates the geodesic distance, but
for densely sampled manifolds the differences
are small (Figs. 1a and 1b). More decisive,
Dijkstra’s algorithm does not require the un-

SCHINDLER & FÖRST- 
NER (2011). 

(KIMMEL 
& SETHIAN 1998). 

(SCHINDLER 
& FÖRSTNER 2011). 
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derlying graph to be embedded in some space.
Thus, in case the graph is embedded, i.e. its
nodes possess coordinates on a line, a surface
or in a volume, one may partition the line, the
surface or the volume according to the metric.
Otherwise one may just partition the nodes of
the graph according to distances encoded in the
edges. This increases the flexibility of the pro-
posed approach.

Here we transfer the idea of surface segmen-
tation using FPS to a graph partitioning pro-
cedure. Therefore, we replace FMM by Dijk-
stra’s algorithm to be able to handle more gen-
eral graphs which are not embedded in some
space. In the following, we present the novel
algorithm, called DijkstraFPS, and demonstrate
it with various applications in geometry and im-
age processing.

3 Graph Partitioning

DijkstraFPS can be seen as a general graph par-
titioning algorithm, detached from the underly-
ing semantics. We assume that the semantics
of the partitioning problem can be coded in the
distances between the nodes of a general graph.
It does not need to be embedded in some space.

The procedure is given in Algorithm 1. It as-
sumes, all pair-wise distances are pre-computed
and encoded as edge costs between adjacent
pairs of nodes.

The decremental segmentation step is almost
identical. Only the FPS (lines 3–5 in Algorithm
1) are modified: Instead of initializing the front
Q with the farthest point s ← argmaxn dn
with distance ds ← 0 and label ls ← l+,
we initialize the front Q with the neighbouring
vertices n of the smallest segment l− with dis-
tance dn ← ∞ and label ln ← undefined. The
Dijkstra step (lines 6–13) will propagate the
front into the unlabelled region l− and update
all corresponding vertices.

Observe, only the distances of those vertices
are updated which are closer to the current seed
node (line 11), whose number diminishes with
each additional seed node.

Fig. 2 illustrates the partitioning of a syn-
thetic example graph with 7 nodes connected
by 12 weighted edges. After three incremen-
tal Dijkstra steps (Figs. 2b–2d) one decremen-
tal step (Fig. 2e) is performed. Note that with

In: neighbours N , costs F , #segments Linc
Out: node distances d, node labels l

1 distances d ← ∞, labels l ← undefined;
2 for l+ ← 1 to do
3 pick new seed s ← argmaxn dn;
4 distance ds ← 0 and label ls ← l+;
5 initialize new front Q ← {s};
6 while front is not empty: Q �= {} do
7 select node u ← argminq∈Q dq;
8 remove u from front Q ← Q \ u;
9 foreach neighbour v ∈ Nu do
10 new distance d′v ← du + F v

u ;
11 if new distance d′v < dv then
12 update dv ← d′v , lv ← lu;
13 add to front Q ← Q∪ v;

DijkstraFPS graph partitioning all boundaries
are possibly subject to change in a following
Dijkstra step.

Within this paper we will restrict to undi-
rected graphs only. Directed graphs, however,
work as well, i.e. the propagation is cheaper in
one direction than the other. Moreover, edge
costs do not have to fulfill the triangle inequal-
ity of a metric space nor has the graph to be Eu-
clideanly embeddable. Only negative costs are
disallowed to avoid infinite loops during Dijk-
stra’s algorithm.

Many applications suggest an embedding of
the graph into a surface or a volume, leading to
a graph based on a triangulation or tetrahedral-
ization. Fig. 3 depicts two possible graph struc-
tures for a set of given 2D points. The triangle-
based graph structure introduces one node per
triangle (Fig. 3a). When labeling triangles via
DijkstraFPS we obtain a segmentation bound-
ary along triangular edges. The vertex-based
graph structure introduces one node per vertex,
i.e. 2D point, (Fig. 3b) yielding a segmentation
boundary along Voronoi edges. In the following
section 4 we will demonstrate both and point
out when to use which structure.

 
Linc 

 
  

 
 

Algorithm 1: DijkstraFPS graph partitioning. 

New seed nodes s are added iteratively by 
choosing the farthest node w. r. t. node 
distances � (FPS, lines 3–5) that are constantly 
updated using Dijkstra’s algorithm (lines 6–13) 
with edge costs vFu , yielding a labelling �. 
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(c) 2nd Dijkstra step from farthest node from (b)
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(d) 3rd Dijkstra step from farthest node from (c)
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(e) Decremental step removing green segment

Fig. 2: Graph partitioning via DijkstraFPS. (a):
Synthetic example graph with edge costs. The
costs are computed as the absolute value of gray
value differences. (b)–(d): Result of a Dijkstra
step traversing from the very left node and incre-
mentally summing up edge weights. The shortest
path to each node is indicated by the blue arrows
and leads to a distance printed within the circular
nodes. The farthest point is the one with distance
d = 0.44. A second Dijkstra step starts at this far-
thest node and updates node distances until an
update would increase the distance value, e.g.
to the left 0.00 + 0.50 > 0.06. A third Dijkstra
step starts at the centre node and again updates
node distances creating a third segment shown
in green. (e): Decremental step removing the
green segment. All green distances are initialized
to ∞ and Dijkstra starts propagating a front from
neighbouring segments. The boundary slightly
changes compared to (c).

(a) Triangle-based (b) Vertex-based

Fig. 3: Two possible graph structures for em-
bedded graphs, here for 2D points (black dots).
Graph nodes (circles) are either (a) Delaunay
triangles or (b) Voronoi vertices. A possible
segmentation boundary is shown as bold poly-
line along the Delaunay triangulation (a) or the
Voronoi diagram (b).

4 Applications

The DijkstraFPS graph partitioning algorithm
is applicable to many problems that can be ex-
pressed as attributed graph. In this section we
will demonstrate four examples: surface trian-
gulation by partitioning the 3D space and curve
reconstruction by partitioning the 2D space,
surface segmentation by partitioning a triangu-
lated 2D manifold and curve segmentation by
partitioning a 1D polyline, clustering by parti-
tioning points in an nD – possibly non-metric –
space, and image segmentation by partitioning
pixels or superpixels of the 2D image plane.

In this article we ignore the possibility to
formulate an application-specific stopping cri-
terion (SCHINDLER & FÖRSTNER 2011). In-
stead, we will define the number of segments
of the incremental (Linc) and decremental (Ldec)
segmentation manually.

4.1 Surface Triangulation

The problem of triangulating a surface given an
unordered set of 3D points is also known as
meshing or surface reconstruction. The points
are to be connected by triangles such that the
triangulation approximates the original surface
well. The problem can be easily transferred to
2D space where the boundary is a curve.

The underlying assumption is that the points
sample the curve densely enough. A common
measure for characterizing the sampling density
is the ε-sampling: It depends on the local fea-
ture size of a point x on a curve γ. Given the
medial axis as the set of points with more than
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(a) 40 points on a circle
with 2.5 % noise and 4
auxiliary corner points
(Linc = 20, Ldec = 2)

��(b) 1000 points on a
��sphere with 1 % noise
��and 8 auxiliary points
��(Linc = 30, Ldec = 2)

Fig. 4: Reconstruction results with the triangle-
based graph structure (Fig. 3a). The original
point cloud is shown with blue dots, the Delaunay
triangulation with thin lines (omitted in 3D) and
the boundary as bold polyline in 2D and surface
in 3D.

one closest point on the curve γ, the local fea-
ture size lfs(x) is the Euclidean distance of x
to the medial axis. Then a set of points X is
an ε-sample of a curve γ if every point x ∈ γ
on the curve γ is within distance ε · lfs(x) of
some point in X (EDELSBRUNNER 1998). We
will use this concept to empirically characterize
the success of a segmentation procedure by the
maximum value ε may have, as larger values of
ε correspond to lower sampling density.

The idea of determining a 2D polyline or 3D
surface triangulation via partitioning is to di-
vide the space into simplices and to partition
these simplices into “inside” and “outside”. In
3D space we reconstruct a surface by partition-
ing a Delaunay tetrahedralization or the corre-
sponding 3D Voronoi complex. In 2D this cor-
responds to the reconstruction of a curve by par-
titioning a Delaunay triangulation or the corre-
sponding 2D Voronoi complex (Fig. 3).

We choose to work with the Delaunay and
Voronoi diagrams, since they are commonly
used for this application. They were first ex-
ploited for surface reconstruction by BOIS-
SONNAT (1984) and led to the concept of α-
shapes (EDELSBRUNNER & MÜCKE 1994), r-
regular shapes (ATTALI 1997) and the crust
(AMENTA et al. 1998) with various deriva-
tives like conservative crust (DEY et al. 1999),
power crust (AMENTA et al. 2001) and eigen-
crust (KOLLURI et al. 2004).

(a) Sampled curve with increasing ε-sampling

(b) Delaunay triangulation and curve recon-
struction

Fig. 5: (a): Dependence on sampling density.
The original 2D cloud of 200 points samples a
curve with increasing ε-sampling. (b): The curve
reconstruction using the triangle-based partition-
ing approach (Fig. 3a, Linc = 100, Ldec = 2)
yields correct results until it breaks at a point with
ε = 1.02, as the sampling density on the right-
hand side of the curve is not high enough any-
more referring to its increasing curvature.

Since the partitioning divides all data points
into two segments, the resulting boundary sur-
face will be a closed surface within the Delau-
nay triangulated sampling volume.

We want to support the wave front to travel
from an inside triangle to another inside or from
an outside triangle to another outside, but hin-
der crossing the boundary. Under the above-
mentioned sampling assumption a triangle edge
that belongs to the boundary will be relatively
short (Fig. 4a). Thus we construct our graph
with edge costs simply being the inverse length
of the common triangular edge. The inverse
edge length can be raised to an exponent ≥ 2 in
order to put more weight on very short edges,
i.e. approximating an L∞-norm.

The Delaunay triangulation is always
bounded by the convex hull. If the desired
segmentation boundary is part of the convex
hull, it is not surrounded by triangles and thus
can not be the boundary between differently
labelled triangles. Therefore, we add auxiliary
points to the original point cloud to extend the
convex hull and avoid the boundary problem
(Fig. 4a).

Fig. 4 shows results obtained with the de-
scribed graph structure and edge costs on a syn-
thetic 2D as well as on a 3D dataset. The point
clouds are a circle with 40 points and a sphere
with 1000 points disturbed with Gaussian noise.
The circle is correctly reconstructed even when
further reducing the number of points. The
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(a) 40 points on a circle
with 2.5 % noise and 4
auxiliary corner points
(Linc = 20, Ldec = 2)

��(b) 1000 points on a
��sphere with 1 % noise
��and 8 auxiliary points
��(Linc = 30, Ldec = 2)

Fig. 6: Reconstruction results with the vertex-
based graph structure (Fig. 3b). The original
point cloud is shown with blue dots, the Delaunay
triangulation with thin lines (omitted in 3D) and
the boundary as bold polyline in 2D and surface
in 3D. The boundary polyline/surface is drawn by
linking edge centres of differently labelled ver-
tices with the triangular/tetrahedral centroid.

topology of points on the surface of a sphere is
a bit more complicated leading to some points
not included in the triangulation. Their large
deviation from the underlying surface contra-
dicts the above-mentioned sampling assump-
tion. The overall shape, however, is preserved.

In Fig. 5 we investigate the dependence on
a dense sampling. The point cloud is gen-
erated as (x, y) = (−t2/2,− sin(10t)) with
200 uniformly sampled values t ∈ [0, 2π].
Since the x-intervals decrease from left to right,
the local ε-sampling increases. The recon-
struction via partitioning the Delaunay com-
plex is shown as a bold line. It yields visu-
ally correct results until it breaks at a point
with ε = 1.02. In comparison: The pop-
ular Crust (AMENTA et al. 1998) and Power
Crust (AMENTA et al. 2001) algorithms guaran-
tee correct results only for ε < 0.252 – TCHER-
NIAVSKI & STELLDINGER (2008) even claim
ε < 0.1 – while Cocone (AMENTA et al. 2000)
and Tight Cocone (DEY & GOSWAMI 2003) re-
quire ε < 0.06. Of course our test is much
weaker than a theoretical proof, but still indi-
cates robustness to rather low sampling density.

The alternative vertex-based structure would
be the dual graph: Instead of representing tri-
angles by nodes we use the vertices and link
them by graph edges equivalent to the Delau-

nay edges. This representation might be bet-
ter suited if the boundary sample points are dis-
turbed by random noise such that an approxima-
tion is desired. By partitioning the vertices into
inside and outside we obtain a boundary curve
lying in between data points.

Graph edges crossing the boundary curve are
usually rather short (Fig. 6a). Thus we de-
fine the edge costs as the inverse length of the
crossed triangle edge.

Fig. 6 shows results obtained with this al-
ternative graph structure on the very same syn-
thetic datasets as in Fig. 4. The boundary is cor-
rectly reconstructed in between the given data
points.

4.2 Surface Segmentation

The problem of segmenting a surface requires
an algorithm to partition a surface into usu-
ally compact segments with similar elements
– w. r. t. pre-defined properties. Here, we as-
sume the surface to be represented by a triangu-
lar mesh, at each vertex being isomorphic to a
disk.

To our knowledge there is only one other
work that applies a front propagation method
to surface segmentation: PAGE et al. (2003)
use FMM as a final region growing step called
“marching watersheds”, referring to the pop-
ular watershed segmentation (BEUCHER &
LANTUEJOUL 1979) that has been imple-
mented for meshed surfaces by MANGAN &
WHITAKER (1999).

For segmenting a surface in 3D space we
will work with the very same graph structure
as for reconstructing a boundary curve in 2D
since we again want to partition a 2D manifold.
Now, however, the manifold is non-planar and
we exploit other geometric properties for defin-
ing edge costs.

For many applications in surface reconstruc-
tion and object modelling one wants to par-
tition a triangular mesh into piece-wise pla-
nar regions. Thus we introduce high costs for
graph edges linking non-planar nodes. For the
triangle-based graph structure it is natural to
compute triangle normals and derive costs from
the angle between two of them. For the vertex-
based graph structure vertex normals are needed
that can be computed via principal component
analysis from neighbouring points (HOPPE et
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al. 1992), possibly robustified by computing
the coordinate-wise median (ROUSSEEUW &
LEROY 1987, section 3.2.1) of multiple neigh-
bouring normals (SCHINDLER & FÖRSTNER
2011).

Analogous to partitioning adjacent triangles
in 3D space we can partition straight line seg-
ments in 2D space as it is commonly done
using the Ramer-Douglas-Peucker algorithm
(RAMER 1972, DOUGLAS & PEUCKER 1973).
Again the edge costs are derived from the angle
between two line segments or – in the vertex-
based graph structure – between two points.

Fig. 7 shows resulting segmentations in both
2D and 3D as well as for both graph struc-
tures. In the 2D examples the line and ver-
tex normals are shown as red and blue arrows,
respectively. The final segmentation is indi-
cated with coloured triangles, lines and vertices.
Even though both the cube and the square have
rounded corners and the points are disturbed by
3 % (square) and 1 % (cube) Gaussian noise, the
DijkstraFPS segmentation yields visually pleas-
ing results.

Fig. 8 shows the segmentation result on a real
dataset: It was reconstructed from 159 images
using Bundler (SNAVELY et al. 2006), PMVS2
(FURUKAWA & PONCE 2010) and Poisson sur-
face reconstruction (KAZHDAN et al. 2006).

4.3 Clustering

Within this section we focus on clustering data
points via graph partitioning. We choose to cre-
ate undirected links between each graph node
and its k = 25 nearest neighbours (k-NN).
In contrast to, e.g. Delaunay triangulation the
complexity for k-NN is independent of the di-
mensionality. Edge costs are the squared Eu-
clidean distance, possibly raised to an exponent
≥ 2.

We compare DijkstraFPS to common clus-
tering algorithms on two synthetic datasets
(Tab. 1):

The k-means algorithm (MACQUEEN 1965
iteratively computes the mean coordinates per
class and updates class labels according to the
closest mean. In case of different scatter the
second step yields incorrect labels (dataset A).

The Expectation–maximization (EM) algo-
rithm (DEMPSTER et al. 1977) not only esti-
mates the means but also the class variances,

(a) Linc = 10, Ldec = 4 (b) Linc = 10, Ldec = 4

(c) Linc = 50, Ldec = 6 (d) Linc = 50, Ldec = 6

Fig. 7: Segmentation of a polyline in 2D space
(top row: 24 points on a square, 3 % noise) and
a surface in 3D space (bottom row: 240 points on
a cube, 1 % noise) using the triangle-based (left)
and vertex-based (right) graph structure. Edge
costs are defined as the angle of the two normals.
The normals are either computed for triangles, for
lines or for vertices, depending on the dimension-
ality and the graph structure. In the 2D case they
are shown as red and blue arrows. The resulting
segmentation is indicated as coloured triangles,
lines and points, respectively, as well as a bold,
black boundary.

thus yields correct results (up to one falsely
classified point) for dataset A. If it, however,
assumes Gaussian distributions, it does not suc-
ceed with dataset B.

The mean shift clustering (COMANICIU &
MEER 2002) iteratively replaces points by the
centre of neighbouring points within a certain
radius. It yields correct results for dataset A,
but possibly too many clusters in the second ex-
ample depending on the chosen radius. Here,
a larger radius yields a similar result like k-
means.
DijkstraFPS returns perfect point labels on

both datasets shown in Tab. 1, certainly ben-
efiting from the long edges between points of
different clusters. On datasets with touching
or overlapping distributions DijkstraFPS might
fail.
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Fig. 8: Surface segmentation on a visually recon-
structed, meshed point cloud.

4.4 Image Segmentation

FPS has been used for progressive image sam-
pling by ELDAR et al. (1997). As “far-
thest point” they choose a vertex of the Eu-
clidean Voronoi diagram that maximizes some
weighted distance function. Combining FPS
with a marching scheme like FMM or Dijk-
stra’s algorithm we can approximate the non-
Euclidean Voronoi diagram and thus derive not
only a suitable image sampling but an image
segmentation as well.

The graph structure is inherently given by the
pixel grid. One can, however, choose between
a 4-neighbourhood (pixels horizontally and ver-
tically connected), an 8-neighbourhood (pixels
additionally diagonally connected) or a trian-
gulation (diagonal connections in one direction
only).

In contrast to other image segmentation al-
gorithms we can use arbitrary colour similar-
ity measures as edge costs and thus are not
restricted to gray images or Euclidean colour
spaces. We compute the Euclidean distance of
two pixels in the hue-saturation-value (HSV)
colour cone.

Fig. 9 shows three segmentation results.
While FLOWER 1 and FLOWER 2 are suc-
cessfully segmented, the approach fails for
FLOWER 3. Instead of segmenting “flower”
and “not flower” the unsupervised segmentation
draws the boundary along the dark bold edges
in the background.

Since the DijkstraFPS graph partitioning is
not restricted to a regular pixel grid, we can
work with irregular image regions such as su-
perpixels. Further we can generate superpixels
with DijkstraFPS by partitioning the image into
more than two segments, e.g. 30 segments as

(a) FLOWER 1
(Linc = 100, Ldec = 2)

(b) FLOWER 2
(Linc = 100, Ldec = 2)

(c) FLOWER 3
(Linc = 200, Ldec = 2)

Fig. 9: DijkstraFPS image segmentation. Three
test images are segmented using our proposed
graph partitioning scheme. Edge costs are com-
puted as squared Euclidean distances in hue-
saturation-value (HSV) colour space. While
FLOWER 1 (a) and FLOWER 2 (b) are perfectly
segmented, in FLOWER 3 (c) the dark back-
ground edges attract the segmentation boundary
more.

indicated by the white boundaries in Fig. 10a.
Then we build a second graph with only 30
nodes and edges according to the superpixel ad-
jacencies in the image. Edge costs are derived,
e.g. from the average colours of the superpix-
els. As can be seen from the green boundary in
Fig. 10a the final segmentation is very accurate
due to the flexibility of 30 initial segments but
also robust due to the larger number of pixels
that contribute to the superpixel colour. Results
for two images from the Berkeley Segmentation
Dataset and Benchmarks 500 (BSDS500 AR-
BELAEZ et al. 2011) are given in Figs. 10c and
10d.

For large images DijkstraFPS is rather slow,
since it is very general and not optimized for
the regular image grid. Of course other super-
pixel generating algorithms (LEVINSHTEIN et
al. 2009, ACHANTA et al. 2012) can be used
and might save significant computing time. The
second segmentation step would be performed
using DijkstraFPS. An evaluation of different
superpixel schemes combined with our Dijk-
straFPS graph partitioning might be reasonable
but is out of scope of this article.
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(a) FLOWER 3
(Linc = 200, Ldec = 30)

(b) FLOWER 4
(Linc = 100, Ldec = 5)

(c) 196027 (ARBE-

LAEZ et al., 2011)
(Linc = 200, Ldec = 5)

(d) 210088 (ARBE-

LAEZ et al., 2011)
(Linc = 100, Ldec = 10)

Fig. 10: Progressive image segmentation. (a):
FLOWER 3 image from Fig. 9c segmented into 30
segments, shown with white boundaries. Then
a graph with only 30 nodes is built from the ob-
tained segmentation and again partitioned using
DijkstraFPS, yielding the green boundary. (b), (c)
and (d): More examples.

5 Conclusion

We proposed a new graph partitioning scheme
based on Dijkstra’s distance transform and far-
thest point sampling (DijkstraFPS) and showed
how to construct graphs for solving various
problems in geometry and image processing.
The partitioning is guided by pre-defined edge
costs that do not have to follow a Euclidean
metric. The method is not restricted to a bi-
nary partition but can yield multiple segments,
possibly in terms of an oversegmentation or – in
terms of image segmentation – superpixels. The
latter themselves can be nodes of a subsequent
graph partitioning.

As shown in SCHINDLER & FÖRSTNER
(2011) the algorithm can be augmented with an
automatic, application-specific stopping crite-
rion. Establishing such criteria for each above-
mentioned application remains future work.

There is much space for improving the pro-
posed edge costs. We focused on demonstrating
the diversity of DijkstraFPS graph partitioning

Tab. 1: Clustering results of three common clus-
tering algorithms and our DijkstraFPS graph par-
titioning. DijkstraFPS (Linc = 10, Ldec = 2)
yields 100 % correct results in both examples.
The ellipses are 1-σ confidence intervals.
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rather than on fine-tuning for specific applica-
tions.

Other possible applications of the method
include triangulation and segmentation of full
wave-form lidar point clouds, segmentation of
radar images, hierarchical image segmentation
as indicated in section 4.4, segmentation of im-
age sequences and image segmentation based
on texture similarity, which of course have to
be empirically compared to standard algorithms
used in that application.
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Finding Poly-Curves of Straight Line and Ellipse
Segments in Images

SUSANNE WENZEL & WOLFGANG FÖRSTNER,
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Summary: Simplification of given polygons has
attracted many researchers. Especially, finding cir-
cular and elliptical structures in images is relevant
in many applications. Given pixel chains from edge
detection, this paper proposes a method to segment
them into straight line and ellipse segments. We pro-
pose an adaption of Douglas-Peucker’s polygon sim-
plification algorithm using circle segments instead
of straight line segments and partition the sequence
of points instead the sequence of edges. It is ro-
bust and decreases the complexity of given poly-
gons better than the original algorithm. In a second
step, we further simplify the poly-curve by merg-
ing neighbouring segments to straight line and el-
lipse segments. Merging is based on the evaluation of
variation of entropy for proposed geometric models,
which turns out as a combination of hypothesis test-
ing and model selection. We demonstrate the results
of circlePeucker as well as merging on several
images of scenes with significant circular structures
and compare them with the method of PATRAUCEAN
et al. (2012).

Zusammenfassung: ���������	
�� ��� ��������
��� �� ��	����� 
�� ����������������.��ie������-
tion runder und elliptischer Strukturen ist relevant
für viele Anwendungen. Die Reduktion der Kom-
plexität gegebener Polygone ist für sich ein inter-
essantes Forschungsthema. Diese Arbeit stellt ein
Verfahren zur Segmentierung von Pixelketten einer
Kantendetektion in Geraden- und Ellipsensegmente
vor. Der erste Schritt besteht in einer Adaption des
Douglas-Peucker Algorithmus, in der Kreise anstel-
le von Geraden zur Partitionierung verwendet wer-
den und die Punkt- statt der Kantensequenz parti-
tioniert wird. Das Verfahren ist robust und reduziert
die Komplexität der gegebenen Polygone stärker als
der originale Algorithmus. In einem zweiten Schritt
vereinfachen wir diese Vorsegmentierung durch das
Verschmelzen benachbarter Segmente zu Geraden-
und Ellipsensegmenten und stützen uns dabei auf
die Entropieänderung. Wir zeigen die Ergebnisse der
Vorsegmentierung als auch der folgenden Vereinfa-
chung anhand verschiedener Bilder von Szenen, die
signifikante kreisförmige Strukturen aufweisen und
vergleichen sie mit dem Algorithmus von PATRAU-
CEAN et al. (2012).

1 Introduction

Polygon simplification is interesting from sev-
eral points of view. First, in terms of compact
description of spatial data, e.g. in the context of
image description. Second, in terms of gener-
alisation, e.g. in the context of cartography or
resolution dependent visualization of polygons.

On the other hand finding circular and ellip-
tical structures in images is relevant in terms
of compact image description and further im-
age interpretation. Most image interpretation
systems which use bottom up image features,
thus not just pure pixel information, are based

on key point or edge detection. Directly identi-
fying circular and elliptical structure gives rise
to much more informative image features from
bottom up (CHIA et al. 2012, JURIE & SCHMID
2004).

In this paper we propose a two-step poly-
gon simplification algorithm that approximates
a given set of ordered points in 2D by a se-
quence of straight line and ellipse segments.
The poly-curves are intended to be at least C0,
thus positional continuous. Although the algo-
rithm is applicable to any kind of ordered 2D
points we assume pixel chains within images,
see Fig. 1. The first intuition behind our ap-
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Fig. 1: Finding line and ellipse sections. Left:
pixel chains. Middle: segmentation into circle
chains using circlePeucker. Right: aggre-
gation and classification into straight line and el-
lipse segments.�����: �lines.���	
��:��ircular�	nd
elliptical arcs.

proach is that arbitrary smooth curves can be lo-
cally characterised by an osculating circle. We
will use this in the first step of the algorithm
where we simplify the given set of points by a
sequence of circle segments.

But due to perspective distortions, in gen-
eral there will be almost no circles in images.
All circles in object space are projected to el-
lipses in image space, ellipses in object space
are projected to ellipses, anyway. Only in rare
cases, the image of 3D circles or 3D ellipses are
mapped to hyperbola, namely in case they par-
tially are behind the camera. The situation is
different if the circles are sitting in a set of par-
allel planes and the viewing direction intention-
ally has been taken orthogonal to these planes
or the image has been rectified to mimic this sit-
uation. Then almost no ellipses will occur in the
images, and the proposed method can directly
be transferred by replacing ellipses by circles.

Therefore, eventually the pixel chain is rep-
resented by a sequence of straight line and el-
lipse segments. This way we are more flexible
representing curved lines. Please note, that cir-
cles are part of the representation, as they are
just special ellipses.

The proposed method consists of two steps,
see Fig. 1. Given the pixel chains within the
image, we first iteratively segment the region
boundary into circular segments. This yields an
over-segmentation due to the non existence of
real circle segments. Second, we merge neigh-
bouring segments to straight line and ellipse
segments based on statistical reasoning, namely
hypothesis testing and model selection. This
step optimally estimates lines and ellipses in a
least squares sequence.

One might argue, why not directly segment
a pixel chain into ellipses, but first look for cir-
cle segments, and then group them to ellipses.

There are two main reasons for the two-step
procedure:

1.) The slope, curvature or curvature change
functions of the ellipse are no simple functions,
which allow to identify elliptical segments, as
this is the case for straight lines (constant slope)
and circles (constant curvature), 2.) there is
no simple local measure telling whether a local
segment belongs to an ellipse or not: Analysing
the curvature, distinguishes circles and straight
lines. One would need the second derivatives of
the curvature to capture the properties of a local
ellipse element, as an ellipse has two more de-
grees of freedom, than a circle. But determining
fourth derivatives is very unstable.

There are two main contributions of this pa-
per. First, for region boundary segmentation we
propose an adaption to Douglas-Peucker’s al-
gorithm (DOUGLAS & PEUCKER 1973) which
is based on circles as basic geometric elements
and partitions the sequence of points instead
of the sequence of edges. Second, we adapt
the idea of variation of entropy by BEDER
(2005) and statistically optimal merge neigh-
boured segments while optimally fitting lines
and ellipses. The whole process depends on
two parameters, namely the precision of the
edge extraction and the expected accuracy of
the straight line and ellipse segments. The first
one is an internal precision which guides the
edge extraction, the second one is what the user
defines to be and might guide the degree of gen-
eralization. Both can be estimated from training
data.

Therefore, setting these parameters once is
sufficient: The process works stable for all of
our experiments using the same parameter set.

Related�or�

To our knowledge there is no work about an
adaption of Douglas-Peucker’s algorithm to the
use of circles instead of lines as basic elements.
However, proposals exists to simplify polygons
by sets of circular arcs for the efficient stor-
age of polylines. GÜNTHER & WONG (1990)
proposed the so called Arc Tree which repre-
sents arbitrary curved shapes in a hierarchical
data structure with small curved segments at the
leaves of a balanced binary tree. MOORE et al.
(2003) proposed a method for polygon simpli-
fication using circles. They aim on closed poly-
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gons given by a set of 2D points. Based on me-
dial axis from Voronoi polygons they propose
a population of circles which they afterwards
filter to get a set of circles which best approx-
imate the given polygon. The final represen-
tation of the polygon consists of circles repre-
sented by centre and radius and tangents which
link neighbouring circles. No work on using
ellipses for improving storage requirements are
known to us.

Finding ellipses in images has attracted
many researchers. Some of them use Hough-
transform methods which tend to be slow.
Most techniques start from pixel chains. Early
works focussed on ellipse fitting, e.g. PAVLIDIS
(1983) and PORRILL (1990), later focussed
on unbiased estimates, e.g. WU (2008) and
LIBUDA et al. (2006). We are interested in the
more general problem of describing the pixel
chains by sequences of line and ellipse seg-
ments, a problem already addressed in AL-
BANO (1974), however, neither enforcing el-
lipses, nor looking for a best estimate for el-
lipses. WEST & ROSIN (1992) and ROSIN &
WEST (1995) performed a segmentation of se-
quences into lines and ellipses in a multistage
process. They first segment a 2D-curve into
straight lines. Afterwards sequences of line
segments are segmented into arcs restricted
to their endpoints. One might interpret this
step as merging sequences of lines to ellipti-
cal arcs. Model selection is done implicitly
by evaluating a significance measure to each
proposed segment, which is based on its ge-
ometry, purely. However, their criteria are
non-statistical, thus cannot easily be adapted
to varying noise situations. JI & HARALICK
(1999) criticised this and proposed a statisti-
cally valid criterium. Starting from Rosin’s out-
put of arc segmentation they merge pairs of
arcs belonging to the same ellipse. Moreover
they also group non-adjacent arcs and exploit
the sign of the arcs for grouping. Proposals
for merging are validated via hypothesis test-
ing. They showed only few results on compa-
rably easy images. NGUYEN & KERAUTRET
(2011) also addressed the segmentation of pixel
chains into lines and ellipses. It is based on a
discrete representation of tangents, circles, and
an algebraic fitting through neighbouring arcs
only using some key points (boundary and mid-

point, instead of the complete pixel chain. Re-
cently PATRAUCEAN et al. (2012) proposed a
parameterless line segment and elliptical arc de-
tector. They use an ellipse fitting algorithm
which uses both, the algebraic distance of the
conic equation and deviation from the gradient
direction. Their model selection aims at avoid-
ing false negatives, by controlling the num-
ber of false positives. Realizing the principle
of ”non-accidentalness” their method adapts to
noise, which explains their visually appealing
results. Their validation and model selection
criteria, however, are based on fixed tolerance
bands. Also they do not enforce any continuity
between neighbouring segments.

Our scope is to segment pixel chains into
straight line and ellipse segments, exploiting the
knowledge about their statistical properties both
w.r.t. detectability as well as w.r.t. accuracy.

Notation

Geometric elements are named with calli-
graphic letters, e.g. x is the name of a point,
whereas x is its Cartesian representation. Ho-
mogeneous vectors and matrices are denoted
with upright bold letters, e.g. x and C.

The rest of the paper is organized as fol-
lows. First, we describe the segmentation of re-
gion boundaries into circle elements based on
the idea of Douglas-Peucker’s algorithm. The
merging procedure to obtain line and ellipse
segments is explained in������
� 3. This sec-
tion also gives details about model selection
by variation of entropy and by the principle
of minimum description length. Finally, sec-
tion 4 presents results on synthetic and real data
and compares them with the method of PA-
TRAUCEAN et al. (2012).

2 Region Boundary Segmentation

Given a set of ordered points in 2D we
aim at a partitioning into groups joining a
common geometric element, specifically cir-
cular segments. We use the feature extrac-
tion procedure as described in FÖRSTNER
(1994) and FUCHS & FÖRSTNER (1995). It
includes an automatic noise estimation and
an edge preserving filter as described in
FÖRSTNER (2000). In contrast to many
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other procedures it delivers region boundaries
as well as thin lines in the form of chains of
points with sub-pixel coordinates. For finding
fine details, we use 0.7 pixel for the differen-
tiation and 1.0 pixel for the integration scale.
No blow up of the images is performed, as pro-
posed by KÖTHE (2003) for fully exploiting the
resolution.

2.1 Algorithm

Our concept of region boundary segmentation is
based on the well known Douglas-Peucker al-
gorithm (DOUGLAS & PEUCKER 1973). This
algorithm is designed to simplify polygons.
Therefore, it recursively splits the sequence
of polygon edges into larger edges, until the
distance of an eliminated point to the corre-
sponding edge is below a threshold t. Thus
neighbouring edges share a common point. In
contrast, we want to recursively split the se-
quence of points X = {xi} until each sub-
sequence can be approximated by a circular arc
well enough. Thus neighbouring sequences are
meant not to share a common point.

We realize this by first determining the mid
points x′

i = 1
2 (xi + xi+1) , i = 1, ..., I − 1 ,

leading to a sequence X ′ = {x′
i}, which is a

factor 2 smoother in variance than the original.
Each edge in the sequence X ′ corresponds to
a point xi in the original sequence, except for
the start and the end point. We now recursively
partition the sequence of edges of X ′ into seg-
ments, which approximate the points x′

i by a
circular arc up to a pre-specified tolerance t. A
segment is split at that point x′

i where the dis-
tance to the circular arc is maximum. In order
to enforce continuity, we fix the start and end
point of the segments and determine the best fit-
ting arc, see below.

The algorithm for approximating a
polyline by a sequence of circles, called
circlePeucker, is given in Alg. 1. It uses
(1) function fitArc(X ) for fitting a circular
arc segment S to a given set of points X
constraining it to the start and end point, and
(2) a function distXS(X , S ) for determining
the index ib and the distance dmax of the point
with the largest distance of the points X to
an arc segment S . The algorithms recursively
splits the chain until the largest distance of
a point to the corresponding arc is below a

In: Ordered set of points X = {x1 . . . xI},
tolerance t

Out: List of segments O
1 if I = 2 then O = {1, I}, return;
2 S = fitArc(X );
3 (dmax, ib) = distXS(X , S );
4 if dmax > t then
5 partition at ib:

X1 = {x1 . . . xib},
X2 = {xib . . . xend};

6 O1 = circlePeucker(X1, t);
7 O2 = circlePeucker(X2, t);
8 O = O1 ∪ O2;
9 end
10 return

circlePeucker

pre-set threshold t. As result we get a list O of
N circle segments, each segment represented
as a list of indices {i′n}, n = 1, ...,N . Thus� we
call O′=circlePeucker(X ′ , t). The edges
(i′, i′ + 1) of the segments in O′ correspond
to the sought points xi, except for the start
and the end point, which are added to the first
and the last segment. This yields the required
partitioning O of the original point sequence.

2.2 Fitting Circle Segments

The algorithm fitArc(X ), needed in Alg. 1
line 2, constrains the circle to the starting
and the endpoint of the current polygon seg-
ment. Additionally, we determine the distances
d = [di] of the involved points xi to the arc
segment between x1 and xI of S , not to the
whole circle. Thus, the distance of a point to
a segment is the minimum of the distance to the
footpoint on the segment or the distance to the
start or endpoint.

A circle usually has three degrees of free-
dom, but by restricting the arc to two points
there is just one degree of freedom left. We
parametrize the arc segment by its height h and
solve the following optimization problem

ĥ = argminh (‖d(X , S(xs,xe, h))‖L) . (1)

For a robust estimate we choose the L1-norm
(L = 1), thus we optimize h such that the sum
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of absolute distances of all points to the arc seg-
ment is minimized.

3 Merging

Given the pre-segmentation O of���ec��
� 2
which is assumed to be over-segmented, we
aim at a simplification by merging neighbour-
ing segments which share the same model.

The pre-segmentation is based on circles, but
in general there are almost no circles in natu-
ral images as they suffer from perspective dis-
tortions. Thus, our final segmentation is meant
to consist of segments of straight lines and el-
lipses. From the pre-segmentation we just take
the information about which points belong to
one segment and ignore the parameters of the
fitted circles.

The final representation is achieved by fit-
ting straight lines and ellipses through neigh-
boured segments and single segments using all
points belonging to them. This is different from
ROSIN & WEST (1995) who only use the end-
points from the pre-segmentation.

3.1 Fitting Ellipses

We perform maximum-likelihood estimations
for fitting lines and ellipses, respectively, to the
data. For line fitting we refer to standard litera-
ture, e.g. MCGLONE (2004).

Fitting ellipses is not trivial. We have to
make sure an arc segment to be an ellipse and
not a parabola or hyperbola.

We represent conics with the symmetric

3× 3-matrix C =

[
Chh ch0
cT0h c00

]
using ho-

mogeneous coordinates x for the points on the
conic xTCx = 0. To ensure the conic to be an
ellipse the homogeneous part of the conic must
fulfil |Chh| > 0. Therefore, we use Fitzgib-
bon’s constraint (FITZGIBBON et al. 1999)
which is equivalent to

|Chh| = 1 . (2)

This is a valid choice, as the conic representa-
tion is homogeneous. We end up with a maxi-
mum likelihood estimation following a Gauss-
Helmert model with the constraint (2). Param-
eters are initialized using the direct method of
Fitzgibbon (FITZGIBBON et al. 1999).

As a result we not only obtain the ellipse pa-
rameters but also the estimated variance σ2 of
the data and covariance matrix Σ of the param-
eters, which we use for the subsequent tests.

3.2 Merging Segments Based on
Variation of Entropy

Deciding whether two neighbouring segments
belong to the same model may be based on a
statistical hypothesis test. As hypothesis tests
aim at rejecting the null hypothesis, they can
be used as sieve for keeping false hypothesis:
Therefore, we use hypothesis testing for reli-
ably identifying breakpoints between segments
��� belonging to the same model, by testing
the null-hypothesis that they belong to the same
segment.

Deciding which model fits the data best, i.e.
whether a curved line is best approximated by
a line or an ellipse, is a typical model selection
problem and may be solved by the principle of
minimal description length (MDL). This may
be directly applied to isolated segments.

Merging segments based on hypothesis test-
ing lacks on the risk of accepting large changes
in geometry, in case the parameters of the pro-
posed model are very uncertain. Therefore,
we follow the idea of variation of entropy by
BEDER (2005). He derives an information
theoretical measure for the increase of uncer-
tainty of a model due to adding new observa-
tions. This is equivalent to the change of en-
tropy of the probability density function of the
model’s parameters. Following BEDER (2005),
the change of entropy can be split into two parts.
One depends on the increase of randomness due
to new observations and is related to hypothe-
sis testing. The other depends on the change of
geometric uncertainty due to new data, respec-
tively.

The differential entropy of a proba-
bility density function p(x) is given by
h(p) = −

∫
p(x) log p(x)dx. It reflects the

randomness of a stochastic variable x. In
case of a D-dimensional normally distributed
random variable x ∼ N (μ,Σ) the entropy is
given by COVER & THOMAS1991)

h(p) = 0.5 log
[
(2πe)D |Σ|

]
. (3)

Now, assume a segmentation O of points
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X = {X1 ∪ . . . ∪ XN} into N segments. Fur-
ther assume, we already found a model Mn fit-
ting the points Xn of segment n, e.g. a line
Mn = ln. Now� we propose the points Xn+1 of
the neighbouring segment to belong to model
Mn, too. Without loss of generality we might
argue on the neighbouring segments n = 1 and
n + 1 = 2. Now, let the parameters of pro-
posed model M1 be θ1 ∼ N (μ̂1,Σ1), with
the empirical covariance matrix Σ1 = σ̂2

1Σ1 of
the parameters, depending on the theoretical co-
variance matrix Σ1 and the estimated variance
factor σ̂2

1 = Ω1/R1, derived from the weighted
sum Ω1 of the squared residuals and the redun-
dancy R1 of the estimation process.

When adding new observations Xn+1 we es-
timate θ2 ∼ N (μ̂2,Σ2) from Xn,n+1 =
{Xn ∪ Xn+1} and obtain σ̂2

2 and the theoreti-
cal covariance matrix Σ2.

To validate the agreement of such two groups
of observations concerning one of the two mod-
els M1 and M2 we analyse the change of en-
tropy caused by adding new observations:

ΔhM = h(N (μ̂2, Σ̂2))−h(N (μ̂1, Σ̂1)) (4)

The parameters of a model M typically are
given by adjustment theory. Thus, we know the
variance factor σ̂2 and the empirical covariance
matrix Σ̂ = σ̂2Σ. Using (3) we get

ΔhM = 0.5 log
(
σ̂2
2/σ̂

2
1

)
︸ ︷︷ ︸

Δh0

+0.5 log(|Σ2|/|Σ1|)︸ ︷︷ ︸
−Δhg

(5)
The first term Δh0 is closely related to the
Fisher test statistic

σ̂2
2/σ̂

2
1 ∼ F(ΔR,R1) (6)

with redundancy R1 and ΔR = R2 − R1,
which is used to test whether the second set of
observations fits the model estimated by the first
set. It reflects the increase of randomness due
to including new observations. The term Δhg

reflects the increase in randomness due to the
geometric change of the model.

Therefore, we argue in the sense of hy-
pothesis testing. Given a threshold TS =
F ��(S,ΔR,R1) with significance level S by the
inverse of Fisher distribution, there is no sta-
tistical reason to reject the hypothesis that both

sets of observations fit the model if

Δh0 < 0.5 log TS (7)

which means that both sets of observations fit
the model due to uncertainty in estimated pa-
rameters.

To bound the risk of large changes in geome-
try we further bound the increase of entropy by
Δhg. BEDER (2005) found this bound to be at
the same order of magnitude as the increase of
Δh0. We use Tg = T0+

1
2 logTS with a model

dependent additional constant T0 which we em-
pirically found to be equal to the number of pa-
rameters of the current model, e.g. T0 = 2 in
case of lines or T0 = 5 in case of ellipses. This
compensates for a decrease in condition num-
ber of the covariance matrix caused by merging,
therefore increasing with the number of param-
eters.

In case R1 = 0 we cannot use an estimated
variance factor σ̂2

1 , but use the theoretical value
σ2
1 instead. Thus, (5) degenerates to

ΔhM = 0.5 log
(
σ̂2
2/σ

2
1

)
+0.5 log(|Σ2|/|Σ1|).

(8)
Now� the ratio σ̂2

2/σ
2
1 ∼ χ2

R2
and we derive the

threshold TS from the inverse of χ2distribution.
Please note, that the proposed approach is

asymmetric in evaluation of Xn,n+1 and Xn+1,n.
The���s�mme����������
����������������	����
checking whether the smaller of two neighbour-
ing segments can be merged with the larger one,
thus the larger segment is taken to be M *

1 .

3.3 Model Selection

We have seen how to use the variation of en-
tropy to merge neighbouring segments to lines
or ellipses, respectively. But the entropy crite-
rion may not favour one of these two models.
Then we select the one with smallest descrip-
tion length. This happens in case of long seg-
ments having very small curvature. Here the
segments may be approximated either by a long
line or by an ellipse segment having small cur-
vature.

We evaluate the description length for
merged models from their residuals. We
use the modified Akaike criterion (AKAIKE
1974) MDLAIC = −2 log p(l|θ̂) + 2U using

��

 ��  �

 �

 ��

 ���
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a1 e1 i1 a2 e2 i2

b1 f1 k1 b2 f2 k2

c1 g1 l1 c2 g2 l2

d1 h1 m1 d2 h2 m2

Fig. 2: Comparison to ELSD under different noise conditions (Best viewed in colour). a∗: given
image. b∗ - d∗: σn = 10, 20,40 grayvalues. e∗ - h∗: our final results.�������������������������������������������!"��#�$�������%���	��	������������������	��	�����'���
����
���

the log-likelihood function of data l and esti-
mated parameters θ̂ and the number of parame-
ters U . In case of normally distributed observa-
tions the log-likelihood function is equal to the
sum of weighted squared residuals and we get

MDLAIC = Ω2 + 2U. (9)

Now, after having collected all criteria,
we start the simplification of the given pre-
segmentation. This is done in a greedy man-
ner where we try to simplify the polygon while
considering given pixel chains and while keep-
ing the change of geometry slow.

3.4 Algorithm

For each segment o ∈ O we initialize lines
ln and ellipses Cn, if possible, i.e. we es-
timate model parameters {θ1}n, covariances
{Σ1}n and residuals {v}n. Let us call them
models M l

n and M C
n , respectively. For all

neighbouring elements we propose merging,
i.e. estimate parameters {θ2}n,n+1, covari-
ances {Σ2}n,n+1 and residuals {v}n,n+1 of all

potentially merged models. Let us call them
models M l

n,n+1 and M C
n,n+1, respectively. For

these models M *
n and M *

n,n+1 we evaluate
TS = F ��(S,ΔR,R1), Δh0 and Δhg using (5)
or (8). To simplify notation, we avoid the index
(n,n+1) in the following. If Δh0 < 1

2 log TS

and Δhg < T0+
1
2 logTS we add the proposed

model to the set of merging proposals P .
We require the geometrical change to be as

small as possible when merging two segments.
Therefore� we may choose the model M from
P with smallest Δhg. But note that we can not
compare changes in entropy between line and
ellipses. These are different models of different
complexity, thus we are not allowed to pick the
model with smallest Δhg from the whole set P .
In a greedy process we start with lines, i.e. first
merging all lines, which fulfil the requirements
and afterwards merging all ellipses. More pre-
cisely, we pick these proposed merged line l ∗

from segments on and on+1 with smallest Δhg.
If merging these two segments to an ellipse is
a valid choice, too, we choose the line model if
MDL(l ∗) < MDL(C ∗).

 n

 �

 �

 ��
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After merging two segments, we update Δh
for all affected segments and again pick the
best proposal concerning Δhg . If there are no
line proposals left we continue with ellipses the
same way, except from evaluating MDL.

All segments left, e.g. those segments that
could not merge, are tested whether their curva-
ture is significantly different from 0. If so, they
become an ellipse, if not they become a line. To
be precise, we perform variance propagation on
the curvature and perform hypothesis tests on
the 95% significance level.

4 Results

This section presents some results. We give de-
tails about parameters, show the resulting seg-
ments and discuss the success of the merging
step by means of some statistics. We compare
our results to those from ELSD (elliptical line
segment detector) (PATRAUCEAN et al. 2012)
as this is state of the art and there exists code
as well as an online demo t
 process�
wn����
��es������������ed ��arameters.

Parameter��etting

There are just a few parameters to choose and
these are well understandable and stable for all
tested images.

From experiments we found the standard de-
viation of edge pixels σe = 0.1 [pixel]. For this
we set the tolerance t for the pre-segmentation
using circlePeucker to t = 3 · σe. Due
to compression artefacts and image distortions,
lines in images often are not that smooth and
we set the variance for grouping a factor three
larger than σe. Thus, for fitting and merging
lines and ellipses, the uncertainty of each pixel
is assumed to be isotropic Σpp = (3 · σe)

2I2.
The significance level for the Fischer-test-

statistic in (7) is set to S = 0.95. The additive
constant for evaluating the bound of Δhg in (5)
is set to the number of parameters of the current
model, T0 = U .

As our purpose is the segmentation of given
pixel chains and not the interpretation of the im-
age the identification of spurious scatter is out
of scope. Our algorithm works stable even for
very small chains. Nevertheless, to simplify the
visualization we do not show short pixel chains,
say shorter than 10 or 20 [pixels], depending on
the structure of the image.

Synthetic�$ata

First we investigate the noise sensitivity of the
procedure using synthetic images, see Fig. 2.
When changing the noise σn of an image from
σn(0) to σn(k) the standard deviation�
������
��xels by σe(σn(k)) =

����������� where we assumed the noise of the
����� to be σn(0) = 2 [gr]. The parameters

��edge detection are not changed.

Please note that the proposed algorithm
works quite stable up to a certain degree of
noise. As long as the contrast is high, geometric
elements are reliable and accurate detected.

Douglas-Peucker vs. circlePeucker

Next we show the effect of the circle-version
of the Peucker-Algorithm. We compare the
results of circlePeucker to the original
Douglas-Peucker algorithm when used as pre-
segmentation for the final merging step. The
results are given in Fig. 3 and Tab. 1.

Fig. 3 shows the results for two natural im-
ages when using the classical Douglas-Peucker
algorithm and the new circlePeucker, re-
spectively, as pre-segmentation for the final
merging step as described in��ec��
� 3. We see
that both algorithms perfectly approximate the
given data. This is due to the tight threshold for
the maximum distance to a fitted geometric el-
ement which is the same in both cases. But we
realize, just by visual inspection, that our new
segmentation reduces the number of segments
significantly. For a quantitative evaluation of
this reduction, we count the total number of seg-
ments for each processed image when using the
original Douglas-Peucker and our new segmen-
tation, respectively. Tab. 1 gives these numbers
for each processed image together with the total
number of evaluated pixel chains and the final
number of segments after the merging step. We
see that the new circle-based pre-segmentation
reduces the number of segments by almost 50 %
compared to the line-based Douglas-Peucker al-
gorithm. The merging step further reduces the
number of segments by about 25 %.

We show some of the advantages of
pre-segmentation using circlePeucker by
some details. E.g. the capital O of the STOP-
sign actually consist� of four arcs instead of

√
1 +

σ2
n
(k)

σ2
n
(0) · σe(0)
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a1 b1 c1

d1 e1 f1

a2 b2 c2

d2 e2 f2

Fig. 3: Pre-segmentation circlePeucker vs. Douglas-Peucker (Best viewed in colour). a∗: Given
images as used in *+/#+4��+7 et al. (2012). b∗: Pre-Segmentation using Douglas-Peucker.
c∗: Pre-Segmentation using circlePeucker. e∗ and f∗: Final segmentation using b∗ and c∗,
respectively. d∗ results by ELSD. Colours, see Figs. 1 and 2.

Tab. 1: Statistics of simplification. The number of objects in the first column refers to the number
of evaluated pixel chains per image. The second column gives the number of line segments using
the classical Douglas-Peucker (DP) algorithm. The third column gives the number of circle segments
using circlePeucker (new). Fourth and fifth column give the number of segment���or��:����
	�
��gmentation��esults.

No. segments
No. pre-segmentation final

objects DP new DP new

worm (Fig��!) 187 1961 834 839 613
stop (Fig��!) 159 1233 560 608 458
window (Fig��") 331 2226 868 941 726
icosahedron (Fig��") ����1071�������#991��������$177���������%517������!235
arcade (Fig��%) ����844�������"908���������&563���������%675������&242
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Fig. 4: More results on real images (Best viewed
in colour). Arcade. From top to bottom: given im-
age, our final result using circlePeucker for
pre-segmentation, result of ELSD. Colours, see
Figs. 1 and 2.

one ellipse. When using circlePeucker
we get this result exactly. While using
Douglas-Peucker tends to approximate arcs by
lines, obviously. The main reason for this
is the identification of break points candidates
when evaluating the pre-segmentation. Obvi-
ously, circlePeucker identifies points of
changing curvature more likely than Douglas-
Peucker. The same effect can be observed for
the boundary lines around the worm.

Comparison to ELSD

We give two more results on natural images in
Figs. 4 and 5 and compare our results to those

from from ELSD (PATRAUCEAN et al. 2012)
in Figs. 2 to 5. Let us take the worm of the
book cover shown in Fig. 3. ELSD resolves
nearby edges, e.g. the black boundaries of the
worm. The pre-processing of our method iden-
tifies these as (dark) lines, which are then sim-
plified. The slightly curved boundaries of the
letters W or B are straightened by ELSD, while
better resolved by our method. ELSD simpli-
fies too much, e.g. the ellipse of O in the
STOP-sign. While ELSD detects the lines inde-
pendently, our method segments the edge pixel
chains, therefore at sharp corners occasionally
an additional short segment is preserved, e.g.
the rectangles within Fig. 2.

To summarize we see, the pre-segmentation
using circlePeucker correctly identifies
arc segments and especially their breakpoints.
By itself these are promising results and im-
prove the standard algorithm in terms of reduc-
ing the number of breakpoints of a given poly-
gon while preserving the geometry.

The merging step identifies elliptical arcs
correctly and further reduces the number of seg-
ments of most given pixel chains. Lines are
identified in most cases, if not this might be due
to distortions, especially for long lines.

5 Conclusion

We presented a line simplification approach
which approximates given pixel chains by a se-
quence of lines and elliptical arcs. For this we
proposed an adaption to Douglas-Peucker’s al-
gorithm for the use of circles instead of straight
lines. Furthermore, we developed an approach
for the simplification of such a segmentation
by merging neighbouring segments due to their
agreement to a joint geometric model in terms
of bounded variation of entropy. The approach
depends on just a few parameters which are
clearly explained by a priori knowledge about
edge detection accuracy. Depending on the as-
sumed edge accuracy we showed very accurate
results. We showed the effects of polyline seg-
mentation and simplification on several images
with comparable good results referring to an
state of the art algorithm. We proved the suc-
cess of merging in terms of the reduction rate
of number of segments per object. We believe
that the final segmentation gives rise to useful
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Fig. 5: More results on real images (Best viewed in colour). Left: Gothic window. Right: cropped
icosahedron. From top to bottom: given image, our final result using circlePeucker for pre-
segmentation, result of ELSD. Colours, see Figs. 1 and 2.
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high level image features as input for an image
interpretation system.
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Bundle Adjustment and System Calibration with
Points at Infinity for Omnidirectional Camera Systems

JOHANNES SCHNEIDER & WOLFGANG FÖRSTNER,

Keywords: bundle adjustment, omnidirectional camera systems, multi-view cameras, calibration

Summary: We present a calibration method for

multi-view cameras that provides a rigorous maxi-

mum likelihood estimation of the mutual orientation

of the cameras within a rigid multi-camera system.

No calibration targets are needed, just a movement of

the multi-camera system taking synchronized images

of a highly textured and static scene. Multi-camera

systems with non-overlapping views have to be ro-

tated within the scene so that corresponding points

are visible in different cameras at different times of

exposure. By using an extended version of the pro-

jective collinearity equation all estimates can be opti-

mized in one bundle adjustment where we constrain

the relative poses of the cameras to be fixed. For sta-

bilizing camera orientations – especially rotations –

one should generally use points at the horizon within

the bundle adjustment, which classical bundle adjust-

ment programs are not capable of. We use a minimal

representation of homogeneous coordinates for im-

age and scene points which allows us to use images of

omnidirectional cameras with single viewpoint like

fisheye cameras and scene points at a large distance

from the camera or even at infinity.

We show results of our calibration method on (1)

the omnidirectional multi-camera system Ladybug 3

from Point Grey, (2) a camera-rig with five cameras

used for the acquisition of complex 3D structures and

(3) a camera-rig mounted on a UAV consisting of four

fisheye cameras which provide a large field of view

and which is used for visual odometry and obsta-

cle detection in the project MoD (DFG-Project FOR

1505 “Mapping on Demand”).

Zusammenfassung: Bündelausgleichung und Sys-
temkalibrierung mit Punkten im Unendlichen für
omnidirektionale Kamerasysteme. In diesem Artikel

stellen wir eine Kalibrierungsmethode für Multika-

merasysteme vor, welche eine strenge Maximum-

Likelihood-Schätzung der gegenseitigen Orientierun-

gen der Kameras innerhalb eines starren Multika-

merasystems ermöglicht. Zielmarken werden nicht

benötigt. Das synchronisiert Bilder aufnehmende Ka-

merasystem muss lediglich in einer stark texturier-

ten statischen Szene bewegt werden. Multikamera-

systeme, deren Bilder sich nicht überlappen, wer-

den innerhalb der Szene rotiert, so dass korrespon-

dierende Punkte in jeder Kamera zu unterschiedli-

chen Aufnahmezeitpunkten sichtbar sind. Unter Ver-

wendung einer erweiterten projektiven Kollinearitäts-

gleichung können alle zu schätzenden Größen in ei-

ner Bündelausgleichung optimiert werden. Zur Sta-

bilisierung der Kameraorientierungen – besonders

der Rotationen – sollten Punkte am Horizont in der

Bündelausgleichung verwendet werden, wozu klas-

sische Bündelausgleichungsprogramme nicht in der

Lage sind. Wir benutzen eine minimale Repräsentati-

on für homogene Koordinaten für Bild- und Objekt-

punkte, welche es uns ermöglicht, mit Bildern omni-

direktionaler Kameras wie Fisheye-Kameras und mit

Objektpunkten, welche weit entfernt oder im Unend-

lichen liegen, umzugehen.

Wir zeigen Ergebnisse unserer Kalibrierungsme-

thode für (1) das omnidirektionale Multikamerasys-

tem Ladybug 3 von Point Grey, (2) ein Kamerasys-

tem mit fünf Kameras zur Aufnahme komplexer 3D-

Strukturen und (3) ein auf eine Drohne montiertes

Kamerasystem mit vier Fisheye-Kameras, welches

ein großes Sichtfeld besitzt und zur visuellen Odo-

metrie und zur Hinderniserkennung im Projekt MoD

(DFG-Projekt FOR 1505
”
Mapping on Demand“)

verwendet wird.
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1 Introduction

1.1 Motivation

The paper presents a rigorous bundle adjust-

ment for the estimation of the mutual camera

orientations in a rigid multi-camera system. It is

based on an extended version of the projective

collinearity equation which constrains the rela-

tive poses of the cameras to be fixed, whereby

all estimates can be optimized in one bundle

adjustment. Further it enables the use of im-

age and scene points at infinity like the bundle

adjustment “BACS” (Bundle Adjustment for

Camera Systems) presented in SCHNEIDER et

al. (2012).

Bundle adjustment is the work horse for ori-

enting cameras and determining 3D points. It

has a number of favourable properties: It is sta-

tistically optimal in case all statistical tools are

exploited, highly efficient in case sparse matrix

operations are used, useful for test field free self

calibration, and can be parallelized to a high de-

gree. In this paper we want to extend bundle

adjustment with the estimation of the parame-

ters of the mutual camera orientation in a multi-

camera system.

Multi-camera systems are used to increase

the resolution, to combine cameras with dif-

ferent spectral sensitivities (Z/I DMC, Vexcel

Ultracam) or – like omnidirectional cameras –

to augment the effective aperture angle (Blom

Pictometry, Rollei Panoscan Mark III). Fol-

lowing SCARAMUZZA (2008), omnidirectional

cameras have a viewing range of more than

a half-sphere, such as multi-cameras systems,

catadioptric cameras including mirrors, or also

special fisheye lenses, such as the Lensagon

BF2M15520. Additionally, multi-camera sys-

tems gain importance for the acquisition of

complex 3D structures.

Far or even ideal points, i.e. points at infinity,

e.g. points at the horizon or luminous stars are

effective in stabilizing the orientation of cam-

eras, especially their rotations.

In order to exploit the power of a bundle

adjustment, it therefore needs to be extended

to handle multi-camera systems and image and

scene points at infinity, see Fig. 1.

1.2 Notation

Vectors and matrices are typed slanted boldface,

e.g. x and R. Homogeneous vectors and ma-

trices are typed upright, e.g. x and M. The

Fig. 1: A two-camera system with fisheye cam-
eras c = 1, 2 with projection centers Ztc, rigid
motion Mc and time-varying motion Mt, having
a field of view larger than 180◦ shown at two
exposure times t = 1, 2 observing two points
Xi, i = 1, 2, one being close-by, the other at infin-
ity. Already a block adjustment with a single cam-
era moving over time will be stabilized by points
at infinity.

skew 3×3-matrix S(a) induces the cross prod-

uct, hence S(a)b = a× b, vertical vector con-

catenation e.g. of x and y is written in Matlab

syntax [x;y] = [xT,yT]T.

1.3 The Idea

The classical collinearity equations for

image points x ′
it([x

′
it; y

′
it]) of scene point

Xi([Xi;Yi;Zi]) in camera t with rotation

matrix Rt([rkk′ ]) with k and k′ = 1, ..., 3 and

projection center Zt([X0t;Y0t;Z0t]) read as

x′it=
r11(Xi−X0t)+r21(Yi−Y0t)+r31(Zi−Z0t)

r13(Xi−X0t)+r23(Yi−Y0t)+r33(Zi−Z0t)
(1)

y′it=
r12(Xi−X0t)+r22(Yi−Y0t)+r32(Zi−Z0t)

r13(Xi−X0t)+r23(Yi−Y0t)+r33(Zi−Z0t)
(2)

Obviously, these equations are not useful for far

points or ideal points, as small angles between

rays lead to numerical instabilities or singulari-

ties. They are not useful for bundles of rays of

omnidirectional cameras, because rays perpen-

dicular to the viewing direction, as they may

occur with fisheye cameras, cannot be trans-

formed into image coordinates. This would re-

quire different versions of the collinearity equa-

tion depending on the type of sensor as one

would need to integrate the camera model into

the bundle adjustment.

We can avoid these disadvantages by using

homogeneous coordinates x′
it and Xi for im-
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age and scene points, a calibration matrix Kt

and the motion matrix Mt, containing the pose

parameters of the camera system, in: x′
it =

λit[Kt | 0]M−1
t Xi = λitPtXi. Obviously, (a)

homogeneous image coordinates allow for ideal

image points, even directions opposite to the

viewing direction, (b) homogeneous scene co-

ordinates allow for far and ideal scene points,

and including an additional motion is simply an

additional factor.

However, this leads to two problems. As

the covariance matrices Σx′
itx′

it
of homoge-

neous vectors are singular, the optimization

function of the maximum likelihood estimation∑
it |xit − λitPtXi|2Σx′

it
x′
it

formally cannot be

used. A minor, but practical problem is the in-

crease of the number of unknown parameters,

namely the Lagrangian multipliers, which are

necessary when fixing the length of the vec-

tors Xi. In large bundle adjustments with more

than a million scene points this prohibitively in-

creases the number of unknowns by a factor 5/3.

1.4 Task and Challenges

The task is to model the projection process of a

camera system as the basis for a bundle adjust-

ment for a multi-view camera system, which (a)

consists of mutually fixed single-view cameras,

(b) allows the single cameras to be omnidirec-

tional, requiring to explicitly model the cam-

era rays and (c) which allows for far or ideal

scene points for stabilizing the configuration.

The model formally reads as

xitc = Pc(M −1
c (M −1

t (Xi))) (3)

with the I scene points Xi, i = 1, ..., I , the T
motions Mt, t=1, ..., T of the camera system

from the scene coordinate system, the C mo-

tions Mc, c = 1, ..., C of each single camera

from the camera system, which makes the mu-

tual orientation explicit, the projection Pc into

the camera systems c = 1, ..., C, and the ob-

served image points xitc of scene point i in cam-

era c at time/pose t.
In order to realize this we need to be able to

represent bundles of rays together with their un-

certainty, using uncertain direction vectors, to

represent scene points at infinity using homo-

geneous coordinates, and minimize the number

of parameters to be estimated. The main chal-

lenge lies in the inclusion of the statistics into

an adequate minimal representation.

2 Related Work

Multi-camera systems are proposed by many

authors. E. g. MOSTAFA & SCHWARZ (2001)

present an approach to integrate a multi-camera

system with GPS and INS. NISTÉR et al. (2004)

discuss the advantage to use a stereo video rig in

order to avoid the difficulty with the scale trans-

fer. SAVOPOL et al. (2000) report on a multi-

camera system for an aerial platform to increase

the resolution. In all cases, the multi-view ge-

ometry is only used locally.

Orientation of a stereo rig is discussed

in HARTLEY & ZISSERMAN (2000, p. 493).

MOURAGNON et al. (2009) propose a bun-

dle solution for stereo rigs working in terms

of direction vectors, but they minimize the

angular error without considering the covari-

ance matrix of the observed rays. FRAHM et

al. (2004) present an approach for orienting a

multi-camera system, however not applying a

statistically rigorous approach. MUHLE et al.

(2011) discuss the ability to calibrate a multi-

camera system in case the views of the indi-

vidual cameras are not overlapping. IKEDA et

al. (2003) describe a geometric and photometric

camera calibration for omnidirectional multi-

camera systems using a calibration board and a

total station. CARRERA et al. (2011) calibrate a

general multi-camera system by mapping each

camera individually and applying a global bun-

dle adjustment afterwards. ZOMET et al. (2001)

discuss the problem of re-calibrating a rig of

cameras due to changes of the internal param-

eters. Bundle adjustment of camera systems

are extensively discussed in the thesis of KIM

(2010).

Uncertain geometric reasoning using pro-

jective entities is extensively presented in

KANATANI (1996), but only using Euclideanly

normalized geometric entities and allowing the

estimation for some single geometric entities

only. HEUEL (2004), eliminating these de-

ficiencies, proposes an estimation procedure

which does not eliminate the redundancy of the

representation and also cannot easily include el-

ementary constraints between observations, see

MEIDOW et al. (2009). The following devel-

opments are based on the minimal representa-

tion schemes proposed in FÖRSTNER (2012)

which reviews previous work and generalizes

e.g. BARTOLI (2002).
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3 Concept

3.1 Model for a moving single-view
Camera

3.1.1 Image coordinates as observations

Using homogeneous coordinates

x′
it = λitPtXi = λitKtR

T
t [I3 | −Zt]Xi (4)

with a projection matrix

Pt = [Kt | 03×1]M
−1
t , Mt =

[
Rt Zt

0T 1

]
makes the motion of the camera explicit. It

contains for each pose t: the projection center

Zt and the rotation matrix Rt, describing the

translation and rotation between the scene co-

ordinate system and the camera system, and the

calibration matrix Kt, containing parameters for

the principal point, the principal distance, the

affinity, and possibly lens distortion, see MC-

GLONE et al. (2004, 3.149 ff.) and (10). In

case of an ideal camera with principal distance

c, thus Kt = Diag([c, c, 1]), and Euclidean nor-

malization of the homogeneous image coordi-

nates with the k-th row AT
t,k of the projection

matrix Pt

x′e
it =

PtXi

AT
t,3Xi

=

⎡⎣ AT
t,1Xi/A

T
t,3Xi

AT
t,2Xi/A

T
t,3Xi

1

⎤⎦ (5)

we obtain (1) and (2), e. g.

x′
it = AT

t,1Xi/A
T
t,3Xi.

Observe the transposition of the rotation ma-

trix in (4), which differs from HARTLEY &

ZISSERMAN (2000, (6.7)), but makes the mo-

tion of the camera from the scene coordinate

system into the current camera system explicit,

see KRAUS (1997).

3.1.2 Ray directions as observations

Using the directions from the cameras to the

scene points we obtain the collinearity equa-

tions

kx
′
it = λit

kPtXi = λitR
T
t (Xi −Zt)

= λit[I3 | 0]M−1
t Xi . (6)

Instead of Euclidean normalization, we now

perform spherical normalization xs = N(x) =

x/|x|, where |x| is the length of x, yielding the

collinearity equations for camera bundles

kx
′s
it = N(kPtXi) . (7)

We thus assume the camera bundles to be given

as T sets {kxit, i ∈ It} of normalized direc-

tions for each time t of exposure. The unknown

parameters are the six parameters of the motion

in kPt and the three parameters of each scene

point. Care has to be taken with the sign: We

assume the negative Z-coordinate of the cam-

era system to be the viewing direction. The

scene points then need to have non-negative

homogeneous coordinate Xi,4, which in case

they are derived from Euclidean coordinates via

Xi = [Xi; 1] always is fulfilled. In case of

ideal points, we therefore need to distinguish

between the scene points [Xi; 0] and [−Xi; 0]
which are points at infinity in opposite direc-

tions.

As a first result we observe: The difference

between the classical collinearity equations and

the collinearity equations for camera bundles

is twofold. 1.) The unknown scale factor is

eliminated differently: Euclidean normalization

leads to the classical form in (5), spherical nor-

malization leads to the bundle form in (7). 2.)

The calibration is handled differently: In the

classical form it is made explicit, here we as-

sume the image data to be transformed into

camera rays taking the calibration into account.

This will make a difference in modelling the in-

dividual cameras during self-calibration, a topic

we will not discuss in this paper.

3.1.3 Handling far and ideal scene points

Handling far and ideal scene points can easily

be realized by also using spherically normal-

ized coordinates Xs
i for the scene points lead-

ing to

kx
′s
it = N(kPtX

s
i ) . (8)

Again care has to be taken with points at infin-

ity.

The confidence ellipsoid of 3D points can

be used to visualize the achieved precision, in

case the points are not too far. For a simul-

taneous visualization of confidence ellipsoids

of 3D points which are close and far w.r.t. the

origin one could perform a stereographic pro-

jection of the 3D-space into a unit sphere, i.e.
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X �→ X/(1+ |X|) together with the transfor-

mation of the confidence ellipsoids. The rel-

ative poses of points close to the origin then

will be preserved, far points will sit close to

the boundary of the sphere. Their uncertainty

in distance to the origin then can be inferred us-

ing their distance to the boundary of the sphere.

3.2 Model for Sets of Camera
Systems

With an additional motion Mc(Rc,Zc) for each

camera of the camera system we obtain the gen-

eral model for camera bundles

kx
′s
itc = N

(
[I3 |03×1] M−1

c M−1
t Xs

i

)
(9)

which makes all elements explicit: The ob-

served directions x ′
itc(

kx
′
itc) represented by

normalized 3-vectors, having two degrees of

freedom, unknown or known scene point coor-

dinates Xi(X
s
i ), represented by spherically nor-

malized homogeneous 4-vectors, having 3 de-

grees of freedom, unknown pose Mt of camera

system, having 6 parameters for each time a set

of images was taken and unknown calibration

Mc containing the relative pose of the cameras

which are assumed to be rigid over time, hav-

ing 6 parameters per camera. We refer relative

poses to the first camera as reference camera

with R = I3 and Z = 0.

3.3 Generating Camera Directions
from observed Image Coordi-
nates

In most cases the observations are made using

a digital camera whose sensor is approximately

planar. The transition to the directions of the

camera rays needs to be performed before start-

ing the bundle adjustment. As mentioned be-

fore, this requires the internal camera geom-

etry to be known. Moreover, in order to ar-

rive at a statistically optimal solution, one needs

to transfer the uncertainty of the observed im-

age coordinates to the uncertainty of the camera

rays. As an example we discuss two cases.

3.3.1 Perspective cameras

In case of perspective cameras with small image

distortions, we can use the camera-specific and

x’
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kX

Yk
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Z
k

k
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c > 0

’x
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Fig. 2: The direction of the homogeneous image
coordinate vector and the direction of the ray is
different depending on the sign of the principal
distance c.

maybe temporally varying calibration matrix

K(x′, q)=

⎡⎣c cs x′
H+Δx(x′, q)

0 c(1+m) y′H+Δy(x′, q)
0 0 1

⎤⎦ (10)

for the forward transformation

gx
′
= K(x′, q) kx

′s
(11)

leading to the observable image coordinates
gx′

. The g indicates that the mapping can han-

dle general distortions via additional parame-

ters q. Besides the basic parameters, namely

the principal distance c with the image plane
kZ = c, the shear s, the scale difference m,

and principal point x′
H , the calibration matrix

contains additive corrections for modelling lens

distortion or other deviations, which depend on

the additional parameters q and on x, the po-

sition of the image point. In case of small de-

viations (11) can easily be inverted. However,

one must take into account the different signs of

the coordinate vector and the direction from the

camera to the scene point (Fig. 2),

kx
′s ≈ s N

(
K−1(gx

′
, q) gx

′)
(12)

with s ∈ {−1,+1} such that kx
′s
3 < 0. This

relation is independent of the sign of the third

element of the calibration matrix. Given the

covariance matrix Σgx′gx′ of the image coordi-

nates, the covariance matrix of kx
′
can be deter-

mined by variance propagation, omitting the de-

pendency of the calibration matrix on the point

coordinates x′. Note that a point gx′
at infinity

corresponds to the direction kx
′

perpendicular

to the viewing direction.
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Fig. 3: Relation between sensor point, viewing
direction and viewing ray.

3.3.2 Omnidirectional single-viewpoint
cameras

As an example for an omnidirectional single-

view camera we take a camera with a fisheye-

lens. We model the fisheye objective with the

equidistant-model described in ABRAHAM &

FÖRSTNER (2005). The interior orientation

of a camera is determined separately by cam-

era calibration according to ABRAHAM & HAU

(1997) using Chebyshev polynomials. Using

the equidistant-projection and applying all cor-

rections, we obtain image points ex which

lie closer to the principal point H than the

gnomonic projections gx of the scene points

(Fig. 3). The ray direction kx
′s

can be derived

from ex by using the normalized radial distance

r′ = |ex| growing with the angle φ between the

viewing direction and the camera ray.

Again, the uncertainty of the image coordi-

nates can be transformed to the uncertainty of

the direction kx
′s

of the camera ray via variance

propagation. In all cases the covariance matrix

of the camera ray is singular, as the normalized

3-vector only depends on two observed image

coordinates.

3.4 The Estimation Procedure

The collinearity equations in (9) contain three

equations per observed camera ray and four pa-

rameters for each homogeneous scene point,

though, both being unit vectors. Therefore, the

corresponding covariance matrices are singu-

lar and more than the necessary parameters are

contained in the equations. We therefore want

to reduce the number of parameters to the nec-

essary minimum. We do this after linearization.

3.4.1 Linearization and update for pose
and relative pose parameters

Linearization of the non-linear model leads to

a linear substitute model which yields correc-

tion parameters that allow to derive corrected

approximate values. We start with approximate

values for the poses of the reference camera

given for every time of exposure t = 1, ..., T
by Ra

t for the rotation matrix and Za
t for the

projection center, the relative poses from the

reference camera to each other camera c =
2, ..., C given by Ra

c and Za
c , Xsa

i for the i =
1, ..., I spherically normalized scene points,

and xa
itc = N

(
[I3 |03×1] M−1

c M−1
t Xs

i

)
for the

normalized directions.

The Euclidean coordinates will be simply

corrected by Z = Za +ΔZ, the three param-

eters ΔZ are to be estimated. The rotation ma-

trix will be corrected by pre-multiplication with

a small rotation, thus by R = R(ΔR)Ra ≈
(I3 + S(ΔR))Ra, where the small rotation

R(ΔR) depends on a small rotation vector ΔR
that is to be estimated.

3.4.2 Reduced coordinates and update
of coordinates

The correction of the unit vectors is performed

using reduced coordinates (FÖRSTNER 2012).

These are coordinates, say the 2-vector xr of

the direction xs, in the two-dimensional tangent

space null
(
xsaT

)
= [r, s] of the unit sphere S2

evaluated at the approximate values xsa

xr = null
T
(
xsaT

)
xs =

[
rTxs

sTxs

]
. (13)

The corrections Δxr of these reduced coordi-

nates are estimated. This leads to the following

update rule

xs = N
(
xsa + null

(
xsaT

)
Δxr

)
. (14)

Obviously, the approximate vector xsa is cor-

rected by

Δx = null

(
xsaT

)
Δxr (15)

and then spherically normalized to achieve the

updated values xs.

Using (13) we now are able to reduce the

number of equations per direction from three to

two, making the two degrees of freedom of the
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observed direction explicit. This results in pre-

multiplication of all observation equations on

(9) with nullT
(
kx

saT
itc

)
. Following (15) we use

the substitution ΔXs
i = null

(
XsaT

i

)
ΔXr,i

when linearizing the scene coordinates. Then

we obtain the linearized model

kxr,itc + v̂xr,itc (16)

= JTRaT
c RaT

t S(Xa
i0)Δ̂Rt

−Xa
ihJTRaT

c RaT
t Δ̂Zt

+ JTRaT
c S

(
RaT

t (Xa
i0−Xa

ihZ
a
t )
)
Δ̂Rc

−Xa
ihJT RaT

c Δ̂Zt

+ JT[I3 |03](M
a
c )

−1(Ma
t )

−1
null

(
XaT

i

)
Δ̂Xri

with

J =
1

|x|

(
I3−

xxT

xTx

)
null(xT)

∣∣∣∣
x=kx

a

itc

(17)

and the partitioned homogeneous vector Xs =

[X0;Xh] depending on Δ̂Rt, Δ̂Zt, Δ̂Rc,

Δ̂Zc and Δ̂Xr,i.

We now arrive at a well-defined optimization

problem: find Δ̂Xr,i, Δ̂Rt, Δ̂Zt, Δ̂Rc, Δ̂Zc

minimizing

Ω
(
Δ̂Xr,i, Δ̂Rt, Δ̂Zt, Δ̂Rc, Δ̂Zc

)
(18)

=
∑
itc

v̂T
r,itcΣ

−1
xr,itcxr,itc

v̂r,itc

with the regular 2×2-covariance matrices

Σxr,itcxr,itc (19)

= kJ
T

s (
kx

a

itc)

[
Σxitcxitc 0

0T 0

]
kJs(

kx
a

itc) .

4 Experiments

4.1 Implementation Details

We have implemented the bundle adjustment as

a Gauss-Markov model in Matlab. Observa-

tions are bundles of rays, the interior orienta-

tions of all cameras of the camera system are

assumed to be known. To overcome the rank

deficiency we define the gauge by introducing

seven centroid constraints on the approximate

values of the scene points. This results in a free

bundle adjustment, where the trace of the co-

variance matrix of the estimated scene points

is minimal. We can robustify the cost function

by down-weighting measurements whose resid-

ual errors are too large by minimizing the robust

Huber cost function HUBER (1981).

For the initialization sufficiently accurate ap-

proximate values for the scene point coordi-

nates Xa
i and for the translation and the rota-

tion of the relative poses Ma
c of each camera in

the camera system of the reference camera as

well as for the poses Ma
t of the reference cam-

era in the scene coordinate system at the times

of synchronized exposure are needed. Firstly,

we determine the pose of each camera without

considering the cameras as a rigid multi-camera

rig using the bundle adjustment program Au-

relo provided by LÄBE & FÖRSTNER (2006).

With the first camera as the reference camera

we then determine approximate values for all

c = 2, ..., C relative poses Ma
c robustly using

the median quaternion and median translation

over all t = 1, ..., T unconstrained estimated

relative poses. Scene points are triangulated by

using all corresponding image points that are

consistent with the approximated relative poses

and the poses of the reference camera in the

scene coordinate system. Ray directions with

large residuals are discarded.

4.2 Test on Correctness and
Advantage

We first check the correctness of the imple-

mented model and then show the advantage of

including far points or points with glancing in-

tersections within the bundle adjustment based

on a simulated scenario.

4.2.1 Simulated Scenario

We simulated a multi-camera system moving

on a radiused square, observing 50 close scene

points and 10 scene points far away at the hori-

zon, i.e. at infinity (Fig. 4). The multi-camera

system contains three single-view cameras. Ev-

ery scene point is observed by a camera ray

from all 20 positions of the camera system. The

simulated set-up provides a high redundancy

of observations. Assuming the standard devi-

ation of an image coordinate to be 0.3 pixel and
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Fig. 4: Simulation of a moving multi-camera sys-
tem (poses of reference camera shown as bold
tripods) with loop closing. Scene points nearby
(crossed dots) and at the horizon (empty dots)
being numerically at infinity are observed.

a principal distance of 500 pixel, we add nor-

mally distributed noise with σl = 0.3/500 ra-

diant on the spherically normalized camera rays

to simulate the observation process (Fig. 4). As

initial values for the bundle adjustment we ran-

domly disturb both the generated spherical nor-

malized homogeneous scene points Xs
i , which

are directions, by 6◦, the generated motion pa-

rameters of the reference camera Rt and Zt of

Mt by 3◦ and 2 cm, and the relative pose pa-

rameters of the remaining cameras Rc and Zc

of Mc by 3◦ and 10 % of the relative distances

between the projection centres.

The iterative estimation procedure stops after

eight iterations, when the maximum normalized

observation update is less than 10−6. The resid-

uals of the observed image rays in the tangent

space of the adjusted camera rays, which are

approximate angles between the rays in radi-

ants, do not show any deviation from the normal

distribution. The estimated a posteriori vari-

ance factor σ̂2
0 = 0.99252 approves the a pri-

ori stochastic model with the variance factor

σ2
0 = 1. In order to test if the estimated ori-

entation parameters and scene point coordinates

represent the maximum likelihood estimates for

normally distributed noise of the observations,

we have generated the same simulation 2000

times with different random noise. The mean

of the estimated variance factors is not signif-

icantly different from one, indicating an unbi-

Fig. 5: Multi-camera system consisting of five
overlapping perspective camera views: Infrared
camera on top, RGB camera in the middle and
three monochromatic cameras. The distances
from the RGB camera to the others are about 10
cm.

ased estimator with minimum variance. These

results confirm the correctness of the approach

and implementation.

4.2.2 Decrease of rotational precision
excluding far points

Bundle adjustment programs, such as Aurelo,

cannot handle scene points with glancing inter-

sections, e.g. with maximal intersection angles

lower than γ = 1 gon, which therefore are ex-

cluded in the estimation process to avoid nu-

merical difficulties. Far scene points, however,

can be observed over long periods of time and

therefore should improve the quality of the ro-

tation estimation significantly. We investigate

the decrease of precision of the estimated rota-

tion parameters of R̂t and R̂c when excluding

scene points with glancing intersection angles.

In detail, we will determine the average empiri-

cal standard deviation σαt = σ̂0

√
trΣ

̂Rt
̂Rt
/3

and σαc = σ̂0

√
trΣ

̂Rc
̂Rc
/3 for all esti-

mated rotation parameters and report the av-

erage decrease of precision by excluding far

points. They are determined by the geometric

mean, namely exp
[∑T

t log(σ′
αt
/σαt)/T

]
and

exp
[∑C−1

c log(σ′
αc
/σαc)/(C − 1)

]
, where

σ′
αt

and σ′
αc

represent the resulting average em-

pirical standard deviations when scene points

whose maximal intersection angle are lower

than a threshold γ are excluded.

We determine the decrease of precision for

the estimated rotation parameters by exclud-

ing a varying number of scene points at infin-

ity on the basis of the introduced simulation
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Fig. 6: Left: Illustration of the estimated scene points and poses of the reference camera. The red
line denotes the known length on a poster for scale definition. Right: The estimated relative poses.

of a moving multi-camera system. Again we

generate 50 scene points close to the multi-

camera positions and vary the number of scene

points at infinity to be 5, 10, 20, 50 and

100. The resulting average decrease in preci-

sion of the estimated rotations in M̂c is 6.21 %,

8.98 %, 19.90 %, 42.29 % and 75.60 % and in

M̂t 7.15 %, 11.77 %, 27.67 %, 54.56 % and

91.28 %, respectively. This strongly proves the

points at infinity to have a highly relevant posi-

tive influence on the rotational precision.

4.3 Calibration of Multi-Camera
Systems

4.3.1 Calibration with overlapping views

We now describe the calibration of the camera

system shown in Fig. 5 with highly overlapping

views, which is used for 3D reconstruction of

vines. In order to determine the relative poses

of the multi-camera system we apply the bun-

dle adjustment to 100 images of a wall draped

with highly textured posters. The images were

taken at 20 stations in a synchronized way. We

use Aurelo without considering the known rel-

ative orientation between the cameras to ob-

tain an initial solution for each camera and the

scene points. The dataset contains 593,412 im-

age points and 63,140 observed scene points.

Starting from an a priori standard deviation

of the image coordinates of σl = 1 pixel, the

a posteriori variance factor is estimated with

σ̂2
0 = 0.112 indicating the automatically ex-

tracted Lowe points to have an average preci-

sion of approximately 0.1 pixel. This high pre-

cision of the point detection results mainly from

the good images and the calibration quality of

the camera used. Fig. 6 illustrates the estimated

scene points and poses as well as the estimated

relative poses.

The estimated uncertainty of the estimated

rotations of the cameras with regard to the ref-

erence camera is 0.1 mgrad – 0.2 mgrad around

the viewing direction axis and 0.4 mgrad –

0.8 mgrad orthogonal to it. We scale the pho-

togrammetric model by using a measured dis-

tance of 1.105 m with an error of about 0.1 %.

The uncertainty of the estimated relative trans-

lations is 0.02 mm – 0.04 mm in viewing direc-

tion and 0.1 mm – 0.2 mm orthogonal to it.

4.3.2 Multi-camera system Ladybug 3

The omnidirectional multi-camera system La-

dybug 3 consists of six cameras, five of which

are mounted in a circular manner, one show-

ing upwards, together covering 80 % of the

full viewing sphere. Neighbouring images only

have a very small overlap, which is too weak

for system calibration without additional in-

formation. We have mounted the omnidirec-

tional multi-camera system Ladybug 3 on a

robot (Fig. 7a), which executes a circular move-

ment with a radius of 50 cm in a highly textured

room while the Ladybug is taking synchronized

images. This ensures overlapping images of

different cameras at different times of the ex-

posure. Approximate values for this image se-

quence consisting of 150 images taken by the

five horizontal cameras at 30 exposure times

are obtained with Aurelo that provides 135,012

image points of 24,078 observed scene points.

The resulting 150 camera poses are shown in

Fig. 7b.

After applying our bundle adjustment the es-

timated a posteriori variance factor amounts to

σ̂2
0 = 0.252 using a priori stochastic model with

σl = 1 pixel for the image points, indicating the
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(a)

(b)

Fig. 7: (a) Ladybug 3 on robot, (b) Estimated
camera poses.

automatically extracted Lowe points to have a

quite good precision. Two parallel walls with a

known distance of 7.01 m can be estimated out

of the estimated scene points, which is used to

define the scale between the estimated relative

camera poses. The estimated rotation parame-

ters show a very high precision. The maximal

deviation to the manufacturer’s calibration pa-

rameters is 0.6◦. The estimated uncertainties of

the rotations and translations between the cam-

eras are in the order of 1.5 mgrad – 2.5 mgrad

and 0.1 mm – 0.2 mm, respectively.

To compare the estimated poses with the

ones provided by the manufacturer we apply a

rigid transformation which minimizes the dis-

tances between the estimated and given projec-

tion centers. The resulting estimated relative

poses in Fig. 8 show significant translational de-

viations in the order of 1 mm – 4 mm compared

to the manufacturer’s calibration parameters.

The interior angles differ from a regular pen-

tagon where each interior angle is 108◦ by up

to 13◦. Possible reasons for the deviations are

to few observed scene points near to the camera

system and that we have used a different inte-

rior orientation for each camera from our own

calibration, which is different from that of the

manufacturer.
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Fig. 8: Comparison of relative poses: estimated
(solid) and manufacturer given (dashed).

Fig. 9: Illustration of the UAV and the stereo cam-
eras used in the MoD-project. One stereo pair is
looking forward and one backwards giving a wide
field of view.

4.3.3 Multi-camera system with fisheye
lenses

We make the same investigation on an im-

age sequence consisting of 96 images taken

by four synchronized cameras with Lensagon

BF2M15520 fisheye lenses having a field an-

gle up to 185◦. The cameras are mounted on an

UAV (unmanned aerial vehicle) to generate two

stereo pairs, one looking ahead and one look-

ing backwards, providing a large field of view

(Fig. 9). The UAV moves along a circle at a

height of 5 m above a parking lot while rotating

around its own axis, providing four overlapping

images at each time of exposure.

Fisheye objectives cause severe distortions at

the image boundary. Thus, in order to find cor-

responding points using the SIFT-operator we

need to use a transformation between overlap-

ping images which is very similar to a con-

formal projection, i.e. one that preserves an-

gles because the SIFT operator is translation,
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Fig. 10: Sample images of the Ladybug 3 dataset.

scale and rotation invariant. For this reason we

transform the original images using the stere-

ographic fisheye model. This ensures a con-

formal mapping between two different images

when observing a scene at infinity as they them-

selves are conformal mappings of the spherical

image of the scene. We obtain low deviations

from a similarity transformation for locally pla-

nar points not too close to the cameras, fulfilling

the preconditions for rotation and scale invari-

ant SIFT-matching.

Aurelo provides approximate values for the

96 camera poses and 81,821 image points of

15,344 observed scene points which are trans-

formed into image directions using (16). Af-

ter the bundle adjustment the estimated variance

factor is σ̂2
0 = 1.472 using an a priori stochastic

model with σl = 1 pixel for the image points,

indicating a quite poor precision of the point de-

tection. The cause for this low precision, which

still needs to be analyzed, may be a lower image

quality caused by both, the fisheye projection,

or vibrations. The uncertainty of the estimated

rotations and translations between the cameras

within a stereo pair is 2 mgrad – 6 mgrad and

0.5 mm – 1.5 mm, respectively, and the uncer-

tainty of the estimated rotations and transla-

tions between the forward and backward look-

ing stereo camera systems is 5 mgrad – 9 mgrad

and 1.5 mm – 2.5 mm.

4.4 Decrease of rotational Precision
excluding far Points

In order to examine the decrease of the rota-

tional precision of the estimated camera sys-

tem poses we apply the bundle adjustment to

an image sequence consisting of 360 images

taken by four of the six cameras of the multi-

camera system Ladybug 3 (Fig. 10) excluding

and including far points. The Ladybug 3 is

mounted on a hand-guided platform and is trig-

gered for one shot per meter with the help

of an odometer. Approximate values are ob-

tained with Aurelo by combining the individual

cameras into a single virtual camera by adding

distance-dependent corrections to the camera

rays (SCHMEING et al. 2011).

The dataset contains 10,891 of 26,890 scene

points observed with maximal intersection an-

gles per point significantly lower than γ =
1 gon (histogram in Fig. 11a�. The average stan-

dard deviation of each estimated rotation pa-

rameter is shown in Fig. 11b showing the indi-

vidual gain in precision, sorted according to as-

cending rotational standard deviation. For some

images the gain obviously is very large. The

gain is mainly obtained due to a higher num-

ber of observed scene points at the individual

poses, which can be seen in the scatter plot in

Fig. 11c. Some of the estimated rotations show

very large differences in the precision, demon-

strating the relevance of the far scene points in

the Ladybug 3 dataset. The use of far points re-

sults in an almost constant precision of the rota-

tion parameters over all camera stations, com-

pared to the results of the bundle adjustment if

far points are excluded. The estimated a pos-

teriori variance factor is σ̂2
0 = 1.052 using an

a priori stochastic model with σl = 1 pixel for

the image points, indicating a quite poor preci-

sion of the point detection which mainly results

from the low image quality.

5 Conclusions and Future Work

We proposed a rigorous bundle adjustment for

omnidirectional and multi-view cameras which

enables an efficient maximum likelihood esti-

mation using image and scene points at infin-

ity and which can be used to calibrate a general
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(a) Number of scene points with small intersection angles.

(b) Average empirical standard deviation of estimated rotations.

(c) Scatter plot of σαt against the number of observed scene points at t.

Fig. 11: The histogram in (a) shows the number of scene points in the multi-camera dataset with
small intersection angles. The average precision σαt determined by excluding and including scene
points with γ < 1 gon for all poses t = 1, ..., T is compared to each other in (b) and against the
number of observed scene points in (c).

multi-camera system. Our experiments on sim-

ulated data show that scene points at the hori-

zon can stabilize the orientation of the cam-

era rotations significantly. Future work will

focus on improving the precision of the rela-

tive poses by testing different image acquisition

strategies. Furthermore, we are developing a

fast C-implementation and eventually will ex-

tend our software by a self calibration part.

Software

The Matlab code of the proposed bun-

dle adjustment will be made available at:

www.ipb.uni-bonn.de/bacs.
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LÄBE, T. & FÖRSTNER, W., 2006: Automatic
Relative Orientation of Images. – 5th Turkish-
German Joint Geodetic Days.

MCGLONE, C.J., MIKHAIL, E.M. & BETHEL,
J.S., 2004: Manual of Photogrammetry. – Amer-
ican Society of Photogrammetry and Remote
Sensing.

MEIDOW, J., BEDER, C. & FÖRSTNER, W., 2009:
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A Robust Iterative Kalman Filter Based On Implicit
Measurement Equations

RICHARD STEFFEN,

Keywords: Kalman filter, implicit iterative update, estimation

Summary: In the field of photogrammetry, com-
puter vision and robotics recursive estimation of time
dependent processes is an important task. Usually
Kalman filter based techniques are used which rely
on explicit model functions that directly and explic-
itly describe the effect of the parameters on the ob-
servations. However, some problems naturally result
in implicit constraints between the observations and
the parameters, for instance all those resulting in ho-
mogeneous equation systems. By implicit we mean
that the constraints are given by equations that are
not easily solvable for the observation vector. We
propose an iterative extended Kalman filter based on
implicit measurement equations. The derived filter
is useful for various applications, where the possibil-
ity to use implicit constraints simplifies the model-
ing. As an extension, we introduce a robustification
technique similar to TING et al. (2007) and HUBER
(1981) which down-weights the influence of potential
outliers. The feasibility of the proposed framework is
demonstrated at a number of typical computer vision
applications.

Zusammenfassung: ���
���	 ���	�����	 �������
�����	 ��� ��������	��� ��������
���������
����. In
der Photogrammtrie, der Computer Vision und der
Robotik finden rekursive Schätzungen ein weites An-
wendungsspektrum. Üblicherweise werden in die-
sem Zusammenhang Kalman-Filter-basierte Techni-
ken angewendet, welche auf expliziten Beobach-
tungsmodellen basieren, die den Effekt der Beobach-
tungen auf die Parameter direkt und explizit beschrei-
ben. Einige Probleme sind jedoch aufgrund ihrer Na-
tur als implizite Bedingungen zwischen den Para-
metern und den Beobachtungen formuliert, wie zum
Beispiel Bedingungen unter Verwendung homogener
Koordinaten. Unter impliziten Bedingungen verste-
hen wir Gleichungen, welche nicht trivial nach ei-
nem Beobachtungsvektor aufgelöst werden können.
Diese Arbeit präsentiert einen iterativen erweiterten
Kalman-Filter, welcher die Verwendung impliziter
Beobachtungsgleichungen ermöglicht. Als eine Er-
weiterung führen wir ein Schema zur Robustifizie-
rung nach TING et al. (2007) and HUBER (1981)
ein, welches den Einfluss potenzieller Ausreißer re-
duziert. Die Nützlichkeit dieses Werkzeuges wird an
einigen typischen Beispielen aus dem Bereich der
Bildverarbeitung demonstriert.

1 Introduction

Recursive estimation and Kalman filtering is a
classical technique (KALMAN 1960) and has
been widely used in robotics and computer vi-
sion (WELCH & BISHOP 1995) to tackle prob-
lems such as positioning, object reconstruction,
object tracking or calibration tasks. So far, the
applications of Kalman filter techniques was
limited to problems where the observations are
represented by an explicit function in the un-
known parameters.

However, many problems encountered in
computer vision naturally result in implicit
constraints between the observations and the
parameters (HARTLEY & ZISSERMAN 2000,
HEUEL 2004, PERWASS et al. 2005, HEUEL
2001). An example is the iterative estimation of
a 2d line from 2d point observations (section 3).

Although it is always possible to reduce the
solution of an implicit problem to the solution
of an explicit problem (KOCH 1999, p.231ff) by
introducing pseudo parameters, it is often much
easier and straightforward to specify the mea-
surement equations as implicit constraints relat-
ing the state vector to the observation vector.
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The linear Kalman filter using explicit func-
tions has been extended to the case of non-
linear functions known as the extended Kalman
filter (EKF) to deal with non-linear models and
an iterative scheme (IEKF) to take into ac-
count the change of the linearization point. The
only publication the author knows considering
implicit constraints within Kalman filtering is
SOATTO et al. (1994). However, the method
only allows for a single iteration, equivalent to
the classical EKF without taking into account
the advantage of the IEKF.

The focus of this paper is on providing the
foundations for integrating implicit constraints
into a Kalman filter using the iterative scheme
of the IEKF in order to enrich the applica-
tion domain of the popular Kalman filter ap-
proach. As an enhancement to STEFFEN &
BEDER (2007), we show that this novel frame-
work is a generalization of the classical iterative
Kalman filter and we demonstrate the benefit of
the introduced approach for a variety of appli-
cations.

The traditional Kalman filter consists of two
steps, a time update and a measurement up-
date. Since the challenges for implicit con-
straints are in applying the measurement up-
date, we mainly investigate the integration of
implicit constraints to the update step.

Recently, the unscented Kalman filter
(JULIER & UHLMANN 1997) has obtained a
lot of attention which aims at improving the
stochastic properties of the filter. Instead, our
work aims at simplifying the specification of
measurement equations instead.

This work is structured as follows: first we
derive the prerequisites for the recursive esti-
mation algorithm based on implicit measure-
ment functions in section 2.1. Then we show,
how outliers can be detected and the algorithms
robustness can be improved. The final algo-
rithm is given in section 2.3. Finally we present
examples of computer vision tasks benefitting
from the proposed algorithm in section 3. This
comprises different tasks such as pose estima-
tion, point cloud fitting and structure from mo-
tion.

2 Kalman Filter Update using
Implicit Constraints

In this section we first derive the classical
Kalman filter update using explicit measure-
ment equations. Based on this concept, we
show how to incorporate implicit constraints
and adress the treatment of outliers. Section &�!
provides a summary of the final algorithm.

2.1 Update Estimation

The Kalman filter consists of a dynamic model
(prediction step) and a correction step (update
step). The dynamic model is given by a non-
linear function h which provides a predicted
state vector p̄ by p̄ = h(p) + ε, with p as the
previous state vector and ε as additional Gaus-
sian random noise that influences the state vec-
tor. In addition, the state vectors uncertainty is
given by its covariance matrixCpp that has to be
computed for the predicted state vector C̄pp by
error propagation from the previous time step.
After the prediction, we usually obtain mea-
surements to update the predicted state vector.
Note that this process can be interpreted as a
weighted mean (2), (3) of the predicted state it-
self and the state implied by the measurements.
The measurement equation is given by

z + v = f(p), (1)

with z as the observation vector, v as the esti-
mated residuals and f (p) as an explicit func-
tion of the state vector. In general, f is non-
linear and we have to update the state vector it-
eratively by pν = pν−1+Δpν until the conver-
gence point has been reached (Δpν = 0). The
index ν indicates the iteration counter. The up-
date vector Δpν can be obtained by an iterative
maximum likelihood estimate using

Δp
ν = Fvν (2)

= F
(
z − f (pν−1)− A(p̄− p

ν−1)
)

with A as the Jacobian of f w.r.t. the updated
state vector pν and F as the influence or gain
matrix by

F = C̄ppAT(Czz + AC̄ppAT)−1, (3)
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where Czz denotes the covariance matrix of the
observations. The last term A(p̄ − pν−1) in-
troduces the correction in the iterative extended
Kalman filter (WELCH & BISHOP 1995). The
covariance matrix of the estimated state vector
can be obtained by the error propagation of (2)
via

Cpp = (I − FA)C̄pp. (4)

See WELCH & BISHOP (1995) or THRUN et al.
(2001) for further details.

In the following, we derive a recursive es-
timation scheme for the case of non-linear
implicit measurement constraints using the
weighted mean idea. In complete analogy to
the classical explicit Kalman filter we start with
a parameter vector p̄1 (the state vector) and its
covariance matrix C̄1 resulting from some pre-
diction step. This state shall be updated accord-
ing to a newly acquired measurement vector
z that implicitly constrains the parameter vec-
tor. By implicit we mean that the measurement
model is given by a non-linear implicit function

g(p,z) = 0 (5)

relating the unknown parameter vector p to the
observation vector z. Such an implicit obser-
vation model equation is often much easier to
obtain than the explicit function z = f(p)
required by the classical Kalman filter. Note
that every explicit function is easily made im-
plicit by subtraction of the measurement vector
0 = g(p,z) = f(p)− z.

We start by analyzing how a new parameter
vector can be estimated from those observations
alone by looking at the Taylor expansion of the
observation model equation in (5)

0 ≈ g(pν ,zν) + A(p− p
ν) + BT(ẑ − z

ν)

= g(pν ,zν) + AΔp+ BT(ẑ − z + z − z
ν)
(6)

containing the Jacobians

A =
∂g(p,z)

∂p

∣∣∣∣
zν ,pν

B =
∂g(p,z)T

∂z

∣∣∣∣
zν ,pν

.

(7)
By rearranging this equation, we obtain the lin-
ear (left) and non-linear (right) contradiction

part

AΔp+BT(ẑ−z) = −g(pν ,zν)−BT(z−z
ν),
(8)

which are equal at the convergence point with
the final estimated observation vector ẑ. Given
enough such observations, the maximum like-
lihood estimate of the parameter vector p
is obtained by iteratively updating (FÖRST-
NER & WROBEL 2004) similarly to the classi-
cal Kalman filter by

p
ν = p

ν−1 +Δp
ν , (9)

with the non-linear contradiction cg in

Δp
ν = CAT(BTCzzB)−1

c
ν
g (10)

using the covariance matrix

C = (AT(BTCzzB)−1A)−1 (11)

and the non-linear contradiction vector

c
ν
g = −g(pν−1,zν−1)−BT(z−z

ν−1). (12)

We can also compute the residuals of the obser-
vations (MIKHAIL & ACKERMANN 1976)

v
ν = ẑ − z

= CzzB(BTCzzB)−1(cνg − AΔp
ν) (13)

yielding the linearization point for the next iter-
ation zν+1 = z + vν and pν from (9).

This estimation scheme for the computation
of a parameter vector from a given observa-
tion set using implicit constraints is also known
as the Gauss-Helmert model. Now we com-
bine this estimation scheme with the state vec-
tor from the prediction step to achieve an iter-
ative recursive update. To do so, we interpret
the predicted state vector p̄ as a direct observa-
tion z1 of the new state vector, which fits into
the above estimation scheme using the model
equation

0 = g1(p,z1) = p− z1 (14)

and the observations z1 = p̄ having the covari-
ance matrix Czz1 = Cpp1 = C̄pp. Because
this constraint is linear, the Jacobians are in this
case simply A1 = I and B1 = −I and indepen-
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dent of the linearization point. Considering the
prediction of the state vector alone, we would
obtain p = p̄ so that cg1 = 0. As the measure-
ment update is supposed to influence the state
vector and thereby the joint linearization point,
we have to cope with the change of the contra-
diction incurred by this change, which we call
Δcg1 in the following to reflect this important
property. Plugging the direct measurement (14)
and its Jacobians into (12) yields the contradic-
tion

Δcg1 = p̄− p
ν (15)

because g1(p
ν ,zν

1) = 0 is immediately ful-
filled for the direct observation. Therefore, also
the equation

C−1
pp1

Δp1 = C−1
pp1

Δcg1 (16)

holds, which will become useful in the follow-
ing.

We are now ready to formulate the recursive
estimation as a weighted mean process of two
variables being the predicted state p1 on the
one hand and the estimated state from the novel
observations p2 on the other hand. Hence, the
state update is given by

Δp = (C−1
pp1

+C−1
pp2

)−1(C−1
pp1

Δp1+C
−1
pp2

Δp2).
(17)

Substituting (16) and (10) into this weighted
mean update, we obtain

Δp =

Cpp︷ ︸︸ ︷
(C−1

pp1
+ C−1

pp2
)−1

(C−1
pp1

Δcg1 + AT
2 (B

T
2CzzB2)

−1
cg2). (18)

Using the well known matrix inversion
(WOODBURY 1950) identity

(K + LN−1M)−1 =

K−1 −K−1L(N +MK−1L)−1MK−1,

we can reformulate (18) and finally get

Δp
ν = Fcg2 + (I − FA2)Δcg1, (19)

with the substitution

F = Cpp1A
T
2 (B

T
2CzzB2 + A2Cpp1A

T
2 )

−1,
(20)

yielding the iterative update pν+1 = pν+Δpν .
The residuals are computed using (13)

v1 = −Δcg1 +Δp
ν (21)

v2 = CzzB2(BT
2CzzB2)

−1(cg2 − A2Δp
ν)
(22)

allowing to compute the contradiction for the
next iteration

cg2 = −g2(p
ν ,z2 + v2) + BT

2v2. (23)

Finally, note that the new covariance matrix of
the state vector is given by

Cpp = (I − FA2)C̄pp. (24)

As already mentioned, the explicit model of the
classical Kalman filter can be transformed to an
implicit model into the form 0 = f(p) − z.
Applying this to the novel framework, the Jaco-
bian w.r.t. the observation becomes B2 becomes
the negative identity matrix −I. Therefore, the
gain matrix in (20) boils down to the classical
gain matrix in (3). The contradiction in (23) be-
comes

cg2 = −(f(p)− z + v) + v

cg2 = z − f (p) (25)

Substitute cg2 and (15) into the update equation
(19) we obtain

Δp
ν = F(z − f(pν−1))

+ (I − FA2)(p̄− p
ν−1)

= (p̄− p
ν)

+ F
(
z − f(pν−1)− A2(p̄− p

ν−1)
)

as the iterative update to the approximate val-
ues pν = pν−1+Δpν . To be equal to the clas-
sical iterative Kalman filter, this can be rewrit-
ten into (2) using the predicted state at ν = 0
as the reference state. As a conclusion, the
classical iterative Kalman filter is just a spe-
cialization of the novel framework derived here.
Therefore, there is no need to compare the novel
Kalman filter with the classical Kalman filter as
from theory both are equal. A full proof can be
found in (STEFFEN 2009).

The presented algorithm is based on a least
squares optimization, which is known to be very
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sensitive to outliers. In the following section,
we show how the robustness of the presented
method can be increased by re-weighting the
observations.

2.2 Robustification by Re-Weighting

The classical Kalman filter as well as the esti-
mation scheme presented so far minimizes the
squared residuals of the observations, which is
known to be sensitive to outliers. We now show
how outliers may be detected by considering the
plausibility of the computed residuals with re-
spect to the expected uncertainty. By reducing
the influence of such observations on the esti-
mation, the robustness can be increased.

The weighted mean process is mainly influ-
enced by two error effects. First, an erroneous
dynamic model results in an erroneous predic-
tion. Second, noisy observations yield a correc-
tion effect to the estimated state.

In TING et al. (2007) a robust outlier detec-
tion is presented for the classical Kalman filter.
We will adapt this technique using an alterna-
tive re-weighting method proposed in HUBER
(1981). Assuming an error free prediction, the
update of the observations in v2 is normal dis-
tributed with zero mean. In this case, we are
able to detect outliers by simply normalizing
v2 with the inverse observation covariance Czz

and reweight the observations accordingly.
However, in realistic applications the predic-

tion model does not always hold true. Its ef-
fect on the improvement of the observations in
v2 can not be modeled in general and depends
on the system noise of the dynamic model. For
instance, in the structure-from-motion problem
an error in the camera position orthogonal to the
viewing direction results in a consistent transla-
tion fraction in the image coordinates.

One common way to solve this problem is
to approximate the complex deformation of the
estimated observation ẑ = z + v. This can
be done by choosing an approximation func-
tion depending on the expected deformations.
In the case of image observations, a homogra-
phy could be a good choice. The robust esti-
mation of this function and the detection of the
outliers can then be done by a RANSAC based
approach or by a robustified least square solu-
tion. However, such a procedure for outlier de-
tection is often quite expensive.

Fig. 1: Full cosine wavelength 2π, sampled with
500 samples, noise is 0.05, system noise 0.01,
5 percent outliers with strength of 2, iteration to
convergence.

Fig. 2: Recursive estimation using the non-
robustified and the robustified version of the
Kalman filter.

From another point of view, the influence of
the erroneous prediction is small if the system
noise is large enough to compensate for the pre-
diction error, which should be the case for a
well approximating dynamic model. Thus, we
are able to robustify the update by reweighting
the observations in the following sense.

We first normalize the residuals v2j with the
uncorrelated observation standard deviation to
get standard normal distributed test values

cj =
v2j
σj

. (26)

One can argue that the normalization should be
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done using σv from Cvv. However, in the case
that all observations can be assumed to have the
same influence (equal redundancy number) to
the parameter vector, it is suitable to use σz in-
stead. The absolute test values cj allow to de-
cide for each single observation, whether there
is a reason to consider it as an outlier. We then
compute a variance factor wj for each observa-
tion according to HUBER (1981)

wj =

{
1 if ‖cj‖ ≤ k
‖cj‖

k
if ‖cj‖ > k

, (27)

which does not alter the observations within the
range of k times the expected standard devia-
tion and reduces the effect of observations out-
side this range on the estimation. To perform
the desired re-weighting, we use the observa-
tion covariance matrix

C(ν)
zz = diag(w)C(0)

zz (28)

instead of the initially given covariance matrix
C(0)

zz in each iteration.
Following the experimental validation of

TING et al. (2007), we also demonstrate the ro-
bustification on the one dimensional estimation
of a cosinus curve containing some outliers. In
Fig. 1 the noisy observations with 5% of out-
liers are shown. Fig. 2 shows the non robust
and the robust version of the estimated curve
parameters. The robustification yields a much
smoother estimate not being perturbed by the
outliers.

2.3 The final Algorithm

We now summarize the recursive estimation al-
gorithm. From a previous estimation or pre-
diction step of the filter, a current state vector
p1 together with its covariance C11 is known.
We gather additional observations z2 together
with their covariance matrix C22 in a subse-
quent measurement step. The following algo-
rithm may then be applied to update the state
vector accordingly
1. set Δp = 0
2. set p = p̄

3. set v1 = 0
4. set v2 = 0, hence z0 = z

5. Iterate until Δpν is sufficiently small
(a) compute Jacobians A2 and B2 at pν and

zν

(b) compute the gain matrix F according to
(20)

(c) compute cg2 according to (23)
(d) compute Δcg1 according to (15)
(e) compute Δpν according to (19)
(f) update pν with Δpν

(g) compute v1 according to (21)
(h) compute v2 according to (22)
(i) update zν = z + v2

(j) compute normalized test values accord-
ing to (26)

(k) compute variance factor for all observa-
tions with (27)

(l) compute reweighted observation co-
variance matrix for the next iteration

6. compute Cpp according to (24) .
After the algorithm is converged, we finally ob-
tain the updated state vector p together with its
covariance matrix Cpp. The only problem spe-
cific part is the computation of the Jacobians in
step 5a, which has to be adapted. This com-
pletes the measurement update using the im-
plicit constraint and a subsequent time update
may be performed. Also note that for implicit
measurement equations obtained directly from
explicit equations by subtraction, the presented
algorithm yields the same results as the classi-
cal iterated extended Kalman filter.

3 Exemplary Applications

In this section we present some examples for
the usefulness of the proposed algorithm. Given
that theoretically both our proposed framework
and the traditional Kalman filter are equivalent,
we do not provide a numerical example. More
precisely, the results of the proposed algorithm
is equivalent to the results of the traditional
Kalman filters when using the explicit con-
straints as well when using the pseudo param-
eterization. Our motivation is to demonstrate
the straightforwardness using implicit measure-
ment equations for Kalman filter based estima-
tion. Note, the observation in a Kalman filter
must be minimal represented. For instance, us-
ing homogeneous observations lead to a singu-
lar covariance matrix of the observations and
the Kalman filter update will fail.

3.1 Line and Plane Estimation
The recursive estimation of basic primitives
from an uncertain point cloud is useful in a lot
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of applications, e.g. in the task of urban scene
reconstruction (POLLEFEYS et al. 2008). In this
section we demonstrate solutions for a recursive
2d line and a recursive 3d plane estimation. A
2d line can be represented given a set of two pa-
rameters l = {a, b}. For every Euclidean point
xi = {xi, yi} the incidence with the line l is
given by

yi = axi + b. (29)

Note, we are not able to reformulate this equa-
tion for both observations xi and yi explitely,
but we can easily rewrite (29) in the implicit
form

0 = g(p,z) = axi + b− yi. (30)

Using our proposed method to estimate the line
parameter recursively with (30) as measure-
ment update equation, the state vector contains
p = [a, b]T and the observation vector the ob-
served 2d points z = [xi, yi]

T. To handle ver-
tical lines, (30) should be replaced by 0 = lTx
with l as the homogeneous line with the un-
known parameter d (distance from origin) and
φ (angle of the line) and x as the homogeneous
2d point.

In a similar way, we are able to recursively
estimate a plane which approximates a given
point cloud. The incidence of an homogeneous
3d point Xi = [Xi, Yi, Zi, 1]

T and a plane
A = [n,−d]T can be expressed as a simple
bilinear constraint (Fig. 3).

0 = ATXi. (31)

Again, this constraint can not be easily refor-
mulated to an explicit observation measurement
function.

3.2 Pose Estimation with
parameterizable Shapes

Pose estimation from a single camera observa-
tion is another interesting application. In this
section, we give an example for the pose esti-
mation of a simple sphere. In the subsequent
section, we extend this approach to a more gen-
eral formulation.

Assume that we are able to observe the sil-
houette of a projected sphere with a known ra-
dius (Fig. 4). For every point xi on the silhou-

Fig. 3: Left: Recursive 2d line estimation from
uncertain 2d points. Right: Recursive 3d Plane
estimation from an uncertain 3d point cloud.

ette we can formulate an implicit measurement
equation in the following way:

The projection ray Li = [Lh,L0]T in
Pluecker representation can be obtained using
a known camera orientation by

Li = P̄T
Lxi =

[
Lh

L0

]
=

[
C
D

]
xi (32)

The inverse projection matrix P̄L can be com-
puted as a function of the camera orientation
and its calibration (HEUEL 2004). The dis-
tance between the projection ray of the silhou-
ette points Xi and the center of the sphere Xc

has to be the known radius R. We can express
this constraint implicitly using S(•) as the skew
matrix of a vector by

0 =
‖S(Lh

i )Xc + L0
i ‖

‖Lh
i ‖

−R

=
S(Cxi)Xc + Dxi

‖Cxi‖
−R. (33)

Estimating the center of a moving sphere ob-
serving the projected silhouette and assuming a
linear motion model, the state vector contains
the spheres center and its velocity. The obser-
vation vector contains the observed Euclidean
silhouette image coordinates. The parameters
C,D and R are assumed to be known and con-
stant.

3.3 Pose Estimation with meshed
Shapes

Pose estimation from a single camera often
deals with known shapes given as 3d meshes,
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Fig. 4: Recursive 3d pose estimation of a sphere
with known radius using observed silhouette
points in an image.

(ROSENHAHN et al. 2004). Extracting the
silhouette in the projected image of the ob-
served object, we can use an edge (from the
mesh) to point (from the silhouette) incidence
as the measurement equation, similar to the well
known ICP algorithm.

Fig. 5: Recursive 3d pose estimation with a sin-
gle camera of a known object. The object is rep-
resented as a meshed shape with observed sil-
houette points in an image (Image and silhouette
data provided by B. ROSENHAHN, MPI).

The pose of an arbitrary 3d object can be rep-
resented by its Euclidean position r and its ori-
entation q represented as quaternion. Position
and orientation are combined in the motion ma-
trix

M = M(r,q) =

[
R(q) r

0T 1

]
. (34)

Applying the motion to the homogeneous 3d
mesh point coordinates Xi given in a local ob-
ject system and projecting them into the image
space, we get the image coordinates of the pro-

jected mesh points with

xi = PMXi. (35)

Mesh edges are defined by two connected
points {a, b}. The congruent line in the image
space can be obtained by

lab = S(xa)xb. (36)

The incidence of the observed silhouette point
x′ and this projected edge is given by a bilinear
contraint

0 = lTabx
′. (37)

Substitute (35) and (36) into (37) we get the fi-
nal contraint

0 = (S(PMXa)PMXb)
Tx′. (38)

Using our recursive update model, the state vec-
tor contains the position and orientation of the
3d object and its velocities assuming a linear
prediction model given by

p = [r q ṙ q̇]T. (39)

The measurement vector contains the observed
Euclidean 2d silhouette points.

3.4 Artificial Horizon Estimation

In the field of robotics and navigation, an ar-
tificial horizon identification can be useful to
stabilize the system over a long period of time
as shown in NETO et al. (2011). In case of
real measurements, the horizon line measure-
ment is uncertain. This leads to undesirable ef-
fects in subsequent processes. In this case, the
first choice is a Kalman filter based smoothing.

Using an implicit measurement update equa-
tion leads to an astonishling simple solution.
The reference horizon in a normalized camera
coordinate system can be expressed as a line in
homogeneous representation by

lo =

⎡⎣ 0
1
0

⎤⎦ .

We denote the desired pitch by ω and roll by
κ. In homogeneous representation, we use the
simple measurement equation by the incidence
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Fig. 6: Artificial horizon estimation from a single
horizon line.

formulation

0 = S(l)RκRωl
o. (40)

Again, using our recursive update model the
state vector contains the roll and pitch angles
and their velocities by p = [κ ω κ̇ ω̇]T.
The measurement vector contains a line rep-
resentation, for instance by angle and distance
from origin (������� ��	��� !�	�) or by �	����
��� ��� ����	���� {a, b}, (29).

3.5 Structure from Motion with Points
and Lines

Following the approach of DAVISON (2003),
the motion of a single camera can be described
by the following state vector

p = [r q ṙ q̇ X1 . . .Xi L1 . . .Lj ]
T

(41)
comprising the camera state followed by a set
of feature parameters. The camera trajectory is
represented by its actual position r, its orienta-
tion quaternion q, its velocity vector ṙ and its
angular velocity vector q̇. The 3d point coordi-
nates are represented by their Euclidean points
Xi. Additionally we introduce 3d lines rep-
resented by its Pluecker coordinates Li. The
interior camera parameters are assumed to be
known.

We assume a linear time update model. In
the approach of DAVISON (2003) the measure-
ment model for object points is based on the co-
linearity equations, which can be written as ho-
mogeneous equations

xi = PX i with P = KR(q) [I3×3| − r] .
(42)

As our approach is able to cope with implicit
functions, we formulate the co-linearity con-
straint using the cross-product such that the co-
linearity equations can be stated as an implicit
equation

S(xi)PXi = −S(PXi)xi = 0. (43)

Obviously, those implicit constraints are equiv-
alent to the explicit constraints used in DAVI-
SON (2003). Also observe that they are non-
linear in the camera pose parameters. Using
only the point observations in our filter, the re-
sults are equal to the results achieved using a
classical iterative extended Kalman filter.

Now let us incorporate the lines in the same
way. The co-linearity equations for lines can be
represented in homogeneous coordinates by

lj = PLLj with PL
3×6

= PL(P), (44)

where PL can be computed as a function of the
camera orientation and its calibration (HEUEL
2004). This constraint can not be easily ex-
pressed as non homogeneous observations in an
explicit formulation. Using implicit constraints
we can reformulate (44) in the same easy way
to

S(lj)PLLj = −S(PLLj)lj = 0. (45)

Using two constrains for points in (43) and two
constrains for lines in (45) for every image point
and line as an observation, we can solve the
Kalman filter based update combining points
and lines in one update step.

4 Conclusion

We presented a novel derivation of a recursive
estimation framework in a Kalman filter ap-
proach which allows us to use implicit mea-
surement constraint equations rather than being
restricted to explicit ones. By using implicit
constraints, the task of modeling recursive es-
timation schemes is eased significantly. Fur-
thermore, we presented an improvement to the
framework in order to deal with outliers in the
observations. Instead of the elimination of ob-
servations, we used a re-weighting method.

We demonstrated the usefulness of this new
algorithm on exemplary classical computer vi-
sion tasks.
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The presented method is applicable to a
broad range of time driven estimation problems,
especially including all those resulting in homo-
geneous equation systems.
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Summary: Floodplain ecosystems offer valuable
carbon sequestration potential. In comparison to
other terrestrial ecosystems, riparian forests have a
considerably higher storage capacity for organic
carbon (Corg). However, a scientific foundation for
the creation of large-scale maps that show the spa-
tial distribution of Corg is still lacking. In this paper
we explore a machine learning approach using re-
mote sensing and additional geographic data for an
area-wide high-resolution estimation of Corg stock
distribution and evaluate the relevance of individu-
al geofactors. The research area is the Danube
Floodplain National Park in Austria, one of the
very few pristine riparian habitats left in Central
Europe. Two satellite images (Ikonos and Rapid-
Eye), historical and current topographic maps, a
digital elevation model (DEM), and mean ground-
water level (MGW) were included. We compared
classifications of Corg stocks in vegetation, soils,
and total biomass based on two, three, four, and five
classes. The results showed that a spatial model of
Corg in riparian forests can be generated by using a
combination of object-based image analysis (OBIA)
and classification and regression trees (CART) al-
gorithm. The complexity of floodplains, where pat-
terns of Corg distribution are inherently difficult to
define, clearly exacerbated the challenge of achiev-
ing high classification accuracy. In assessing the
relevance of individual geofactors, we found that
remote sensing parameters are more important for
the classification of Corg in vegetation, whereas pa-
rameters from auxiliary geodata, e.g. elevation or
historical riverbeds, have more influence for the
classification of soil Corg stocks. This was also con-
firmed by a comparative linear multiple regression
analysis.

Zusammenfassung: Schätzung und Kartierung
von Kohlenstoffvorräten in Auwäldern mithilfe ei-
nes Ansatzes des maschinellen Lernens und ver-
schiedenartigen Geodaten. Auenökosysteme haben
ein hohes Speicherpotenzial für organischen Koh-
lenstoff (Corg), auch im Vergleich zu anderen terres-
trischen Ökosystemen. Allerdings fehlt eine wis-
senschaftliche Grundlage für die Schaffung von
großmaßstäbigen Karten, die die räumliche Vertei-
lung des Corg zeigen. In diesem Beitrag untersuchen
wir einen Ansatz des maschinellen Lernens mittels
Fernerkundungs- und zusätzlichen geografischen
Daten für eine flächendeckende hochauflösende
Abschätzung der Corg-Verteilung und bewerten die
Relevanz der einzelnen Geofaktoren. Das Untersu-
chungsgebiet ist der Nationalpark Donau-Auen in
Österreich, eines der wenigen unberührten Auen-
habitate in Mitteleuropa. Zwei Satellitenbilder
(Ikonos und RapidEye), historische und aktuelle
topografische Karten, das digitale Geländemodell
und Grundwasserdaten wurden einbezogen. Wir
verglichen die Klassifizierung des Corg-Gehalts in
Vegetation, Boden und Gesamtbiomasse in zwei,
drei, vier und fünf Klassen. Die Ergebnisse zeigen
ein räumliches Modell der Corg-Verteilung in Au-
wäldern mit der Kombination einer objektbasierten
Bildanalyse (OBIA) und einem CART (Klassifika-
tions- und Regressionsbaum) -Algorithmus. Die
Komplexität der Auen, in denen Muster von Corg-
Verteilung von Natur aus schwer zu definieren
sind, erschwerte es, eine hohe Klassifizierungs-
genauigkeit zu erzielen. Bei der Beurteilung der
Relevanz einzelner Geofaktoren zeigte sich, dass
die Fernerkundungsparameter wichtig für die
Klassifizierung von Corg in der Vegetation sind,
während die Höhe oder die Lage des historischen
Flussbetts mehr Einfluss auf die Klassifizierung
des Corg-Gehalts im Boden haben. Dies wurde auch
durch eine vergleichende lineare multiple Regres-
sion bestätigt.
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image analysis (OBIA) (KOLLÁR et al. 2011,
ROKITNICKI-WOJCIK et al. 2011, WAGNER 2009)
have been used for mapping of wetland habi-
tats. However, these studies related to the dif-
ferentiation of vegetation classes and did not
focus on the assessment of biomass or Corg.
In addition, various remote sensing anal-

yses of Corg stocks have been done for non-
floodplain habitats, but most of these stud-
ies have focused either on Corg stocks in soil
(BEHRENS & SCHOLTEN 2006, MCBRATNEY et
al. 2003) or in vegetation (AWAYA et al. 2004,
HILKER et al. 2008, OLOFSSON et al. 2008). So
far, no studies on the estimation of total Corg
stocks in riparian forests have been done. And
despite advances in remote sensing and geo-
data analysis, these techniques have not yet
been applied to the analysis and estimation of
area-wide Corg stocks in floodplains.
GOETZ et al. (2009) distinguished three ap-

proaches for using remote sensing data to
map carbon stocks. In the simplest method,
the stratify and multiply (SM) approach, e.g.
as used by MAYAUX et al. (2004) or SUCHEN-
WIRTH et al. (2012), a single value or a range of
values is assigned to each class of land cover,
vegetation type, or other site characteristic.
This approach is limited due to the range of
biomass within any given thematic class and
the ambiguities concerning the identification
of given types. The second approach, combine
and assign (CA), extends the SM approach to
a wider range of spatial data to improve clas-
sifications (GIBBS et al. 2007). It has the advan-
tage of using finer spatial units of aggregation
and weighted data layers, but is limited due
to the moot representativeness of class values
and difficulties in acquiring consistent infor-
mation as the study area size increases. The
third approach, direct remote sensing (DR),
uses machine learning techniques and extends
satellite measurements directly to maps, i.e.,
a classification algorithm is trained to devel-
op an optimized set of rules through iterative
repeated data analysis (BREIMAN 2001) for the
estimation of biomass and carbon (BACCINI
et al. 2012). This approach results in contin-
uous values for biomass based on easily un-
derstandable rules, such as those described for
the Amazon basin (SAATCHI et al. 2007), Rus-
sian forests (HOUGHTON et al. 2007), or the Af-
rican continent (WILLIAMS et al. 2007).

1 Introduction

Floodplain ecosystems offer valuable carbon
sequestration potential. Riparian forests have
a considerably higher storage capacity for or-
ganic carbon (Corg) than other terrestrial eco-
systems (CIERJACKS et al. 2010, HOFFMANN et
al. 2009, MITRA et al. 2005). Among the dif-
ferent floodplain compartments, it is essential
to pay special attention to riparian forest veg-
etation, but also to soils, which often dominate
Corg pools (BARITZ et al. 2010, HARRISON et al.
1995, HOFMANN & ANDERS 1996, KOOCH et al.
2012, LAL 2005).
Despite the importance of floodplains for

carbon sequestration, a scientific foundation
for creating large-scale maps showing the spa-
tial distribution of Corg is still lacking. Car-
bon distribution can be mapped at a global or
national level, but regional validation is usu-
ally not available (GIBBS et al. 2007, GROOM-
BRIDGE & JENKINS 2002, UNEP-WCMC 2008).
In particular, there are no maps showing the
actual allocation of the Corg storage within ri-
parian soils and vegetation at the local or re-
gional level. Various studies have focussed on
Corg stocks in ecosystems, such as in alder fens
(BUSSE & GUNKEL 2002), coastal plain flood-
plains (GIESE et al. 2000), boreal lakes in On-
tario (HAZLETT et al. 2005) or timber planta-
tions in Scandinavia (BACKÉUS et al. 2005, CAO
et al. 2010). In tropical and subtropical wet-
lands there has been research on mangroves
and shrimp farms in Thailand (MATSUI et al.
2009), seasonal sequestration in the Okavango
delta (MITSCH et al. 2010) and Panama (GRIMM
et al. 2008). CIERJACKS et al. (2011) provided
statistical models on the spatial distribution of
Corg stocks in Danubian floodplain vegetation
and soils. RHEINHARDT et al. (2012) used indi-
cators based on the distance to river for bio-
mass estimations in a river system in North
Carolina. However, these studies rely on data
collected by cost-intensive field surveys. For
improving the estimation of Corg, including
larger or less accessible wetland and riparian
areas, combined methods of remote sensing,
geographic information systems (GIS) and
machine learning are promising techniques.
A wide range of remote sensing methods

(FARID et al. 2008, MUNYATI 2000, OZESMI &
BAUER 2002) and in particular object-based
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2 Materials and Methods

2.1 Research Area

The research area has a size of 11.3 km2 and
is situated within the Danube Floodplain Na-
tional Park (Nationalpark Donau-Auen) in
Austria (16.66° E, 48.14° N). The national
park is located between the Austrian capital
Vienna and the Slovak capital Bratislava and
stretches along the river Danube for about
36 km (Fig. 1). The river has an average width
of about 350 m, and the banks are generally
fixed by riprap. Only a few human impacts on
the area happened apart from the construction
of the Hubertusdamm dike in the 19th centu-
ry to protect areas on the northern riverbank
from inundation. In the 1960s, natural forest
structures were altered by widespread plant-
ing of hybrid poplars (Populus x canaden-
sis), especially on the southern riverbank. In
1996, the area was declared a national park,
and thus commercial enterprises were banned
within its precincts. Despite of the mentioned
human interventions, the area remains one of
the last large pristine riparian habitats in Cen-
tral Europe and has been recognized by the In-
ternational Union for Conservation of Nature
(IUCN) as a Riverine Wetlands National Park,
Category II.
The national park’s environmental features

include the secondary streams (the Danube
river itself is an international waterway), side
channels and oxbow lakes, gravel banks, ri-
parian forests and meadows, reed beds and
xeric habitats. Within the forests, we can dif-

SUCHENWIRTH et al. (2012) used remote sens-
ing data and a digital elevation model to map
carbon densities in a floodplain. They used an
OBIA approach to classify vegetation types.
The total carbon storage of soils and vegeta-
tion was quantified using a Monte-Carlo sim-
ulation for all classified vegetation types, and
spatial distribution was mapped.
We want to improve this method by in-

cluding additional data and using a machine
learning technique. Due to the complexity
of the spatial distribution of Corg in the Dan-
ube floodplains (CIERJACKS et al. 2010, 2011,
SUCHENWIRTH et al. 2012), and the amount,
variety, and variable consistency of avail-
able data, our goal is to establish a machine
learning approach for an area-wide modeling
of Corg stocks. To include remote sensing data
and several additional geodata, we chose a
classification and regression tree (CART) ap-
proach (BREIMAN et al. 1984, LOH 2011).
The specific aims of this paper are as fol-

lows:
(1) to evaluate a machine learning algo-

rithm (CART) for estimating and mapping Corg
stocks in vegetation (Corg_veg), soil (Corg_soil) and
total biomass (vegetation, soil and deadwood;
Corg_tot) in riparian forests based on classifica-
tion accuracies, and (2) to rank the parameters
in terms of their ability to predict Corg.

Fig. 1: Research Area, green: Danube Floodplain National Park, red cross: locations of the ter-
restrial sample points training data, blue dot: test data. The red line represents the Hubertusdamm
dike. The grey box represents the outline of the subsets in Fig. 2.
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the height above ground has been included in
the knowledge-base. The following vegeta-
tion types were determined by OBIA from
the Ikonos image and the DEM: meadow, reed
bed, cottonwood, softwood and hardwood for-
ests (SUCHENWIRTH et al. 2012).
Historical and current topographic maps

were provided by the Austrian Federal Office
for Metrology and Survey (Österreichisches
Bundesamt für Eich- und Vermessungswe-
sen, BEV). The historical maps are derived
from three topographic land surveys, the First
(1764–1806), the Second (1806–1869) and the
Third Military Mapping Survey (1868–1880).
We digitized the riverbeds and channels as
well as oxbows and coded them, either if there
was a historic water body or not. A ground-
water model indicating median ground water
depth was provided by the Vienna University
of Technology.
During two terrestrial surveys in 2008

and 2010, a total of 104 samples from vegeta-
tion and soil were taken [69 samples in 2008
(CIERJACKS et al. 2010) and 35 samples in 2010
(RIEGER et al. 2013), Fig. 1]. All data were col-
lected in a stratified randomized sampling
design throughout the research area in 10 x
10 m plots. In each sample plot, forest stand
structure was measured and soil samples were
taken. A detailed description of the Corg calcu-
lation is given by CIERJACKS et al. (2010) and
RIEGER et al. (2013). These data were randomly
separated in training data (70 %) and test data
(30 %) for the classification.

2.3 Methods

We developed a spatial model for the estima-
tion and mapping of Corg stocks in soils and
vegetation based on a machine learning algo-
rithm. For this, we chose a classification and
regression tree (CART) approach. CART cre-
ates classification rules in the shape of a de-
cision tree. Decision trees show hierarchical
rules according to which a dataset is classi-
fied. At the beginning of a decision tree is the
basic population of the data. During the clas-
sification process, the dataset is divided ac-
cording to binary rules (BREIMAN et al. 1984,
LOH 2011, QUINLAN 1986). The advantages of
CART include the flexibility to handle a broad

ferentiate between hardwood forest (dominat-
ed by quercus robur, fraxinus excelsior and
acer campestre), softwood forest (dominated
by salix alba and acer negundo) and cotton-
wood forest (consisting of hybrid poplar plan-
tations of the 1960ies) (CIERJACKS et al. 2010).
The main soil type is haplic fluvisol (calcaric).
Calcaric gleysols are less important. The cli-
mate is continental with a mean annual tem-
perature of 9.8 °C and a mean annual precipi-
tation of 533 mm [Schwechat climate station,
48°07’ N, 16°34’ E, 184 m above sea level
(ZAMG 2002)].
The mean carbon storage in the area was

estimated as 359.1 Mg C ha-1 (472,186 Mg in
an area of 13.1 km2) by CIERJACKS et al. (2010).

2.2 Data

The following available comprehensive data
from the research area were included in
the analysis: two very high spatial resolu-
tion (VHSR) satellite images from Ikonos
and RapidEye sensor, historical and current
topographic maps, a digital elevation model
(DEM), and data on the mean groundwater
level (MGW).
We purchased a preprocessed cloudfree

Ikonos 2 image, recorded on April 22, 2009
with a spatial resolution of 1.0 m (panchro-
matic) and 4 m (multispectral), as well as a
satellite image from RapidEye recorded on
August 1, 2009 and processed at L3A with a
spatial resolution of 5.0 m (multispectral), pro-
vided by the German Aerospace Centre. Both
images were provided in the UTM WGS 1984
projected coordinate system and were repro-
jected into the Austrian MGI M34 projected
coordinate system. We used this local system
as the majority of local data was also projected
in this way.
In addition to the spectral values, several

ratios and texture parameters (HARALICK et
al. 1973) were calculated (Tab. 1). A digital
elevation model derived from lidar data was
used to compute height and slope. Increased
slope values can suggest former riverbeds of
the main stream or overgrown side channels,
which can serve as an indicator of softwood
(SUCHENWIRTH et al. 2012), which cannot be de-
tected directly through spectral values. Also
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Tab. 1: Available geodata, derived parameters and used abbrevations.

Available geodata Derived parameters Abbreviation
Ikonos image
(April 22, 2009)

RapidEye image
(August 1, 2009)

Blue channel
Green channel
Red channel
Near infrared channel
NDVI (normalized difference vegetation
index)
(TUCKER 1979, ROUSE et al. 1973)
Vegetation classification derived by OBIA
(SUCHENWIRTH et al. 2012)

Blue channel
Green channel
Red channel
RedEdge channel
Near infrared channel
NDVI
Transformed NDVI [((b5+b3)+0.5)0.5]
(DEERING et al. 1975)
modNDVI [(b5-b4)/(b5+b4-2*b1)]
(DATT 1999)
b4NDVI [(b5-b4)/(b5+b4)]
(GITELSON &MERZLYAK 1994)
Solar Reflectance Index [b5/b3] (ROUSE et al.
1973)
[b2-b1]
[b3-b1]
[b3-b2]
[b5-b4]
[b3/b1]
[b4/b2]
[b5/b2]

Texture parameters (HARALICK et al. 1973)
Gray-level co-occurrence matrix (GLCM)
homogeneity
GLCM mean
GLCM correlation
GLCM contrast
Gray-level difference vector (GLDV) entropy

Ikonblu
Ikongrn
Ikonred
Ikonnir
Ikonndvi

Classification

b1-REblue
b2-REgreen
b3-REred
b4-REredEdge
b5-REnir
RE_NDVI
tNDVI

modNDVI

b4NDVI

b4sri

b2mb1
b3mb1
b3mb2
b5mb4
b3db1
b4db2
b5db2

GLCM_Homogeneity

GLCM_Mean
GLCM_Correlation
GLCM_Contrast
GLDV_Entropy

Digital elevation
model

Elevation
Slope

DEM
slope

Historical and current
topographic maps

Existence of historic riverbed during:
First Military Mapping Survey (1773 – 1781)
Second Military Mapping Survey (1806 –
1869)
Third Military Mapping Survey (1868 –
1880)
Current distance to river based on current
topographic map ÖK50

hist1
hist2

hist3

dist

Ground water model Ground water level MGW
Corg ground survey
data from 2008 and
2010

Above ground carbon stocks
Below ground carbon stocks
Total carbon stocks

Corg_veg
Corg_soil
Corg_tot
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spectral band of the RapidEye and Ikonos sat-
ellite imagery, as well as each additional ge-
odata layer was weighted equally. However,
calculated indices or ratios were not further
weighted. Equal segmentation settings were
used for all classifications in order to facili-
tate the comparability of area units among the
classifications.
The internal CART algorithm was trained

with the respective quantile classes and ap-
plied onto the parameters using the “classi-
fier” tool in the software package eCognition
8.7.1, with a classifier depth of 10, a minimum
sample count of 6 and 9 cross validation folds.
To evaluate the accuracy of the individual

classifications, we calculated the overall ac-
curacy (OA). We additionally decided to fol-
low the suggestions of PONTIUS & MILLONES

(2011) who recommend the use of allocation
and quantity disagreement for accuracy as-
sessment rather than the use of kappa. The two
measures are described as follows:
a) Allocation disagreement (AD) is the num-
ber of pixels that have a less than optimal
spatial allocation in the comparison map
with respect to the reference map. Alloca-
tion disagreement is the distance above the
quantity disagreement line.

b) Quantity disagreement (QD) is the absolute
difference between the number of pixels of
a certain class in the reference map and the
number of pixels of the same class in the
comparison map.

The lower the values of allocation and
quantity disagreement, the better is the accu-

range of response types, such as numeric and
categorical data, the ease and robustness of
construction, and the ease of interpretation
(DE’ATH & FABRICIUS 2000).
For our work, we used the software pack-

age eCognition 8.7.1. It allowed us to combine
CART and OBIA and thus make use of the vast
amount of data including remote sensing and
other spatially continuous geodata. OBIA has
been successfully applied to classifications of
diverse habitats from wetlands (KOLLÁR et al.
2011, ROKITNICKI-WOJCIK et al. 2011) and flood-
plains (WAGNER 2009) to forests (CHUBEY et al.
2006) and drylands (LALIBERTE et al. 2007).
The CART approach in eCognition is based
on the original algorithms described by BREI-
MAN et al. (1984) and has been implemented
by the OPENCV-WIKI (2010) and eCognition
(ECOGNITION 2012).
The ground survey dataset containing to-

tal carbon stocks was grouped into classes
(Tab. 2) as were the separate stocks for vegeta-
tion and soil. We compared classifications of
above ground biomass (Corg_veg), below ground
biomass for soil depth up to 1 m (Corg_soil) and
total carbon stocks (Corg_tot) using classifica-
tions based on two, three, four and five quan-
tile classes. We used quantiles in order to have
equal numbers of samples for each class. We
applied this approach for different numbers of
classes to define an optimum number of class-
es with acceptable classification accuracy.
The OBIA was performed on a multireso-

lution segmentation with a scale parameter of
200 and the homogeneity criterion including
a shape of 0.1 and a compactness of 0.5. Each

Tab. 2: Corg ranges (Mg Corg ha-1) for Corg_veg, Corg_soil, and Corg_tot stocks for different numbers of
classes.

class Five quantile classes Four quantile classes Three quantile classes Two quantile classes

Corg_veg Corg_soil Corg_tot Corg_veg Corg_soil Corg_tot Corg_veg Corg_soil Corg_tot Corg_veg Corg_soil Corg_tot
1 < 55.0 <132.8 <231.0 < 75.0 <140.0 <255.5 < 86.5 <161.0 <281.0 <134.9 <186.4 <325.9

2 55.0
- 99.9

132.8
- 173.9

231.0
- 300.0

75.0
-135.0

140.0
- 186.5

255.5
- 326.9

86.5
- 180.0

161.0
- 203.2

281.0
- 373.0

>135.0 >186.5 >326.0

3 100.0
-134.0

174.0
- 197.3

300.1
- 360.9

135.1
- 200.0

186.5
- 227.0

327.0
- 407.0

>180.0 >203.2 >373.0

4 134.1
- 193.0

197.4
- 240.0

361.0
- 445.0

>200.0 >227.0 >407.0

5 >193.0 >240.0 >445.0
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normalized by the total number of the avail-
able parameters of a certain dataset. ERASMI et
al. (2013) described the concept as “normal-
ized importance”.

3 Results

3.1 Modelled Corg Distribution and
Accuracies

Fig. 2 shows the classification results in the
form of maps for a part of the research area.
The subset comprises all classes and all en-
vironmental features inside the research area.
We can see that Corg_veg stocks are equally scat-
tered across the area, while Corg_soil stocks in-
crease as the distance to the river increases.

racy. Both disagreement values are calculated
as percentages.
Furthermore, we calculated for each classi-

fication the root-mean-square error (RMSE),
frequently used to check the internal model
quality with the advantage of being indepen-
dent of the number of used classes (KANEVSKI
et al. 2009, RICHTER et al. 2012). For our appli-
cation, we used the arithmetic mean of each
class (of the training plots) as the estimated
value, and used the terrestrial value of each
test plot as the measured value.
To calculate the relevance of the individual

datasets, we summarized the use frequency
of the individual parameters, normalized by
the overall sum of all use frequencies. Addi-
tionally, we considered how many parameters
derived from a specific dataset were applied,

Fig. 2: Modelled distribution of Corg_veg, Corg_soil, and Corg_tot stocks for different numbers of classes.
The increasing amount of stored Corg is represented by colour graduations increases from pink to
red to brown.



340 Photogrammetrie • Fernerkundung • Geoinformation 4/2013

curacies for Corg_veg, Corg_soil, and Corg_tot stocks
revealed that the accuracy is highest for two
classes and lowest for five classes (Fig. 3).
Models with three or four classes range in be-
tween and represent a good compromise be-
tween complexity and acceptable accuracy.

The influence is less visible for Corg_tot but can
still be seen for a classification with four class-
es.
We compared the derived accuracies (OA,

AD, QD) for Corg_veg, Corg_soil, and Corg_tot stocks
for all numbers of classes (Fig. 3), as well as
RMSE. The comparison of classification ac-

Fig. 3: Overall accuracy, allocation, and quantity disagreement in percent for classifications of
Corg_veg, Corg_soil, Corg_tot based on five, four, three, and two classes.

Fig. 4: Root-mean-square error for classifications of Corg_veg, Corg_soil, Corg_tot based on five, four,
three, and two classes.
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For DEM parameters relevance ranged from
0 % (Corg_veg three classes; Corg_soil five classes)
to the highest overall share of 52.1 % (Corg_soil
two classes). The MGW reached the highest
parameter relevance for all classification runs
(32.7 % / 18.3 % / 26.2 %), with the relevance
ranging from 0 % (Corg_soil two and four class-
es; Corg_tot five classes) to 43.2 % (Corg_tot two
classes). For the “distance to river” param-
eter, the relevance ranged from 0 % (Corg_soil
two and four classes) to 50.4 % (Corg_soil five
classes), with this parameter achieving great-
er relevance when greater numbers of classes
are used. For the parameters based on the ex-
istence of historical riverbeds, the relevance
ranged from 0 % (Corg_veg two, three and four
classes; Corg_soil five classes; Corg_tot two, four
and five classes) to 36.0 % (Corg_soil two class-
es), and was important only when classifying
Corg_soil classes.
To illustrate the importance of single pa-

rameters, Figs 5a–c give an exemplary in-
sight of the parameter relevance of classifi-
cations with four classes for Corg_veg, Corg_soil,
and Corg_tot. For Corg_veg, there are 16 parame-
ters (RapidEye: 6; texture: 4; Ikonos: 2; DEM:
2; MGW and distance: 1 each), where the in-
dex b4db2 (i.e. RapidEye’s RedEdge divided
by green channel) is the most important with
more than 23 %. For Corg_soil, there are eleven

With regard to the model quality, we can
examine Fig. 4. Classifications with fewer
classes show higher RMSE values, e.g. more
than 90 for Corg_tot two quantile classes, than
classifications with more classes. The lowest
RMSE values are below 25 for Corg_soil with
four classes and Corg_tot with four classes.

3.2 Parameter Relevance

In the following we analyze the use frequen-
cy of the individual datasets and parameters.
Tab. 3 shows the results for classifications
with all quantile classes for Corg_veg, Corg_soil
and Corg_tot.
For RapidEye parameters, the relevance

ranged from 3.6 % (Corg_soil two classes) to
25.6 % (Corg_tot five classes). As the number of
classes grows, the parameter relevance rises.
For texture parameters, the relevance ranged
from 4.6 % (Corg_soil 5 classes) to 29.5 % (Corg_
veg four classes) with no clear indication of
which number of classes provided the best
results. The overall parameter relevance for
Ikonos was lower. It ranged from 0 % (Corg_
soil two or three classes) to 9.6 % (Corg_veg two
classes) which could be explained by the ac-
quisition date of April, when full leaf-out had
not occurred yet.

Tab. 3: Dataset relevance for classifications of Corg_veg, Corg_soil, and Corg_tot stocks.

RapidEye Texture Ikonos DEM MGW
Distance
to river

Historic
maps

Corg_veg 5cl 14.5 22.5 5.5 6.3 16.5 31.7 3.0
4cl 12.0 12.9 5.0 25.3 37.0 7.8 0.0
3cl 21.8 20.6 3.0 0.0 34.3 20.2 0.0
2cl 5.9 23.8 9.6 7.3 42.8 10.7 0.0

Average 13.5 20.0 5.8 9.8 32.7 17.6 0.7

Corg_soil 5cl 4.1 4.6 1.7 0.0 39.2 50.4 0.0
4cl 13.1 29.5 8.4 13.0 0.0 0.0 36.0
3cl 5.2 18.4 0.0 6.6 33.9 16.6 19.3
2cl 3.6 8.4 0.0 52.1 0.0 0.0 35.8

Average 6.5 15.2 2.5 17.9 18.3 16.7 22.8

Corg_tot 5cl 25.6 9.8 5.0 11.6 0.0 48.0 0.0
4cl 4.3 20.8 5.1 13.5 34.5 21.8 0.0
3cl 9.8 7.6 8.2 8.4 27.0 35.9 3.0
2cl 9.4 19.7 5.5 22.2 43.2 0.0 0.0

Average 12.3 14.5 6.0 13.9 26.2 26.4 0.7
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Fig. 5a: Parameter relevance for Corg_vet
classifications based on 4 quantile
classes (all abbreviations are explained
in Tab. 1).

Fig. 5b: Parameter relevance for Corg_soil
classifications based on 4 quantile
classes (all abbreviations are explained
in Tab. 1).

Fig. 5c: Parameter relevance for Corg_tot
classifications based on 4 quantile
classes (all abbreviations are explained
in Tab. 1).
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ta serve as proxies for recent environmental
conditions that control vegetation properties.
Soil organic matter, in contrast, can accumu-
late over hundreds of years. Thus relations of
Corg_soil stocks to recent environmental condi-
tions might not be expected. It is likely that the
variations in Corg_soil stocks found in our study
are mainly due to variations in the Corg stocks
of the upper soil horizons, which in turn are
affected by recent environmental conditions.
Furthermore, the position of historic river-
beds, a parameter with strong and long-lasting
influence on soil organic matter content, was
considered (Figs. 3 and 5b).
Predictably, an increase in the number of

classes goes along with a more speckled ap-
pearance of the classification and overall ac-
curacy decreases. Here, we have to keep in
mind that a classification with fewer classes
will automatically result in higher accuracy,
and therefore the differences simply reflect the
higher chance of misclassifications.
Similarly to the overall accuracy, alloca-

tion disagreement as well as quantity disa-
greement values decreased, i.e., the accuracy
improved, with fewer classes. An exception is
the very high quantity disagreement value for
Corg_veg based on two classes.
The RMSEs (Fig. 4) provides a measure in-

dependent of the number of used classes. The
RMSEs “mirror” the results of accuracy as-
sessment, with lower RMSEs for classifica-
tions with higher class numbers. Especially
for Corg_soil accuracies.
For assessing the performance of the CART

approach we also compared our results with
a linear multiple regression analysis for es-
timating Corg_soil, Corg_veg, and Corg_tot. Results
showed that for Corg_soil regression (model in-
tercept p = 0.0069; F = 3.3789) groundwater
level was the most important parameter (p =
0.0177; y = -11.275x + 1833.4; R2 = 0.8657).
For Corg_tot regression (model intercept p

= 2.3833-9; F = 6.5114), the green RapidEye
channel (p = 0.0145; y = -0.0756x + 584.28;
R2 = 0.5619) and the red Ikonos channel (p =
0.0188; y = -0.4198x + 426.33; R2 = 0.5244)
were the most important parameters.
For Corg_veg regression (model intercept p

= 1.7728-6; F= 7.7927), the green RapidEye
channel (p = 0.0099; y = -0.0482x + 335.83; R2
= 0.5301) and red Ikonos channel (p = 0.0081;

parameters (RapidEye: 4; texture: 2; Ikonos:
2; historical maps: 2; DEM: 1), of which hist3
(existence of riverbed between 1868 to 1880) is
the most relevant with almost 20 %. For Corg_
tot, there are in total nine parameters (Rapid-
Eye: 2; texture: 3; Ikonos: 1; MGW, DEM and
distance: 1 each), of which b2mb1 (RapidEye’s
green channel minus blue channel) is the most
important one with more than 22 %.

4 Discussion

4.1 Classification Results and
Accuracies

Our study provides a novel technique for
the estimation and mapping of Corg stocks in
floodplains based on remote sensing and ad-
ditional geodata. It could be used to generate
Corg inventories in other temperate wetlands,
especially forested floodplains where ground
assessment is difficult or impossible. The
visualization of the individual classes shows
complex distribution patterns of Corg stocks.
Despite of the cluttered structure and the het-
erogeneous distribution within the different
classes, the majority of classifications show
that higher Corg_soil stocks have developed at
a certain distance to the main riverbed of the
Danube and its side arms. This is best illus-
trated by classifications with two but also four
classes of Corg_soil. These lateral gradients were
also described by CIERJACKS et al. (2010, 2011).
In comparison, the patterns of Corg_veg and
Corg_tot were less predictable. Classifications
are very speckled for every model and a fully
consistent classification is difficult due to the
type of the terrain. This reflects the complexi-
ty of floodplain habitats in general, and the de-
tailed intricacy of riparian Corg stocks in par-
ticular and also has been shown by SAMARITA-
NI et al. (2011) and SUCHENWIRTH et al. (2012).
For the particular case of the Danube flood-
plain, this may also be related to the wide-
spread planting of hybrid poplars in the 1960s,
which altered the natural vegetation structure
of hardwood and softwood forests.
Surprisingly, the accuracy of the Corg_soil

stock models was similar to the accuracy of
the Corg_veg stock models. Predictive variables
derived from remote sensing and other geoda-
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accuracy is higher in comparison to a model
with five classes, but the complexity is bet-
ter represented than in a plain dichotomy of
data and space created by merely two class-
es. DILLABAUGH & KING (2008) found an op-
timal number of three classes for their clas-
sifications of biomass in riparian marshes in
Ontario.
Regarding our first research aim, a model

approach with four classes seems to perform
best. However, the concept of applying segre-
gative classes remains to a certain extent de-
batable. Therefore, an approach with classes
based on fuzzy logic (ZADEH 1989) should be
considered in future works to improve the pre-
dictive capability of the Corg model.
A general point of criticism might apply to

the question of why to classify a continuous
variable with separate classes. Even though
a continuous regression may seem more ap-
propriate, we wanted to create statistically set
classes and to follow the concept of different
Corg concentrations in different compartments
of the floodplains. For further planning appli-
cations, the regional managers would always
apply an ordinal scale, e.g. high, medium, low.
The provision of an estimate about the optimal
class size for Corgmight be valuable in terms of
its practical application.
A further point of debate remains the sam-

pling design. The random division of terres-
trial survey data into 70 % training data and
30 % test data and repeated analysis would
probably provide a better estimate about the
uncertainties within the calibration and vali-
dation data. Repeated measurements could
give an insight into the quality of the cal/val
information and, in consequence, provide
knowledge about the optimal sampling size
and spatial distribution of these data. In fur-
ther analysing steps a repeated calculation
with varying samples is envisaged.

4.2 Use of Parameters

Regarding the application of parameters and
their use frequency, classification of Corg_veg re-
lied to a higher percentage on remotely sensed
parameters like RapidEye, Texture, and
Ikonos than did the classification of Corg_soil or
Corg_tot stocks.

y = -0.3752x + 208.54; R2 = 0.5562) have the
highest importance among the parameters.
The regression confirms our findings that

remote sensing parameters are more impor-
tant for the classification of Corg_veg, where-
as parameters from auxiliary geodata have
more influence on the classification of Corg_soil
stocks.
It is worth discussing whether and which

other additional parameters should be taken
into consideration for the detection and mod-
elling of Corg distributions in floodplains. Data
on forest management practices or local sinks
may be considered but were not available on
a spatially inclusive and comprehensive level.
In general, ROCCHINI et al. (2013) argue that

the classification of remotely sensed images
for the derivation of ecosystem-related maps
which also includes the estimation of Corg is
commonly based on clustering of spatial en-
tities within a spectral space with the impli-
cation that it is possible to divide the gradual
variability of the Earth’s surface into a finite
number of discrete non-overlapping classes,
which are exhaustively defined and mutu-
ally exclusive. Given the continuous nature
of many ecosystem properties this approach
is often inappropriate; especially as standard
data processing and image classification meth-
ods involve the loss of information as contin-
uous quantitative spectral information is be-
ing degraded into a set of discrete classes. For
wetlands, OZESMI & BAUER (2002) pointed out
the limitations of remote sensing for classifi-
cation and suggest the use of multi-temporal
data for an improvement of classification ac-
curacy. For remote sensing in wetlands, ADAM
et al. (2010) attribute the frequently observed
limitations to the low spatial and spectral res-
olution in comparison to narrow vegetation
units that characterize wetland ecosystems.
There may also be concerns about the re-

liability of terrestrial data. Error propagation
may always be a source of uncertainty for the
mapping of ecosystems (ROCCHINI et al. 2013).
Our basic survey data have been collected
very densely and thoroughly, but transferabil-
ity to other terrains may become challenging.
Overall, we can conclude that the detection

of floodplain characteristics is a challenging
task. As for the appropriate number of classes,
we consider three or four to be optimal. The
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soil characteristics can only be explained in-
directly through vegetation. This is due to the
fact that Corg_soil reflects not only recent vege-
tation, but accumulations over centuries. This
is reflected in the high relevance of historical
maps for this factor (Fig. 5b) which emphasiz-
es the potential of soils to serve as a memory
of previous site conditions, such as historical
inundations and changes in riverbeds that of-
ten occurred prior to present-day land man-
agement practices.

5 Conclusion and Outlook

Our study provides a machine learning ap-
proach to model Corg stock distributions in
riparian forests. We aimed to evaluate a ma-
chine learning algorithm (CART) and deter-
mine the relevance of individual variables de-
rived from the geodata for the estimation.
Overall, a spatial model of Corg in riparian

forests could be generated using CART. With
the use of geographic datasets, it was possi-
ble to show the spatial distribution in terms
of a cartographic representation generated by
classification. Yet, classification accuracy re-
mains a challenge due to the high complexity
of floodplains where patterns of Corg distribu-
tion are inherently difficult to define.
The evaluation of the relevance of the in-

dividual parameters derived from the geoda-
ta revealed that remote sensing parameters
are more important for the classification of
Corg_veg, than for the classification of Corg_soil.
This is also the case for MGW and the dis-
tance to the river. In contrast, parameters de-
rived from auxiliary geodata such as DEM
and historical maps were more decisive for
the classification of Corg_soil than Corg_veg. Corg_tot
stocks fell in between in terms of application
frequency of remote sensing and other pa-
rameters. Therefore, depending on the tar-
get (Corg_soil or Corg_veg), different parameters
should be considered when analyzing the spa-
tial distribution of carbon storage.
The application of data-mining approaches

to remote sensing and other geodata is help-
ing to automate and facilitate estimations of
Corg in riparian forests. In addition, informa-
tion on vegetation structure might improve
the Corg_soil model. Each classification model

The fact that remotely sensed parameters,
especially RapidEye parameters, are the most
important factors for the classification of
Corg_veg provides further evidence of the rele-
vance of satellite imagery for the estimation
of biomass, including Corg (GIBBS et al. 2007,
NEEFF et al. 2005, RHEINHARDT et al. 2012).
SCHUSTER et al. (2012) in particular proved the
special relevance of the RedEdge channel for
vegetation classification. It is nevertheless re-
markable that MGW and the distance to the
river played a more dominant role in the clas-
sification of Corg_veg and Corg_tot stocks than
Corg_soil stocks, although one could assume that
median groundwater would be a comparative-
ly less decisive factor for vegetation than for
soil biomass and resulting Corg. Still, similar
findings for fine-root and above-ground bio-
mass which also clearly reflected ground-
water depths in the same study area support
our results (RIEGER et al. 2013). For the case
of distance to river, the differences within the
parameter relevance (Fig. 5b) for Corg_soil is a
specific characteristic and shows the variabil-
ity of classification models. While remotely
sensed parameters play the dominant role in
all classifications, it is striking that the most
important parameter for the Corg_soil classifica-
tion are the historical riverbeds (Figs. 5a–c).
The case is different for the classification

of Corg_soil stocks, where remote sensing based
rules had in some cases less than 50 % influ-
ence towards the classification. In contrast,
the application frequency of DEM and histori-
cal riverbeds – parameters not derived from
remote sensing – was more common for the
classifications of Corg_soil compared to Corg_veg.
These parameters have already been used
successfully in other studies (CIERJACKS et al.
2011, SAMARITANI et al. 2011) to determine Corg
stocks. Concerning the use of historical maps,
it should be kept in mind that our maps only
provide information on roughly the last 250
years, whereas Corg stocks in soil are the con-
sequence of geomorphologic and pedogenetic
processes that have taken place over centuries
and millennia.
In general, the assessment of the relevance

of individual parameters for the Corg model
showed that spectral information from remote
sensing provides direct information about
above ground biomass, while information on
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highlights the complex interrelations between
Corg stocks and the external geofactors. In par-
ticular, vegetation cover and resulting Corg_veg
seems to reflect recent site conditions while
Corg_soil reflects both recent conditions and
past processes. In this way, our model con-
tributes to a better understanding of the im-
portance and relationships of Corg cycling in
floodplain ecosystems. Consequently, this
work may serve as a local case study for a well
and densely-surveyed area and contribute to
improve methods of Corg estimation and mon-
itoring in other floodplain areas with similar
conditions in temperate climates. It might help
to improve formal frameworks such as Euro-
pean biomass inventory (GALLAUN et al. 2010),
REDD, and Kyoto protocols (BÖTTCHER et al.
2009, IPCC 2000, OBERSTEINER et al. 2009,
PAOLI et al. 2010, UNEP-WCMC 2008).
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Summary: This paper contributes an assessment
for estimating rice (Oryza sativa L., irrigated low-
land rice) biomass by canopy reflectance in the
Sanjiang Plain, China. Hyperspectral data were
captured with field spectroradiometers in experi-
mental field plots and farmers’ fields and then ac-
companied by destructive aboveground biomass
(AGB) sampling at different phenological growth
stages. Best single bands, best two band-combina-
tions, optimised simple ratio (SR), and optimised
normalized ratio index (NRI), as well as multiple
linear regression (MLR) were calculated from the
reflectance for the non-destructive estimation of
rice AGB. Experimental field data were used as the
calibration dataset and farmers’ field data as the
validation dataset. Reflectance analyses display
several sensitive bands correlated to rice AGB, e.g.
550, 670, 708, 936, 1125, and 1670 nm, which
changed depending on the phenological growth
stages. These bands were detected by correlograms
for SR, NRI, and MLR with an offset of approxi-
mately ± 10 nm. The assessment of the three meth-
ods showed clear advantages of MLR over SR and
NRI in estimating rice AGB at the tillering and
stem elongation stages by fitting and evaluating the
models. The optimal band number for MLR was set
to four to avoid overfitting. The best validatedMLR
model (R2 = 0.82) at the tillering stage was using
four bands at 672, 696, 814 and 707 nm. Overall,
the optimized SR, NRI, and MLR have a great po-
tential in non-destructive estimation of rice AGB at
different phenological stages. The performance
against the validation dataset showed R2 of 0.69 for
SR and R2 of 0.70 for NRI, respectively.

Zusammenfassung: Reflexionsanalyse zur Ab-
schätzung der Biomasse von Reis in unterschiedli-
chen phänologischen Stadien. Dieser Beitrag ver-
sucht eine Bewertung zur Biomassenabschätzung
von Kulturreis (Oryza sativa L., bewässerter Flach-
land-Kulturreis) mit Hilfe von Bestandsreflexion in
der Sanjiang Ebene, China. Hyperspektrale Daten
wurden in Freilandexperimenten und in Feldern
von Landwirten mit Feldspektroradiometern ge-
messen. Nach den Spektralmessungen wurde die
oberirdische Biomasse destruktiv in unterschiedli-
chen phänologischenWachstumsstadien gemessen.
Beste einzelne Bänder, beste Zweibandkombinatio-
nen, optimierter Simple Ratio (SR) und Normali-
sierter Ratio Index (NRI), sowie Multiple Regressi-
onsanalyse (MLR) wurden anhand von Reflexions-
daten der Freilandexperimente berechnet. Die Da-
ten von den Feldern der Landwirte wurden als Va-
lidierungsdatensatz verwendet. Die Reflexionsana-
lysen zeigen mehrere zur Biomasse korrelierend
sensitive Bänder, z. B. 550 nm, 670 nm, 708 nm,
936 nm, 1125 nm und 1670 nm, welche sich in Ab-
hängigkeit von phänologischen Wachstumsstadien
änderten. Diese Bänder wurden mittels Korrelo-
gramme für SR, NRI und MLR mit einem Versatz
von ca. ± 10 nm detektiert. Die Bewertung der drei
Methoden zeigte deutliche Vorteile von MLR ge-
genüber SR und NRI in der Biomassenabschätzung
für Reis im Bestockungs- und Ährenschwellensta-
dium. Die optimale Bandanzahl für MLR wurde
auf vier festgesetzt, um eine Überanpassung zu
vermeiden. Das beste MLR-Modell (R2 = 0.82)
zum Bestockungsstadium basiert auf vier Bändern
(672 nm, 696 nm, 814 nm und 707 nm). Die Analy-
se von hyperspektralen Reflexionsdaten zur Opti-
mierung von VIs oder MLR hat ein großes Potenti-
al in der Biomassenabschätzung für Reis in unter-
schiedlichen phänologischen Stadien. Dies wird
durch die gute Übertragbarkeit (R2 = 0.69 für SR
und R2 = 0.70 für NRI) der optimierten Modelle in
die landwirtschaftliche Praxis unterstrichen.
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timate AGB on a large scale using airborne
or satellite-borne remote sensing data by ap-
plying evaluated models. The hyperspectral
satellite EnMap, which is scheduled for 2016,
will provide data with two separate sensors for
the aquisition of VNIR and SWIR in the spec-
tral domain of 420 nm – 2450 nm with 30 m
ground resolution similar to the Hyperion
data (SCHWIND et al. 2012). By simulating the
spectral properties of EnMap with field spec-
troradiometer data, models can be developed
and evaluated for EnMap-based estimation of
AGB (KAUFMANN et al. 2010).
The relationship between reflectance and

agricultural crop characteristics has been in-
vestigated in many studies in the last decades
(THENKABAIL et al. 2000). Most of those stud-
ies focused on nitrogen, leaf area index (LAI),
or yield estimation, but rarely on AGB esti-
mation, since there is a strong correlation be-
tween LAI and AGB (SHIBAYAMA & AKIYAMA
1989, FILLELA & PENUELAS 1994). Studies that
use hyperspectral ground data to estimate
AGB have been carried out for grass, wheat,
and for rice (RICHARDSON et al. 1983, SHIBA-
YAMA & AKIYAMA 1986, ANDERSON & HANSON
1992, SERRANO et al. 2000,HANSEN & SCHJOER-
RING 2003, LI et al. 2010,WANG et al. 2008, BA-
JWA et al. 2010).
The common method to estimate AGB

from reflectance is based on the application,
improvement, or development of spectral in-
dices (SIs). Optimised or improved standard
SIs such as SR and NRI represent best band
selections based on correlograms (THENKABAIL
et al. 2000, STROPPIANA et al. 2009, KOPPE et
al. 2010). In addition, MLR has been applied
in several studies, since this method provides
flexibility in the choice of bands (SHIBAYAMA&
AKIYAMA 1989, TAKAHASHI et al. 2000,YU et al.
2013). Futhermore, MLR is more reliable than
SIs that is saturated at high LAI levels (YANG
& CHEN 2004, HABOUDANE et al. 2004). It is
simpler and more flexible for the adoption by
growers and crop consultants than partial least
square (PLS) (BAJWA et al. 2010).
Many AGB studies were conducted in

greenhouses under controlled conditions or
the spectral reflectance was measured in the
laboratory (SONG et al. 2011), but not in the
field. Furthermore, most results, proposed SIs,
or developed models were not validated us-

1 Introduction

In the field of crop science, the aboveground
dry biomass (AGB) and nutrient use efficien-
cy are considered to be the major factors for
determining the final yield (RAUN & JOHNSON
1999). AGB influences at each phenological
stage the amount of grain production, since
the yield is defined as the amount of grain,
straw, and AGB. Furthermore, knowledge of
crop development characteristics and its spa-
tial and temporal variation in the field are use-
ful for determining crop requirements such as
N-fertilisation as closely as possible and for
achieving acceptable yields, e.g. for rice (FAG-
IERA 2007).
Traditional methods to estimate AGB in-

volve direct destructive measurements in the
field, which are time-consuming, expensive,
and require intensive field work. In the con-
text of precision agriculture, proximal sens-
ing is a promising and well investigated tool
to avoid the destructive approach (GEBBERS &
ADAMCHUK 2010). Field canopy reflectance can
be measured with portable handheld or mobile
spectroradiometer, e.g. Yara N-Sensor (AGRI-
CON 2013) and can be used to support farm-
er’s decisions on crop management such as
fertilisation, pest management, or irrigation.
Hyperspectralmeasurements in the field can

also be used as groundtruth or for model de-
velopment in analysing satellite imagery. The
disadvantage of hyperspectral and multispec-
tral satellite images is the high dependence on
a clear sky at the image aquisition time, while
spectroradiometers can be used in the field
with some cloud cover for approximately 3–4
hours around solar noon. Spectroradiometers
are fast and the most important non-destruc-
tive devices. They have a continuous acquisi-
tion of all reflectance values in a given spec-
tral range of 350 nm – 2500 nm with a high
spectral resolution of < 2 nm – 5 nm (MILTON

et al. 2009, ORTENBERG 2011).
In many studies, the in-field reflectance

measurements are acquired and required for
calibrating satellite-borne hyperspectral data
using, e.g. EO-1 Hyperion imagery (PSOMAS
et al. 2011, KOPPE et al. 2012) or of airborne-
based data, e.g. HyMap imagery (CHO & SKID-
MORE 2009). The goal of these studies is to es-
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about 109,000 km2. The area is characterised
by a sub-humid continental monsoon climate.
The mean annual temperature is about 2 °C
and the mean precipitation sums up to 550 mm
per year. The frost-free period is about 130
days long. The rice fields belong to the north-
ernmost cropping rice system in China and to
the northernmost ones worldwide. The rice is
sown in mid-April (in heated greenhouses), is
transplanted after the frost period to the field
from the middle to the end of May, and is har-
vested around end of September. The fields
are controlled flooded and manured with N-
fertiliser before transplanting the seedlings.
Four to five seedlings (120–150 seedlings/m2)
are planted at one position forming a so-called
hill. The irrigation is usually stopped 30 days
before harvest.
Two field experiments were carried out at

two sites (Keyansuo and Qixing research sta-
tion) in Jiansanjiang and were used as the cali-
bration dataset. They represented a wide range
of growth conditions by N-fertiliser input con-
ducted in a split-plot design: 0, 60, 75, 90, 105,
120, and 150 kg N ha-1 in 2007 (146 plots), and
0, 35, 70, 105, and 140 kg N ha-1 in 2008 (88
plots) and 2009 (95 plots). The plot size was
approximately 20 m² each. The widely used
rice variety Kongyu131 (28 hills/m2) was cul-
tivated in all experiments. In addition to the
experimental fields, 9 farmers’ fields were se-
lected in 2007–2009 and used as the valida-
tion dataset. They were managed by the farm-
ers according to their usual practices. The size
of these fields varied from 12 to 27 ha, where
each field contained several plots with a mean

ing an independent dataset to test the trans-
ferability of the models. Previous studies have
often focused only on calibrating wavebands
to a crop parameter, and have not adequately
evaluated the performance of their results in
an independent dataset (LU 2006, CHO& SKID-
MORE 2009).
The main two objectives of this study are

(i) to investigate the potential for rice AGB es-
timation from the canopy reflectance and (ii)
to develop and evaluate the proposed AGB
estimation models. The first step contains an
analysis of the AGB variation, the analysis of
the relationship between canopy reflectance
and N-application and AGB. In a second step,
three methods to estimate AGB by the reflec-
tance are tested with a calibration dataset us-
ing experimental field data: Single bands, best
two band-combinations (SR and NRI), and
MLR. Finally, the three methods are trans-
ferred to an independent dataset using farm-
ers’ field data under conventional manage-
ment.

2 Material and Methods

2.1 Study Area and Experimental
Design

The research was carried out at the Qixing
farm (47.2 °N, 132.8 °E) in Jiansanjiang, Hei-
longjiang Province, Northeast China. The
farm is located in the Sanjiang Plain (Fig. 1),
which is an alluvial plain from three rivers
(Heilongjiang, Songhua, Wusuli), and covers

Fig. 1: Study area in the north-east corner of China.
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Ten sample counts in the spectrum averag-
ing (settings in the ASD software) were re-
peated at 6 positions per plot. They were av-
eraged per plot in order to reduce the atmos-
pheric influence, e.g. clouds and wind, and
field conditions, e.g. planting in rows. Overall,
approximately 14,000 spectra (unaveraged)
were collected from 2007 to 2009.

2.3 Aboveground Biomass (AGB)
Collection

The AGB was measured destructively by clip-
ping three (booting to heading stage) to five
(tillering to stem elongation stage) hills of the
measured rice plants. All plant samples were
rinsed with water, the roots were clipped, and
then the samples were divided in their plant
organs leaf, stem and head. They were oven
dried at 105 °C for 30 minutes, and dried at
70 °C until constant weight. The AGB was
weighed later. In this study, the combined to-
tal dry AGB was used and not the individual
AGBs from the different organs (leaf, stem,
head). Altogether, 1,685 AGB samples were
collected from the tillering to heading stages.

2.4 Spectral Indices (SIs) and
Stepwise Multiple Linear
Regression (MLR)

Single bands or combinations of up to four
different bands were tested for their explana-
tory value. In addition, spectral indices rep-
resenting two bands were analysed: simple
ratio (SR) and normalised difference veg-
etation index (NDVI). They are widely used
for the prediction of biophysical quantities of
crops and were developed by JORDAN (1969)
and ROUSE et al. (1974). In this study, the fo-
cus is on using the best band-combinations to
optimise the SR and NDVI for AGB estima-
tion due to the saturation of the NDVI (HA-
BOUDANE et al. 2004). The optimised NDVI is
also known as normalised ratio index (NRI)
and was suggested to determine the best band-
combinations (THENKABAIL et al. 2000, SIMS &
GAMON 2002). All possible combinations were
computed from the wavelengths in the domain
of 350 nm – 1800 nm. The two band-combi-

size of 1,400 m2. In most cases, the cultivar
Kongyu131 was planted.

2.2 Hyperspectral Data Collection

Hyperspectral and agronomic data were col-
lected in 2007–2009. Before taking the spec-
tral reflectance, the average number of tillers
in each hill was determined per plot in order
to measure the reflectance of representative
plants (Fig. 2). Canopy spectral reflectance
was measured with two non-imaging passive
sensors by ASD (Analytical Spectral Devices,
Inc., Boulder, CO, USA): QualitySpec® Pro in
the wavelength domain of 350 nm – 1800 nm
in 2007 and 2009, and FieldSpec3® Pro in the
wavelength domain of 350 nm – 2500 nm in
2008. Both devices have a sampling interval
of 1.4 nm in the VNIR and 2 nm in the SWIR
domain. The measurements were taken from
9 a.m. to 1 p.m. LMT, mostly under cloudfree
conditions in the field. Every 10 to 15 minutes,
calibration measurements were taken with a
white reference panel (BaSO4) and were re-
peated depending on illumination changes. A
default viewing angle (α) of 25° and a measur-
ing height (h) of 1 m above the canopy created
a field of view (A) of 0.15 m2 with a radius (r)
of 22 cm (1) and (2).

r(m) = h × tan(α │2) (1)

A(m2) = π × r2 (2)

Fig. 2: Hyperspectral data collection in paddy
rice (distance to canopy: 0.3 m).
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2.5 Data Analysis and Statistics

Original spectral data were used to average
the six spectra per plot. The spectra were not
smoothed, but significant outliers were ex-
cluded from the analysis. In addition, the
stepwise MLR provided a method of feature
reduction and a statement about the optimal
band number to estimate AGB. Basic analy-
ses were conducted like descriptive statistics
of AGB, analyses of canopy spectra under dif-
ferent N-rates, and growth stages before using
the data as a calibration dataset. The calibrat-
ed models were validated using an indepen-
dent dataset to test the transferability of the
models. The following statistic parameters,
root-mean-square error (RMSE) and relative
error (RE) against the observed mean, were
used to calculate the fitness between the ob-
served and estimated data. All statistical anal-
yses were conducted in SPSS 20.0 and Statis-
tica 6.0 (STATISTICA 2013).

3 Results

3.1 Temporal AGB Variation

AGB production and development are de-
pendent on crop growth conditions such as
weather, soil and nutrition. Tab. 1 illustrates
the temporal AGB variation in diverse years
and growth stages for the experimental sites.
Generally, AGB production tends to increase
from the tillering to the heading stage. Over-
all, it ranges from 0.1 t/ha to 14.1 t/ha across
all stages and years. The rice crop had a high
variation in AGB (CV > 30 %), especially dur-
ing the early growth stages. During the later
stages booting and heading, the variation was
lower (CV < 30 %). Temporal variation be-
tween the three years is significant. In 2009,
the temperature was lower than in the previ-
ous years, so the AGB production was lower
with a mean AGB value of 0.8 t/ha – 7.0 t/ha.
Highest values were observed in 2008.

nations were calculated with a self-developed
Java program, analysed and plotted as a con-
tour diagram using MATLAB 7.0 software
(MATLAB 2013). Due to the noises caused
by water absorption in the SWIR domain, the
bands from 1330 nm to 1480 nm, and 1770 nm
to 1800 nm were excluded from the analyses.
Only the best two band-combinations are pre-
sented in the results. The SR and NRI equa-
tions are defined as (3) and (4):

1

2

SR ρ
ρ

= ; where ρ1 > ρ2 (3)

1 2

1 2

NRI ρ ρ
ρ ρ

−=
+

; where ρ1 > ρ2 (4)

where
ρ reflectance value

For the analysis of AGB in relation to one
feature, irrespectively if a single band or index
was used, correlation analysis was applied.
The method attempts to model the relationship
between two or more variables by fitting a lin-
ear regression equation to observed data. Sin-
gle bands, but also combination of two, three,
and four different bands were tested using a
stepwise multiple linear regression (MLR).
This allows selecting predictors of depend-
ent variable based on statistical criteria. The
observed data is the dependent variable of the
model. In this study, the AGB is the depend-
ent variable and the single bands are the inde-
pendent variables. In total, 1,250 bands were
analysed in SPSS 20.0 (SPSS 2013) and the
best MLR models are presented in the results.
The MLR equation is defined as (5):

1 21 2 ib b i by a b b bρ ρ ρ= + × + × + + × (5)

where
y multiple linear regression

(MLR)
a mathematical constant
b1, b2, …, bi coefficients
ρb1, ρb2, …, ρbi reflectances
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clustered here as one spectrum. Mostly, the
differences between the first (0 kg·N/ha) and
the second N-rate (35 kg·N/ha) were not sig-
nificant in the reflectance. Similarities were
also observed for the fourth (105 kg·N/ha) and
fifth (140 kg·N/ha) N-rate.
Rice canopies showed a diverse reflectance

at different growth stages. As an example, a
dataset of four stages in 2008 was used to dis-
play the response of a rice crop from the til-
lering to the heading stage (Fig. 3, right). At an
early phenological stage, the reflectance was
mainly influenced by the soil and water of the
paddy field, where the AGB production was
low due to low LAI.
Generally, the reflectance increased from

the tillering to the booting stage and de-
creased from the heading stage due to starting
senescence of the plant. Maximum reflectance
was observed at the booting stage. The can-
opy LAI and the biochemical components of
the plant changed at different growth stages,
which evidently influenced the reflectance.

3.2 Canopy Reflectance Spectra
under Different N-rates and at
Different Growth Stages

The reflectance spectra of the rice canopies
clearly indicated differences in AGB or LAI
that resulted from different N-rates and at var-
ious phenological growth stages. The spectra
of the experiment plots with five different N-
rates at the booting stage in 2008 were taken
as an example to display the response pattern
of canopy reflectance (Fig. 3, left). Generally,
the reflectance spectra tended to increase with
rising LAI in the NIR (700 nm – 1100 nm)
and SWIR (1100 nm – 1800 nm) regions,
whereas the opposite occurred in the VIS
(500 nm – 700 nm) region. The canopy LAI re-
sponded to N-application. Higher reflectance
response occurred with lower N-application.
Especially, in the green (500 nm – 600 nm)
and red (600 nm – 700 nm) regions, obvious
visible differences were detected. There was
a high increase in the five spectra in the Re-
dEdge region (670 nm – 740 nm), which were

Tab. 1: Descriptive statistics of AGB on the experimental fields.

Stage n Min Max Mean SD CV
(t/ha) (t/ha) (t/ha) (t/ha) (%)

20
07

Tillering 146 0.1 2.0 0.9 0.46 46.5

Stem Elongation 74 1.6 5.7 3.4 0.88 26.1

Booting 49 2.9 7.5 5.6 1.05 18.8

Heading 114 3.3 12.4 7.6 1.96 26.1

20
08

Tillering 40 0.1 1.8 0.9 0.46 50.5

Stem Elongation 40 0.9 2.9 1.6 0.49 31.3

Booting 88 2.9 8.8 5.3 1.36 25.6

Heading 88 4.4 14.1 9.0 1.83 20.4

20
09

Tillering 91 0.2 1.6 0.8 0.34 41.3

Stem Elongation 95 0.3 2.2 1.2 0.52 42.0

Booting 95 1.4 6.6 3.5 1.26 36.1

Heading 95 4.6 9.7 7.0 1.15 16.5

A
ll

Tillering 277 0.1 2.0 0.9 0.43 46.3

Stem Elongation 209 0.3 5.7 2.1 1.19 58.0

Booting 232 1.4 8.8 4.7 1.57 34.0

Heading 297 3.3 14.1 7.8 1.87 24.1

n = Number of samples, SD= Standard deviation, CV= Coefficient of variation
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result of low crop development at this growth
stage. Highest R values were recorded at the
stem elongation stage and across all stages.
Maximum negative R values were observed at
tillering and across all stages at wavelengths
of 670 nm, which corresponds to high solar
radiation absorption by chlorophyll pigments.
In the RedEdge region, a high increase of R
values was detected, which is coincident with
reflectance increase of vegetation in this do-
main.
Greatest positive R values were observed

in the NIR shoulder at the stem elongation

3.3 Relationship between AGB and
Spectral Reflectance

The correlation coefficients between AGB
and canopy reflectance at different phenologi-
cal stages and in different years are presented
in Fig. 4. First of all, the correlation between
AGB and reflectance at different stages is de-
scribed (Fig. 4, left). The pattern of the R (cor-
relation coefficient) curves was similar at the
different stages and across all stages except
for the heading stage. Lowest absolute R val-
ues were observed at the tillering stage as a

Fig. 3: Left: changes of rice canopy reflectance with varied N-rates at the booting stage in 2008,
right: changes in reflectance at different growth stages in 2008.

Fig. 4: Left: the correlation coefficients (R) between AGB and canopy reflectance at different phe-
nological stages, right: in different years.
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R2 values except at the stem elongation stage.
Moreover, they are similar in the band-com-
binations ± 20 nm). At the tillering stage, the
SR (ρ822, ρ716) has the best performance (R2 =
0.58). At the stem elongation stage, the NRI
(ρ1678, ρ1575) displayed the best results (R2 =
0.75) versus other stages (Tab. 2, Fig. 5). At
the booting stage, SR (ρ695, ρ513) and NRI (ρ695,
ρ515) performed similarly (R2 = 0.54) using al-
most equal bands. Due to the changes in the
canopy reflectance by biochemical compo-
nents of the plant, all AGB predictors result
in lower R2 values (< 0.3) at the heading stage.
However, across the whole monitored sea-

son, high R2 values were observed (R2 > 0.6)
for a high sample number (n = 1015). SR (ρ713,

stage and at wavelengths of 936 nm across all
stages. Two peaks are noticeable in the SWIR
domain. The first one is located as a local
minimum in the reflectance at wavelengths
of 1125 nm at the booting and heading stag-
es, which is not detected in the early stages
of tillering and stem elongation. Additional-
ly, the plotted R curves show some noises in
the SWIR domain for the booting and head-
ing stage. The noises were only observed in
the 2007 data due to partly cloudy sky dur-
ing the measurements. As a second peak, a lo-
cal maximum in the R curves is observed at
wavelengths of 1670 nm at tillering and stem
elongation.
The plotted curves for the correlation coef-

ficients (R) between AGB and canopy reflec-
tance show strong differences from year to
year (Fig. 4, right). In general, the relationship
seems to be diverse in all three years. Across
all years, the highest R values are observed
(R > 0.75), and in 2007 the lowest (R > 0.6).
In summary, sensitive bands are located at
around 550, 670, 708, 936, 1125 and 1670 nm.

3.4 Model Calibration by single
Bands, SR and NRI

The coefficient of determination between
AGB and single bands, best SR, and best NRI
was calculated. The best single bands and
two band-combinations are shown in Tab. 2 at
each growth stage and across all three years.
Generally, the best SR and NRI always pro-
duce higher R2 values as one single band. SR
and NRI show a very similar performance in

Tab. 2: Single bands, SR and NRI model calibration at different growth stages (2007–2009 pooled
data).

Single Band SR NRI
ρ1 ρ1/ρ2 (ρ1-ρ2)/(ρ1+ρ2)

Stages
(2007–2009) n ρ1 R2 ρ1, ρ2 R2 ρ1, ρ2 R2

Tillering 277 672 0.344 822,716 0.582 799,711 0.559

Stem Elongation 209 780 0.487 1760,1325 0.528 1678,1575 0.758

Booting 232 854 0.443 695,513 0.541 695,515 0.541

Heading 297 380 0.066 800,789 0.218 800,789 0.293

All 1015 936 0.629 713,550 0.757 713,533 0.743

Fig. 5: Best two band-combinations for NRI at
the stem elongation stage.
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ρ550) showed its best performance here (R2
= 0.75). The best single band was 936 nm (R2
= 0.62), which is also important for the MLR
models.

3.5 MLR Model Calibration

MLR analyses were conducted in two direc-
tions: i) assessment of the optimal band num-
ber, ii) MLR-models with 1–4 single bands.
Generally, with respect to the first direction,
the MLR models explain 50–93% of the var-
iation in AGB (Fig. 6). The highest perfor-
mance was observed at the stem elongation
stage (R2 = 0.93 with 18 bands), the lowest at
the heading stage (R2 = 0.50 with 17 bands).
At the tillering stage, the R2 reached a value
of 0.82 with 19 bands and at the booting stage,
a value of 0.60 with 7 bands. The accuracy of
the MLR models was quite good. Across all
stages, 35 bands explained 88% of the bio-

Fig. 6: Relationship between band number and
performance (R2) of the MLR models.

Tab. 3: Stepwise MLR models at diverse growth stages (MLR = multiple linear regression, adj. =
adjusted, SE = Standard error of the estimator).

Stage Model Bands Regression equation R² R² adj. SE

Tillering MLR-1 1 AGB = 1.638 - 19.715 ρ672 0.334 0.332 0.348

n = 277 MLR-2 2 AGB = 1.051 - 16.182 ρ672 + 2.369 ρ1052 0.498 0.494 0.303

MLR-3 3 AGB = 1.189 + 12.021 ρ672 + 4.321 ρ1052 - 28.093 ρ696 0.536 0.530 0.292

MLR-4 4 AGB = 0.824 - 31.879 ρ672 + 70.423 ρ696 + 12.658 ρ814 - 60.408 ρ707 0.641 0.636 0.257

Stem MLR-1 1 AGB = -0.190 + 9.658 ρ780 0.487 0.485 0.858

Elongation MLR-2 2 AGB = 0.220 + 91.228 ρ780 - 86.560 ρ763 0.633 0.629 0.728

n = 209 MLR-3 3 AGB = 0.518 + 72.709 ρ780 - 63.048 ρ763 -22.077 ρ1489 0.679 0.674 0.682

MLR-4 4 AGB = 1.277 + 26.058 ρ780 - 24.207 ρ763 - 66.429 ρ1489 + 30.298 ρ1662 0.744 0.739 0.611

Booting MLR-1 1 AGB = 1.374 + 8.697 ρ854 0.443 0.441 1.180

n = 232 MLR-2 2 AGB = 1.772 + 17.572 ρ854 - 19.088 ρ729 0.533 0.529 1.083

MLR-3 3 AGB = 1.555 + 24.049 ρ854 - 14.718 ρ729 - 10.531 ρ1172 0.545 0.539 1.071

MLR-4 4 AGB = 1.147 + 28.131 ρ854 - 20.997 ρ729 - 12.945 ρ1172 + 69.257 ρ377 0.560 0.552 1.056

Heading MLR-1 1 AGB = 9.970 - 256.497 ρ380 0.066 0.062 1.816

n = 297 MLR-2 2 AGB = 7.798 - 255.759 ρ380 + 5.190 ρ1083 0.119 0.113 1.766

MLR-3 3 AGB = 7.842 - 263.838 ρ380 + 20.485 ρ1083 - 16.632 ρ1003 0.166 0.157 1.722

MLR-4 4 AGB = 6.445 - 488.717 ρ380 + 26.101 ρ1083 - 23.102 ρ1003 + 349.618 ρ406 0.203 0.192 1.686

All MLR-1 1 AGB = -1.534 + 20.179 ρ936 0.629 0.628 1.889

n = 1015 MLR-2 2 AGB = -0.111 + 29.231 ρ936 - 25.930 ρ1659 0.745 0.745 1.565

MLR-3 3 AGB = 0.137 + 46.188 ρ936 - 24.244 ρ1659 - 18.150 ρ762 0.757 0.756 1.529

MLR-4 4 AGB = 0.481 + 37.904 ρ936 - 30.875 v1659 - 27.087 ρ762 + 18.429 ρ1027 0.771 0.770 1.485
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are characterised by four features: Linear rise,
saturation, again linear rise and finally as-
ymptotic trend. Despite the stepwise increas-
ing of bands, the performance of the models
showed an indication of overfitting (after 2–3
bands). iii) For this reason, the optimal num-
ber was set to four. The best MLR models are
listed in Tab. 3 separately for each stage and
across all stages.

mass variability. However, the results indi-
cated that the best MLR model was depend-
ent on the number of independent variables.
A higher number of variables cause higher R2
values, but the number of bands has a limit.
Fig. 6 demonstrates the relationship between
the band number and the performance of the
MLR models at each stage. The relation is il-
lustrated as a curve for each stage. The curves

Tab. 4: Calibration results versus validation results (NRI = normalized ratio index, SR = simple
ratio, MLR = multiple linear regression).

Calibration dataset (2007–2009) Validation dataset

Stage R2 Model (ρ) RMSE RE R2 Stage

0.56 NRI (799,711) 0.58 54.8 0.70

0.58 SR (822, 716) 0.57 53.9 0.69

Tillering 0.30 MLR-1(672) 0.66 57.6 0.29 Tillering

n = 277 0.44 MLR-2 (672, 1052) 0.61 53.0 0.55 n = 92

0.47 MLR-3 (672, 1052, 696) 0.56 53.0 0.62

0.56 MLR-4 (672, 696, 814, 707) 0.47 44.5 0.82

0.76 NRI (1678, 1575) 1.25 59.4 0.38

0.53 SR (1760, 1325) 1.36 64.8 0.45

Stem Elongation 0.49 MLR-1 (780) 1.88 89.3 0.18 Stem Elongation

n = 209 0.63 MLR-2 (780, 763) 1.28 60.8 0.31 n = 130

0.68 MLR-3 (780, 763, 1489) 1.15 54.8 0.51

0.74 MLR-4 (780, 763, 1489, 1662) 1.16 55.1 0.42

0.54 NRI (695, 515) 1.89 49.3 0.00

0.54 SR (695, 513) 3.49 90.8 0.00

Booting 0.44 MLR-1 (854) 1.89 49.3 0.14 Booting

n = 232 0.53 MLR-2 (854, 729) 2.07 53.8 0.06 n = 257

0.54 MLR-3 (854, 729, 1172) 1.98 49.7 0.12

0.56 MLR-4 (854, 729, 1172, 377) 1.86 48.4 0.11

0.29 NRI (800, 789) 2.73 51.3 0.19

0.22 SR (800, 789) 2.76 51.9 0.19

Heading 0.02 MLR-1 (380) 3.12 58.6 0.01 Heading

n = 297 0.04 MLR-2 (380, 1083) 3.12 58.6 0.01 n = 191

0.05 MLR-3 (380, 1083, 1003) 3.09 58.1 0.02

0.06 MLR-4 (380, 1083, 1003, 406) 2.86 53.8 0.12

0.74 NRI (713, 533) 2.86 76.0 0.42

0.76 SR (713, 550) 2.76 77.9 0.70

All 0.60 MLR-1 (936) 2.57 72.7 0.48 All

n = 1015 0.72 MLR-2 (936, 1659) 2.42 68.4 0.53 n = 670

0.74 MLR-3 (936, 1659, 762) 2.44 68.9 0.54

0.75 MLR-4 (936, 1659, 762, 1027) 2.49 70.2 0.55
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ing in experiments and large scale in farmers’
fields). When the SR-, NRI-, and MLR-mod-
els were evaluated with data from farmers’
fields, the R2 values were significantly small-
er (0.38–0.51 at the stem elongation stage and
0.42–0.70 across all stages). However, at the
tillering stage, the R2 values were significantly
higher (0.62–0.82) than the calibration values.

4 Discussion and Conclusion

In comparison to reflectance-based estima-
tion of AGB for wheat or other cereals, the es-
timation of rice AGB is linked with a lower
relationship between reflectance and AGB re-
sulting in a lower R2 performance of the mod-
els. Single bands, optimised SR and NRI, as
well as MLR-based methods were able to ex-
plain 80 % – 90 % of the biomass variability in
wheat, e.g. ZHU et al. (2008), BAO et al. (2009),
KOPPE et al. (2010), but only 60 % – 80 % in
rice, e.g. PATEL et al. (1985), SHIBAYAMA & AKI-
YAMA (1989), TAKAHASHI et al. (2000),WANG et
al. (2008), and BAJWA et al. (2010).
In this study, the performance of the inves-

tigated indices SR and NRI (R2 = 0.75) was
in the range of published studies, while MLR
performed better (R2 = 0.93). The bands ofNRI
were similar as in the study of STROPPIANA et
al. (2009) for rice AGB across all stages. Their
analysis indicated highly correlated AGB (R2
> 0.9) in the RedEdge. In the case of MLR, the
optimal bands in this investigation were com-
parable to those by WANG et al. (2008). They
also set the optimal band number to four to
estimate AGB of rice, and they detected sev-
eral bands in the SWIR domain. There was a
clear cluster of SWIR bands, especially at the
stem elongation stage, when the rice AGB was
highly correlated with LAI (GNYP et al. 2012).
These bands represent the maximum reflec-
tance in the 1500 nm – 1800 nm domain and
are sensitive to lignin, starch and protein (KU-
MAR et al. 2003).
Furthermore, one key objective of our study

was the transfer of the optimised SIs and new-
ly developed MLR models, which were in-
vestigated from data collected in field experi-
ments, to real practice: Farmers’ rice fields un-
der conventional management. In this study,
the up-scaling from the experimental to the

The results indicate that regression equa-
tions and the significant bands vary between
the phenological stages. The performance of
the models was improved by adding stepwise
an additional independent band. For example
at stem elongation, the R2 values increased
from 0.48 (MLR-1) to 0.74 (MLR-4) and
across all stages from 0.62 (MLR-1) to 0.77
(MLR-4). Due to the high sample number, all
results are significant at p < 0.0001 except for
the heading stage. It is striking that many of
the bands are located in the NIR and SWIR
domain, but only some in the VIS domain.

3.6 Calibration against Validation

The calibrated (SR-, NRI-, MLR-) models
were validated by an independent dataset
(Tab. 4). Generally, the models using 2–4 sin-
gle bands are the most promising for estimat-
ing AGB. Only one band explained AGB vari-
ability the least. In the case of MLR, the mod-
els tended to overfit already when fitting with
2–3 bands. This caused a slight increase of the
R2 and the RMSE values, though more bands
were used for modeling.
At the tillering stage, the top identi-

fied models all used RED (672 nm, 692 nm)
and NIR bands (707 nm – 1052 nm),
while at the stem elongation stage NIR
bands (763 nm, 780 nm) and SWIR bands
(1325 nm – 1760 nm) dominated, and across
all stages GREEN bands (533 nm, 550 nm),
NIR bands (713 nm – 1027 nm) and a SWIR
band (1659 nm) were selected. In most cases,
the validated MLR-models provided the best
results with highest R2 values (R2 = 0.82 at the
tillering stage, R2 = 0.51 at the stem elonga-
tion stage). The performance of the models
at the booting and heading stages was worse
(R2 < 0.19). In addition, the RMSE values in-
creased till to 3.49 t/ha. These models are use-
less for regionalisation. Across all stages, the
SR showed its best performance (R2 = 0.70).
The RMSE values are reasonable, but the RE
shows relatively high values (RE > 40 %). This
fact can be explained through the different
management of the experimental fields (man-
ual work by fieldworkers) and farmers’ fields
(mechanical work by tractors and airplanes)
and the different plot size (small scale farm-
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be a problem. Up-scaling from small experi-
mental to larger farmers’ fields often yielded
lower model predictability, e.g. LI et al. (2010)
and PSOMAS et al. (2011), like in this study at
the stem elongation stage.
Several different calculations could have

been carried out in this study to partially avoid
overfitting with MLR. For example, prior
studies have shown that PLS, support vector
machine (SVM), principle component analy-
sis (PCA) and neural network approaches can
also partly help to avoid this problem. In addi-
tion, the comparison of estimation of fresh and
dry AGB would be of great value, since sev-
eral studies displayed a better predictability
of fresh rice AGB, e.g. YANG & CHEN (2004).
Due to the changing of the reflectance char-
acteristics in the different plant organs, the
AGB estimation should be investigated in the
different organs leaf, stem and head as well.
Future studies should involve data from large
fields for calibration and for validation, which
should be independent of each other. Moreo-
ver, sensor fusion could improve the valida-
tion as well, as shown for the radar and hy-
perspectral data combination by KOPPE et al.
(2012). Better development or validation of re-
liable models could be also achieved by cross-
validation and bootstrapping (RICHTER et al.
2012).
After several improvements, the models

of this study, especially these with high pre-
dictability at the tillering and stem elongation
stages, could be tested by EnMap or other sen-
sors from the space. This study showed the
high potential in estimating dry AGB by MLR
with 3–4 independent bands, but also by SR
and NRI. These bands could be easily tested
and evaluated for a larger area by UAVs (un-
manned aerial vehicles) carrying hyperspec-
tral sensors or cameras, or by satellite-borne
hyperspectral sensors such as EO-1 Hyperion
and EnMap, or the airborne sensor HyMap.
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Summary: This paper shows how to use different
remote sensing sensors and methods to obtain pa-
rameters about the urban built-up areas. Within the
cooperative research project HiReSens a hyper-
spectral scanner, an airborne laser scanner, a ther-
mal camera, and a RGB-camera were employed on
a small aircraft to determine roof material and geo-
metric parameters as well as heat bridges within the
city of Oldenburg, Lower Saxony, Germany.
HiReSens aims to combine various geometrical

highly resolved data (50 cm) in order to survey the
state of the roof areas. Thermal data were used to
obtain the temperature distribution of single roof
tops. The hyperspectral data provide information
on the roofing materials. Support vector machines
(SVM) were used to classify these roof materials.
Five out of six roofing materials were clearly de-
tected.
From airborne laser scanning (ALS) data a digi-

tal surface model and a digital terrain model were
calculated. These models in combination with hy-
perspectral data form the basis to locate the build-
ings with the best orientations for solar panels. A
decision tree algorithm gives satisfactory results in
this case.
The combination of the different datasets offers

the opportunity to use synergies between different
sensor systems. The central goals were the develop-
ment of tools for the detection of thermal bridges by
means of thermal data, spectral differentiation of
roof parameters on the basis of hyperspectral data
as well as 3D-capture of buildings from ALS data.

Zusammenfassung: Ableitung von städtischen Pa-
rametern der Stadt Oldenburg durch Hyperspek-
tral-, Thermal- und Airborne Laser Scanning Da-
ten. Im Rahmen des kooperativen Forschungspro-
jektes HiReSens, gefördert vom BMBF, wird ein
Hyperspektralscanner, ein Airborne Laser Scan-
ner, eine Thermalkamera und eine RGB-Kamera
auf einem kleinem Flugzeug, einer Cessna 207,
eingesetzt, woraus Parameter der städtischen Be-
bauung, wie Dachmaterial- und Geometrieparame-
ter sowie Temperaturverteilungen von Dächern,
abgeleitet werden.
HiReSens zielt darauf ab, verschiedene geome-

trisch hochauflösende (50 cm) Daten der Stadt Ol-
denburg in Niedersachsen zu kombinieren, um
Synergien zwischen den unterschiedlich arbeiten-
den Sensorsystemen zu nutzen. Aus dem digitalen
Geländemodell in Kombination mit den Hyper-
spektraldaten wird eine Dachmaske mittels Ent-
scheidungsbaum-Klassifikation generiert. Aus den
Thermaldaten lässt sich die Temperaturverteilung
innerhalb einzelner Hausdächer bestimmen, wel-
che Indizien auf mögliche Wärmebrücken geben.
Die Hyperspektraldaten liefern spektrale Informa-
tionen über Dachmaterialien. Sie werden mit Hilfe
eines Support Vector Machine (SVM) Klassifizie-
rungsalgorithmus ermittelt. Fünf von sechs Dach-
materialien sind klar differenzierbar.
Die digitalen Höhenmodelle, abgeleitet aus Air-

borne Laser Scanner Daten, dienen in Kombination
mit den Hyperspektraldaten der Ermittlung von
Dächern, die eine optimale Ausrichtung für die In-
stallation von Solaranlagen aufweisen.
Die zentralen Ziele des Projektes sind die Ent-

wicklung von Werkzeugen zum Erkennen von
Temperaturverteilungen, spektrale Unterscheidung
verschiedener Dachparameter auf Basis der Hyper-
spektraldaten sowie die 3D-Erfassung von Gebäu-
den aus den Airborne Laser Scanner Daten.
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information to improve the results of roof
classification. BRAUN et al. (2012) implement-
ed a method for the fusion of hyperspectral
and ALS data to improve SVM classification
by kernel composition, modifying the one-
against-one cascade and taking into account
human knowledge on roof geometries.
Building detection and reconstruction have

been important topics of photogrammetric
research for many years. For instance, KOK-
KAS & DOWMAN (2006) introduced a semiau-
tomatic technique for building reconstruction
by fusing aerial digital imagery and ALS data.
RENTSCH & KRZYSTEK (2009) used ALS data
for a 3D reconstruction of roof ridge lines and
roof planes. ROTTENSTEINER et al. (2012) com-
pare and evaluate different methods of build-
ing detection and 3D reconstruction from air-
borne image and laserscanning data. KLÄRLE
(2009) used ALS data to infer the optimal lo-
cations for photo-voltaic solar panels. HILLING
& DE LANGE (2010) show a web-based applica-
tion for deriving the solar potential from ALS
data.
For the project HiReSens hyperspectral

data in the visible to near infrared spectral
range were collected to derive roof parameters
of the city of Oldenburg. The hyperspectral
data have a spatial resolution of 0.5 m. In ad-
dition, thermal and ALS data are gathered to
address energy-related issues. Furthermore,
aerial images (RGB) are used to enable a pre-
cise georeferencing and fusion of all data.
Merging of all these different kinds of data

results in a vast pool from which useful infor-
mation can be extracted. Generally one can
say that the accuracy of classification results
increases considerably by synergy effects
since certain classes can be separated more
accurately using additional information un-
less the features are strongly correlated. For
the classification a decision tree (QUINLAN
1986) and the support vector machine (SVM,
STEINWART & CHRISTMANN 2008) algorithm are
used. The innovative core of this project is the
challenging data acquisition:
● high spectral and spatial resolution data,
● a georeferencing accuracy of a few
decimetres,

● the fusion of these different data.
The products may serve as additional input

data for 3D citymodels as well as GIS databases.

1 Introduction

Urban development plays an important role in
modern times. Questions related to the limit-
ed availability of natural resources and energy
consumption develop in all parts of the world.
The steady progress of urban sealing has in-
fluence on the local climate and hence on our
well-being. Remote sensing techniques may
assist in obtaining the information required to
support decision-making processes to sustain
or even improve the quality of our environ-
ment. In order to address these issues from a
planning point of view, 3D data having a high
spatial and spectral resolution are very help-
ful. Airborne data are mostly suitable for these
purposes as a trade-off between expansion of
the area and acquisition of small details. Es-
pecially when using more than one sensor in
a flight, airborne methods become fairly cost
efficient and can cover larger areas compared
to on-site inspections.
Hyperspectral data can be used to differ-

entiate various urban surface cover types
(HELDEN et al. 2010, YANG 2011). Due to the
strong heterogeneity of urban areas, data of a
high geometrical resolution are required. For
many applications a resolution (ground sam-
pling distance, GSD) of 50 cm or better is de-
sirable. At a coarser resolution (GSD > 1 m),
mixed pixels do no longer allow to separate
small details. ROESSNER et al. (2001) used a
spectral unmixing algorithm to reduce the
problem with DAIS hyperspectral data having
a GSD of 7 m, leading to improved classifica-
tion results compared to standard procedures.
MORI et al. (2008) classified and analysed

roof materials in Japan based on a handheld
spectrometer using the reflectance between
350 nm – 2,500 nm as a basis. However, only
single spots can be handled by this meth-
od. BÄHR et al. (2005) and LEMP & WEIDNER

(2004) developed an automatic procedure to
determine roof parameters from hyperspec-
tral and airborne laser scanner (ALS) data
based on segmentation. They distinguish five
roof classes. For the classification a partly ob-
ject-oriented approach was implemented. The
classification was based solely on hyperspec-
tral data. New aspects of segmentation and
classification were implemented by LEMP &
WEIDNER (2005). Additionally, they used slope
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tion is given in detail by BANNEHR et al. (2006).
The RGB images were taken by Alpha Luft-
bild using an Aquila A210.

2.1 Hyperspectral Observations

The imaging spectrometer AISA+ is a non-
cooled system. It serves for monitoring and
detection of environmental damage, determi-
nation of water constituents of lakes and riv-
ers, forest state examination, and atmospheric
research. Up to 244 spectral channels with a
bandwidth of 2.5 nm in wavelength can be de-
fined within the spectral range from 400 nm
to 980 nm. For the project HiReSens 107 spec-
tral channels with a bandwidth of about 5 nm
are used as a trade-off between noise, expo-
sure time and channel bandwidth.
The AISA+ system was radiometrically cal-

ibrated by the manufacturer Specim, Finland.
According to Specim the calibration accuracy
over the spectral range of the imaging spec-
trometer is about 10 %. This accuracy is not
critical for the current investigation because
the airborne reference spectra are compared
with ground truth spectra. Eleven strips were
flown on 16 June 2010 to cover the whole pro-
ject area. The altitude of 600 m resulted in a
GSD of 50 cm.

2.2 IR Measurements

The infrared camera, a FLIR SC3000, enables
the detection of small differences in tempera-
ture. Thus, it is most suitable to detect ther-
mal bridges and energy losses of buildings
by looking at temperature variations within
house roofs. The infrared camera has a detec-
tor size of 320 × 240 pixels. Its spectral re-
sponse is between 8 μm and 9 μm. Up to 50
images per second can be taken. For the pre-
sent project the data acquisition rate was set to
10 Hz. This high sampling rate assures a high
overlap in the flight direction and hence min-
imizes the angular effect of emissivity. Dur-
ing the measurement the standard temperature
range of the IR camera was set to the range
from –20 °C to 80 °C. This temperature range
is resolved with 14 bit, which results in a tem-
perature resolution of 30 mK.

This paper presents a setup of four different
airborne sensors for high spatial resolution re-
mote sensing over urban areas. The data pro-
cessing is discussed as well as the challenges
of combining these high resolution data. From
this pool of information some derived prod-
ucts are shown: roof temperature variation,
solar potential, and roof material classifica-
tion.
Two different classification algorithms are

applied to derive parameters related to the
buildings in a scene. SVM are used to clas-
sify up to six different roof materials, whereas
a decision tree helps to derive the roof align-
ment in order to assess the potential of solar
energy.
In our study, hyperspectral data are com-

bined with ALS data. In this way we do not
only identify roof surfaces which are theoreti-
cally suitable for solar power generation, but
we identify the surfaces that are really usa-
ble for that purpose. These surfaces are often
smaller due to tree overhangs. The tempera-
ture distribution of roof surfaces which can be
an indicator of heat bridges is also visualised.

2 Observations

Different weather conditions are required for
data acquisition using airborne hyperspectral,
thermal and ALS sensors. For hyperspectral
and RGB data acquisition, clear skies and a
high sun elevation are desirable. For collecting
thermal data the most suitable weather condi-
tions are encountered at night, or in the morn-
ing when temperatures are low, without snow
or dew, and under a uniform cloud cover. An
ALS can be operated under most weather con-
ditions apart from rain, snow, or fog. Also dew
prevents a successful data acquisition.
Considering these constraints three flights

at different times were performed over the city
of Oldenburg, Germany. The total project area
size was 3.8 km × 1.8 km. Within this area the
work was focused on a core test site of 1.8 km
× 1.0 km which hosted the broadest diversity
of urban features.
More than 60 GBytes of hyperspectral,

thermal and ALS raw data were collected.
They were captured using the Cessna 207 air-
craft of Milan Geoservice. A system descrip-
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3.1 Rollei AIC-P45

The 56 images of the core region were orient-
ed using 18 manhole covers as ground con-
trol points (GCPs). The GCPs were collected
using DGPS. More than 700 tie points were
used. Two to three points were picked manu-
ally for each image. The rest were picked au-
tomatically. A digital surface model (DSM)
derived from the ALS data (section 3.4) was
used to generate an orthophoto mosaic of the
whole project area (GSD: 10 cm). This mosaic,
which contained double mappings, was used
for precise georeferencing of the hyperspec-
tral data. We also generated a DSM of the core
area by semi-global matching (HIRSCHMÜLLER
2008) from the RGB images. The software
also delivers a true orthophoto (GSD: 8.5 cm),
which we used to generate the reference for
the SVM-based classification (section 4.4).

3.2 FLIR SC3000

The surface temperature range during the field
experiment was between 3.5 °C and 9.5 °C.
This agrees with in-situ measurements of
the collected temperature data. The thermal
camera was not connected to a GNSS/INS.
Therefore, the data were georeferenced by
aerotriangulation using ground control and tie
points. Because of the very high image over-
lap, only every fourth image was used. The re-
sult is a thermal image mosaic based on the
ALS data with a GSD of 50 cm (Fig. 1). Build-
ings are generally cooler (dark purple) than
the surrounding roads and non-built-up areas.
The white areas correspond to water. One also
can see temperature variations both between
and within individual buildings. For a more
in-depth analysis it is necessary to extract the
thermal features in detail.
The interpretation of thermal images must

be done carefully because the measured tem-
peratures depend on the emissivity ε of the
roof materials, which are different in general.
Variations of ε between 0.80–0.94 and more
are very common. This can result in a tem-
perature difference of several Kelvin, depend-
ing on the temperature level itself. Without
any further information about a building, it is
not possible to decide whether the temperature

The observations were carried out just be-
fore sunrise at an altitude of approximately
500 m on 28 April 2010 (GSD: 55 cm). Fifteen
flight strips were needed to cover the total pro-
ject area, nine of which cover the core test site.
The thermal camera was calibrated geomet-

rically in the laboratory with a 3D test field
(LUHMANN et al. 2011).

2.3 Airborne Laser Scanning

For the second research flight the Riegl LMS
Q560 laser scanner and the thermal cam-
era FLIR SC3000 were on the same aircraft.
The resulting ALS point density was about 23
points/m2. These data were rasterized at a spa-
tial resolution of 25 cm.

2.4 RGB Observations

Alpha Luftbild provided the RGB camera
Rollei AIC P45 with 39 megapixels and per-
formed the measurement flight on 25 March
2010. Due to their high spatial resolution, the
RGB data are used as a reference for the co-
registration of the other sensors, in particu-
lar for the hyperspectral and the thermal data.
Furthermore, the RGB data served as refer-
ence information for defining the training are-
as in the SVM-based classification. The flight
altitude of 580 m resulted in a GSD of about
8.5 cm. The forward and side laps were 68 %
and 80 %, respectively.

3 Pre-processing

The AISA+ hyperspectral system and the
Riegl airborne laser scanner LMS-Q560 were
connected to an IGI CCNS4 and an AERO-
control GNSS/INS. This system samples the
aircraft motion data (roll, pitch, yaw) with
256 Hz and the GNSS data with 10 Hz. The
GNSS data is post processed using SAPOS
correction data. For the ALS data an accuracy
of 0.2 m is achieved both in planimetry and
height. After the geometrical co-registration,
which will be explained in the subsequent sec-
tions, all data were transformed into UTM
32N, WGS 84.
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calculations using MODTRAN (BERK et al.
2006) were carried out for a flight altitude of
500 m assuming a standard continental aero-
sol size distribution and a subarctic summer
atmospheric profile. It was found that neglect-
ing the atmospheric effect may lead to an er-
ror of 0.5 K. As this error is rather small and
because it is constant over the entire area it
was disregarded. It has to be noted that we are
mainly interested in the relative temperature
distribution, not in the absolute one.
Ground-based in-situ temperature meas-

urements on three different roof locations
agree with the temperatures derived from the
airborne sensor data within -0.7 K and -4.7 K.
Fig. 2 shows the positions where the temper-
atures were compared; the measurements
are shown in Tab. 1. Note that no emissivity
was taken into account and the differences in
Tab. 1 are mostly due to emissivity of the ma-
terial and the minor atmospheric effect. The
measurements were carried out during the
overpass of the aircraft. In addition, continu-
ous air temperature data were recorded. These
data show the current air temperature (be-
tween 6 °C and 7 °C) from 3 am to 7 am Cen-
tral European Summer Time. The flight mis-
sion took place between about 6 am and 7 am.

3.3 AISA+

The processing of the hyperspectral data in-
cludes the boresight calibration, radiometric

distribution is due to the variation of the emis-
sivity or arises from different surface temper-
atures. In section 4.1, a method to highlight
the temperature distribution within the indi-
vidual buildings is presented.
The spectral band used by the infrared

camera (8 μm–9 μm) is within an atmospher-
ic window (8 μm–14 μm). The influence of
the atmosphere on the signal is expected to
be rather low. Nevertheless, radiative transfer

Fig. 1: A 500 m × 500 m subset of the thermal
infrared orthorectified image section of Olden-
burg (GSD: 50 cm).

Fig. 2: In-situ temperature measurement points, thermal image on the left side, RGB ortho image
on the right. The numbers indicate the measurement points.
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for the outermost pixel of the sensor and still
remains in the georeferenced image. Fig. 3
shows the pre-processed FODIS ratio CIR col-
our image generated from the AISA+ data.
Some dark and bright spots within the image
are caused by the cloudiness.
To verify the spectral measured data, in-

situ measurements with a field spectrometer
were carried out. The reflectance of different
roof tops was collected using a RAMSES VIS
SAM-8103 field spectrometer. Some example
reflectance curves and FODIS ratio curves
are shown in Fig. 4. It has to be noted that the
portable spectrometer measurements only had
non-calibrated white Teflon as a white refer-
ence, and that some of the measurements were
taken at a time different from the time the im-
agery was acquired. Taking into account the
diversities of the instrumentation of the meas-
uring setups and of the illumination, a com-
parison by visual examination indicates a suf-
ficiently good agreement between airborne
and reference spectra.
Direct georeferencing of the hyperspectral

data resulted in discrepancies between 0.0 m
and 2.0 m. At this time, the reasons for the
larger discrepancies are subject to specula-
tion. It is likely that residual boresight errors

correction, rectification, georeferencing, or-
thorectification, and mosaicking.
Due to partial cloudy weather conditions

it was decided to use the FODIS ratio (HO-
MOLOVA et al. 2009) to represent the reflec-
tance rather than the reflectance derived from
the atmospheric correction model. The FODIS
ratio is the ratio of the down welling irradi-
ance, measured by the FODIS detector, which
is part of the AISA system and mounted on top
of the aircraft, and upwelling radiance, meas-
ured by the AISA sensor without any atmos-
pheric correction.
Under partial cloudiness the FODIS ratio

provides better results than the reflectance de-
rived from an atmospheric correction model,
which is based on a radiative transfer model.
This is due to the fact that atmospheric cor-
rection algorithms always assume clear skies
with no clouds. In the case of the AISA+ sys-
tem operated below clouds, the reflected ra-
diation as well as the downwelling radiation
drops rapidly. However, the FODIS ratio will
stay almost as constant when having the same
surface characteristics. Applying an atmo-
spheric correction model for the reflectance
calculation would result in unrealistically
small reflectance values.
In order to achieve a high geometric ac-

curacy, the hyperspectral sensor AISA was
calibrated using a new procedure developed
by the project group (PIECHEL et al. 2011). It
turned out that the results from this calibration
cannot be used in the CaliGeo (SPECIM 2010)
tool, which is the default processing software
delivered with the sensor system. Despite of
the fact that the documentation describes the
possibility to use a factor for radial distortion,
it turned out that the software is not able to
calculate useful results when using this fac-
tor. The lens distortion error is about 4 pixels

Tab. 1: Temperatures at the in-situ measure-
ment points (Fig. 2).

Position Thermal
image (K)

In-situ measure-
ment (K)

Delta
(K)

1
2
3
4

275.7
278.7
279.4
275.8

276.5
282.1
284.1
276.5

-0.8
-3.4
-4.7
-0.7

Fig. 3: A 500 m × 500 m subset of the pre-pro-
cessed CIR reflectance image generated from
three AISA+ strips. The spatial resolution is
50 cm. Note the sunny part of the lower strip
compared to the other strips.
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and boresight angles between scanner and
IMU, if possible for each flight session.

b) Use of exact lever arms between GNSS an-
tenna and IMU as well as between IMU
and laser scanner.

c) Precise internal calibration of the instru-
ment.
The LMS Q560 allows for collecting full

waveform laser data. For the current project
only the first/last pulses are needed. The Riegl
software enables to extract the first/last pulse
data from the full waveform data (PETRIE
2011). To derive digital elevation models from
airborne laser data a number of processing
steps are necessary. At first morphological fil-
tering is carried out automatically using the
software package TerraScan (TERRASOLID
2010). The results were visually verified and a
locally optimized filter parameter is applied in
an iterative process to improve the results. As
final products a digital surface model (DSM)
and a digital terrain model (DTM) are gen-
erated as raster models with a grid width of
25 cm. Homogeneous regions are easier to be
classified than city centres. The accuracy also
depends on the laser point density, which is
about 23 points/m2 in our test. From the DSM
and the DTM, products such as contour lines
and cross sections can be inferred.
In addition to the DSM and the DTM, the

original point cloud is also available. Fig. 5
shows a shaded relief of the DSM.

or time drifts of the AISA+ system may cause
the disagreement. In order to compensate
these errors the hyperspectral data were co-
registered to the RGB ortho-mosaic and rec-
tified by a fourth-degree polynomial rubber-
sheeting using hundreds of manually picked
control points. The rectified image with a
GSD of 50 cm was used as a basis for generat-
ing an image corresponding to the normalised
difference vegetation index (NDVI), which
was one of the inputs for building classifica-
tion (section 4).

3.4 Airborne Laser Scanner LMS
Q560

For airborne laser scanning the positions and
orientations are based on GNSS/INS meas-
urements. The accuracy of the airborne laser
scanning data strongly depends on an accurate
processing of the GNSS/INS data. In order to
achieve the highest possible internal precision
of the laser data in position and height a num-
ber of requirements have to be considered:
a) Accurate determination of the calibration
values, i.e. installation offset parameters

Fig. 4: AISA FODIS ratios (dark) and portable
spectrometer reflectance (bright colours). The
names indicate the places where the field
spectrometer measurements took place.

Fig. 5: A shaded relief of a 500 m × 500 m sub-
set of the DSM.
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If an offset of ± 10 % from the optimal
alignment is acceptable then inclinations of
20° to 60° with an azimuth between 135° and
225° (DGS 2012) can be regarded as favour-
able. These data are valid for Germany and
vary slightly depending on the local climate.
The roof orientations were derived from

nDSM data. The computations were based on
the building mask derived as described in sec-
tion 4.1. The slopes are computed for all pixels
marked as “building” in this mask. The com-
putation is based on a local quadratic surface

4 Products and Analysis

After pre-processing, various products are de-
rived in the ways described in the subsequent
sections.

4.1 Temperature Distribution within
Buildings

In most cases, the relative differences of the
roof temperatures are sufficient to indicate
heat bridges or heat losses.
As we were only interested in the tempera-

ture distribution on buildings, we first detected
buildings by a simple decision tree algorithm.
For that purpose, we used the NDVI generated
from the hyperspectral data and a normalized
DSM (nDSM). The nDSM was calculated by
subtracting the DTM from the DSM (nDSM
= DSM – DTM). Pixels were considered to
correspond to building pixels if the NDVI is
smaller than 0.35 and if the nDSM height is
greater than 7 m. These thresholds were found
empirically. The non-building pixels corre-
spond to the black areas in Fig. 6.
Finally, we visualised the temperature dis-

tribution inside the areas detected as buildings
using a lookup table with a colour scale with
steps of 1 K (Fig. 6). Thus, the potential heat
loss can be visualized far more efficiently than
with a continuous presentation. One can see
that the temperature is not evenly distributed
over the buildings. This is caused by emissiv-
ity changes of different roof materials or by
heat bridges. Generally one speaks of a heat
bridge if the temperature differences within
an object of constant emissivity are more than
5 K. Fig. 6 shows the temperature distribution
within the selected area.

4.2 Solar Potential

To assess the solar potential it is important to
know the alignment of roofs within a city. In
order to estimate the potential of solar energy
in general the number of flat roofs and roofs
with a certain inclination and orientation as
well as the total area of such roofs has to be
known.

Fig. 6: Building temperature distribution in a
500 m × 500 m subset of our test site.

Fig. 7: Potential for the use of solar panels of
Oldenburg, 500 m × 500 m subset.
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The nDSM and three raster images rep-
resenting the components of the normals
are used for a segmentation using eCogni-
tion’s multiresolution segmentation (BAATZ &
SCHÄPE 2000). The parameters of the segmen-
tation algorithm were set to achieve an over-
segmentation in order to make sure that all the
building boundaries are represented by seg-
ment boundaries. A larger segment size (high-
er scale parameter in eCognition) results in a
higher risk to miss a building boundary. The
left image of Fig. 8 shows the initial segmen-
tation.
Then, the roof segments were classified

via thresholds, using the nDSM height (high-
er than 2.5 m) and NDVI (less than 0.42) as
shown in the centre part of Fig. 8. The thresh-
old values used here are different from the
ones used before because we are now working
on the basis of segments and not on the basis
of pixels.
The classification was followed by some

refinements using a set of rules for the im-
age segments, e.g. to delete small objects and
remove objects with a shape not typical for
buildings, e.g. very thin objects with a high
percentage of borders to non-roof objects. The
resulting building mask is shown in the right
part of Fig. 8.
For accuracy assessment, all roofs in an

area of 900 m × 300 m were digitized manual-
ly from the RGB true orthophoto generated on
the basis of a DSM from image matching (sec-
tion 3.1). The total roof area used for a man-

fitting of the DSM, taking into account 3 × 3
pixels. Again, a decision tree was used to de-
cide whether a pixel is in an area favourable
for solar panels. If the slope was less than 10°,
the pixel was regarded as being on a flat roof,
and therefore marked in blue. If the slope was
between 20° and 60° and the orientation of the
roof was between 135° and 225°, the pixel was
marked in green. This indicates that it is in an
area with favourable conditions for installing
solar panels. The pixels marked in red indicate
areas that are not suitable. The results of the
decision tree classification are presented in
Fig. 7. In the inner city only a small number of
houses, shown in green, is ideal for installing
solar panels. Additionally, buildings with flat
roofs, marked in blue, are suitable for panels
mounted on stilts.

4.3 Building Classification

The roof classification aims to separate differ-
ent roof surface materials. The classification
consists of two parts. One part is the binary
classification of the roofs. The other part is a
classification of the surface material of these
roofs.
The first step, the roof classification, is

based on the rasterized ALS data, the NDVI
calculated from the hyperspectral data and
the plane normals calculated from the origi-
nal point cloud. The plane normal is calculated
using the robust least median of squares tech-
nique for plane fitting using all ALS points
within 1 × 1 m2 cells. These raster cells are
resampled to 50 cm to match the other data.

Tab. 2: Classification accuracy of the binary
roof classification.

Ground truth Background
(%)

Roof
(%)classification

Background 96.29 8.03

Roof 3.71 91.97

Tab. 3: Producer’s and user’s accuracy of the
binary roof classification.

Ground truth Producer's
accuracy
(%)

User's
accuracy
(%)

classification

Background 96.29 97.63

Roof 91.97 87.83

Fig. 8: From left to right: raw segmentation
(yellow = segment boundary), initial classifica-
tion (roofs = red), classification after rule set
and merging; the background is the nDSM im-
age.
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tion 4.3 (yellow lines in Fig. 9) and terrestrial
photographs of roofs. Only roofs with mostly
homogenous material were considered to be
suitable as a reference. Thus, we selected as
a reference only roofs consisting of only one
material and a few (< 15 % in area) disturb-
ing objects like dormers and chimneys as a
reference. Within each reference roof, 4 to 20
pixels were manually selected as training pix-
els so that they completely correspond to the
main roof material, to ensure that training pix-
els represent the correct material.
To reduce the training data and speed up

the computation, only a subset of pixels was
randomly selected as the final training pixels.
Tab. 4 shows the amount of training data se-
lected and used for classification.
In the literature SVM-based classification

proved to be very suitable for classifying hy-
perspectral data (MELGANI & BRUZZONE 2004,
PLAZA et al. 2009, WASKE et al. 2009, BRAUN
et al. 2012). The reduced training subset was,
thus, used to train a SVM for classification,
using the software by RABE et al. (2009). A ra-
dial basis function (RBF) kernel with the pa-
rameter g = 1 was used. Both g and soft mar-
gin parameter C (= 100) were determined by a
3 fold cross validation. The SVM is applied to
classify each pixel independently.
To define a single material per roof, a ma-

jority voting is used to transfer the pixel-based
classification results to the roof objects. That
is, the material of each roof is determined as
the material of the majority of all pixels inside
that roof. The parts of Fig. 10 show an example
with the results from the SVM classification
and the final majority voting.
The confusion matrix in Tab. 5 shows the

outcome of the classification and Tab. 6 shows
the user’s and producer’s accuracies. The re-

ual accuracy assessment is about 74,000 m2.
About 92 % of all roof pixels were found cor-
rectly (for details, see Tabs. 2 and 3). The over-
all accuracy is 95.3 % and the kappa coeffi-
cient is 0.87. Errors result from some complete-
ly missed roofs, e.g. low garage-like buildings
with heights near the nDSM threshold (2.5 m)
and some roofs that are partly hidden by trees.
Fig. 9 shows an example area with typical er-
rors. It can be seen that some small buildings
and building parts are missing. Errors in the
reference also contribute to the overall error
budget, but these errors are much lower than
the actual classification errors.

4.4 Roof Material Classification

For the roof material classification a pixel-
based and a segmentation-based approach
were combined.
Reference data were generated by visual

classification based on the true orthophoto
mosaic, the manually digitized roof outlines
used as a reference for the evaluation in sec-

Fig. 9: Classified roofs (red) and digitized
building outlines (yellow).

Tab. 4: Training area size and subset size.

Material Manually selected training pixels Final training subset

Red roofing tiles 568 200

Black roofing tiles 648 200

Brown roofing tiles 18 18

Metal 62 50

Tar paper 271 150

White colour 31 31
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5 Conclusions and Outlook

From different kinds of remote sensing data,
products such as temperature distributions of
roof tops and maps of the suitability of roofs
for installing solar panels were derived by first
detecting buildings based on a simple decision
tree and further analysis steps. From hyper-
spectral data the roof material characteristics
are inferred using a SVM-based classification.
The fusion of different datasets makes it pos-
sible to obtain more information by synergic
use of the derived products. It is important to
note that a precise georeference of all data is
the basis for reliable results.
Regarding the roof and material classifica-

tion, additional refinements could be done us-
ing the slope per roof plane as an additional
feature. This may help because roofing tiles
are only used on sloped roofs.

sults for all materials except brown roofing
tiles are very promising. The poor results for
brown roofing tiles have to be analysed with
care because of the very low sample size and
seem to be caused by a high spectral overlap
with the black and red roofing tiles.
The SVM classification works well when

using a sufficient number of training data. The
training data need to cover all possible charac-
teristics of a roof material. In this way, one can
be certain to get the best support vectors for
defining the class boundaries. Additionally, it
can be confirmed that the SVM classification
works quite well with noisy data. The mean
signal-to-noise ratio of the hyperspectral data
was only about 100, averaged over all spectral
channels and all spatial pixels.

Fig. 10: Roof material classification. Left: RGB
image (from hyperspectral data), centre: SVM
classification with background masked in grey,
right: results of material classification after ma-
jority voting.

Tab. 5: Confusion matrix of the roof material classification. The numbers correspond to the num-
ber of roof polygons, not to pixels.

Ground truth
classification

Red Black Brown Tar White Metal Total

Red roofing tiles 67 1 0 0 0 0 68

Black roofing tiles 2 87 1 3 0 0 93

Brown roofing tiles 0 0 1 0 0 0 1

Roofing tar 0 1 0 25 0 0 26

White colour 0 0 0 0 1 0 1

Metal 0 0 0 0 0 5 5

Total 69 89 2 28 1 5 194

Tab. 6: Producer’s and user’s accuracies of the
roof material classification.

Producer’s
accuracy
(%)

User’s
accuracy
(%)

Red roofing tiles 97.1 98.6

Black roofing tiles 97.8 93.5

Brown roofing tiles 50.0 100.0

Roofing tar 89.3 96.2

White colour 100.0 100.0

Metal 100.0 100.0
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Some georeferencing errors remaining in
the hyperspectral data lead to misclassifica-
tions at the building boundaries. In addition,
some misclassifications are induced by differ-
ent solar illumination angles depending on the
roof alignment and on the recording time. The
reduction of these errors is a part of the ongo-
ing research.
A further goal is to combine the complete

roof mask with the SVM classification to ob-
tain the material per roof for the whole area.
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community consists of almost 600 people
coming from over 100 organisations.
The activities of the 3D Pilot cover two

phases: an explorative phase, carried out be-
tween January 2010 and June 2011 and an im-
plementation-oriented phase, finished at the
end of 2012.
The major achievement of the first phase

was the establishment of a national 3D stand-
ard. This standard is embedded in a formal in-
formation model, called “Information Model
Geography” (IMGeo). IMGeo contains defi-
nitions of 2D large-scale representations of

1 Introduction

This paper describes the definition, establish-
ment and implementation of a national 3D
standard in The Netherlands, which was ac-
complished within the 3D Pilot NL. The Ka-
daster, Geonovum, the Dutch Geodetic Com-
mission and the Ministry of Infrastructure
and Environment initiated the pilot in 2010.
The aim of 3D Pilot NL is to push 3D devel-
opments in the Netherlands by collaborating
with a wide variety of stakeholders on a test
bed, a test area and use cases. The 3D Pilot

Summary: This paper describes the 3D develop-
ments achieved within the 3D Pilot NL. The first
phase of this pilot (January 2010 – June 2011) re-
sulted in a national 3D standard, modeled as City-
GML application domain extension (ADE). This
standard is briefly explained in this paper. To im-
plement this standard as a nationwide 3D dataset,
further research was needed. The second phase of
the 3D Pilot finished in December 2012 developed
tools, techniques and guidelines to support the im-
plementation of the 3D standard. These are: 1) im-
plementation specifications for the national City-
GML ADE to be used in tendering documents, 2)
example data compliant to the 3D standard, 3) 3D
validator, 4) guidelines to update 3D datasets, and
5) 3D application showcases. These instruments
are further explained and presented in this paper.

Zusammenfassung: Entwicklung und Implemen-
tierung eines nationalen 3D Standards in den Nie-
derlanden. Der Beitrag beschreibt den aktuellen
Stand des niederländischen Projektes 3D Pilot NL
und zugehörige Entwicklungen zur 3D-Datenmo-
dellierung. Die erste Phase des Projektes führte
von Januar 2010 bis Juni 2011 zu einem nationalen
3D Standard, der als Application Domain Extensi-
on (ADE) von CityGML modelliert wurde. Für sei-
ne Implementierung und Anwendung auf einen
landesweiten 3D-Datensatz waren weitere Untersu-
chungen erforderlich. In der im Dezember 2012
beendeten zweiten Phase des 3D Pilot NL wurden
Hilfsmittel für die Implementierung entwickelt: 1.)
eine Implementierungsrichtlinie der nationalen
Application Domain Extension (ADE) für City-
GML zur Verwendung in Ausschreibungen, 2.)
Beispieldatensätze, 3.) ein 3D Validator für die
Konsistenzprüfung von Datensätzen, 4.) eine
Richtlinie für die Fortführung der 3D Daten und 5.)
Anwendungsbeispiele. Diese Werkzeuge werden
hier vorgestellt.
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Many others have done significant work
in this area. For example North-Rhine West-
phalia in Germany has been the first state that
provides a statewide 3D model consisting of
3D roads, railways, DTM, and 3D buildings
employed for noise dispersion mapping (CZER-
WINSKI et al. 2006, 2007). The extension of the
German national cadastre model ALKIS to-
wards 3D building models is another impor-
tant CityGML implementation. In this pro-
ject a CityGML profile has been defined and
most states in Germany provide 3D building
models according to this profile. In addition,
the INSPIRE data specifications for buildings
contain a 3D building profile in line with the
CityGML specifications for buildings. Finally,
different application domain extensions have
been developed. Examples are noise as used in
the German state North-RhineWestphalia and
as documented within the CityGML specifi-
cation, utility networks (BECKER et al. 2013),
real estate management, robotics, building
information models (BIM), and hydrography
(CITYGML 2013).
This paper extends these previous works,

because the unifiedmodeling language (UML)
concept for ADEs is not well described in the
OGC specifications and experiments on im-
plementing such CityGML extensions are new.
Nevertheless, ADEs are and have been speci-
fied without UML. Therefore, an important
contribution of this project is gaining insights
in the procedure of specifying CityGML-pro-
files with the help of UML to make the stand-
ard suitable for a specific context. In addition,
the paper may be considered to address a so-
lution, which is limited to one specific coun-
try. However, the presented implementation
has many global solutions, which are of great
interest both for other countries and domains.
The wide focus of the CityGML implemen-

objects as roads, water, land use/land cover,
bridges and tunnels. As IMGeo is modelled
as an application domain extension (ADE) of
the OGC 3D standard CityGML (OGC 2012).
The information model facilitates extensions
to 2.5D, i.e. surfaces, equivalent to CityGML
LOD0, and 3D, i.e. volumetric representa-
tions, CityGML LOD1, LOD2 and LOD3 of
the objects according to the geometric and se-
mantic principles of CityGML. See VAN DEN

BRINK et al. (2012a, 2013) for details.
The advantage of this approach is that first-

ly the 3D standard builds on 2D efforts, which
makes 3D feasible for governmental organisa-
tions. Secondly, 2.5D and 3D geometries can
be combined in one dataset and depending on
the application the most appropriate geometry
type per feature class can be chosen. For ex-
ample, hydrological modelling in urban areas
may require accurate 2.5D geometry descrip-
tions of the terrain while block models suffice
for the buildings (Fig. 1).
Although the 3D standard is an important

prerequisite for 3D applications, wide use of
3D is still not common practice in the Nether-
lands. The implementation of the 3D standard
requires further agreements. This also covers
agreements on how to implement CityGML.
CityGML allows freedom in its implemen-
tation, while a national standard needs clear
implementation rules. Therefore, the second
phase of the 3D Pilot developed a set of instru-
ments to support the implementation of the na-
tional CityGML ADE.
This paper focuses on the second phase of

the 3D Pilot and describes the implementation
tools and documents that have been developed
(section 2). More details on the 3D Pilot can be
found in STOTER et al. (2013) and STOTER et al.
(2011). The paper ends with conclusions and
future research in section 3.

Fig. 1: 3D IMGeo for hydrological modelling.
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After establishing the 3D standard, the next
step was its implementation. This refers to a
generation of data according to the standard as
an extension of the existing 2D data. For this
implementation more research was required
to understand how the national 3D standard
works in practice including the consequences
of this newmodellingmethod for IMGeowhen
applied to both 2D and 3D datasets: How can
2D LOD be upgraded to LOD0 and higher?
How can the standard-compliant 3D data be
validated and maintained? Also, more insight
was needed to the ability of using 3D IMGeo
data in CityGML-aware software packages:
Are the software systems compatible with the
national extensions and which changes are
necessary to support the extensions?
These questions have been studied in the

second phase of 3D Pilot NL with the main
goal to achieve wide consensus on the imple-
mentation of the national 3D standard and to
explain these agreements to the wider public.
The results of this part of the Pilot are ready-
to-use instruments available as a toolkit at
GEONOVUM (2012a) that data producers can ap-
ply to extend existing 2D IMGeo data into 3D,
to maintain it and to use the 3D data in appli-
cations.
The ready-to-use instruments, which are

detailed in the following subsections, are:
● Implementation specifications for creat-
ing 3D data compliant with the national 3D
standard;

● Example 3D IMGeo data for several levels
of detail and classes;

● 3D validator;
● Guidelines for maintenance, update and
dissemination of 3D IMGeo data;

● A web site that collects 3D showcases and
portrays these to the wider public to inspire
newcomers.

2.1 Implementation Specifications for
Standard-compliant 3D Data

The national 3D standard IMGeo needs agree-
ments on the precise implementation of the
generic standard CityGML. These additional
agreements both clarify and unify the demand
for the national 3D data and assure a country-
wide uniform 3D dataset.

tation is also new. Current CityGML mod-
els focus mainly on buildings, while the 3D
standard in this paper covers all topographic
classes. Therefore, the study of feature classes
other than buildings is another contribution.
Finally, many vendors from abroad are among
the stakeholders involved in this research pro-
jects. The list of participants is published at
GEONOVUM (2013a). Therefore, the experiences
of this pilot are not only of interest for a speci-
fic country. Instead, the 3D Pilot activities
have contributed to developments and grow-
ing insights worldwide. This is why the deliv-
ered instruments and documents have been
offered as best practice and discussion mate-
rial to the OGC working group on CityGML.
See for example VAN DEN BRINK et al. (2012b).

2 Implementation of the 3D
Standard

After it was decided that the national 3D
standard should align to both the national 2D
information model on large-scale topogra-
phy (IMGeo 1.0) and the international stan-
dard CityGML, the integration of IMGeo and
CityGML into IMGeo version 2.0 was the
next step, currently evolved into version 2.1
because of minor changes. This was realized
by modelling all IMGeo classes as an exten-
sion of CityGML classes. In this process the
semantics of CityGML was followed as much
as possible. Not for all classes in the national
model, an equivalent CityGML class could be
found. If possible, this was solved by remod-
elling the classes in the national standard. Ex-
amples of remodelling national concepts are
the CityGML class AuxiliaryTrafficArea ap-
plied for those parts of roads that are not used
for traffic but formerly modelled as roads, and
the class Vegetation, formerly modelled as
CityFurniture for isolated trees and Land Use
for plant cover areas. Often the remodelling
resulted in an improved modelling of the na-
tional concepts. More details on how IMGeo
2.1 was modelled as an Application Domain
Extension of CityGML with a UML-based ap-
proach can be found in VAN DEN BRINK et al.
(2013).



384 Photogrammetrie • Fernerkundung • Geoinformation 4/2013

● Generic requirements, e.g. which version of
CityGML to use, which reference system.

● Requirements for LOD0 representations of
2D IMGeo polygons.

● Requirements for volumetric representa-
tions:
○ LOD0-LOD1-LOD2 Buildings,
○ LOD1-LOD3 Bridges, Tunnels,
○ LOD1-LOD2 Vegetation,
○ LOD2-LOD3 Trees (CityGML-Solitary-
VegetationObject) and Cityfurniture.

● Requirements for texture.

The specifications provide precisely defined
choices regarding the 3D product and explain
the implications of each. A few examples are:
● Representation of vertical surfaces in TIN-
type digital terrain models. Most GIS sys-
tems do not accept vertical faces.

● Necessity of all (planar) objects above the
ground to have a LOD0 representation, in-
cluding those above surface level, e.g. mul-
tilevel crossings.

● Usage of the LOD2 representation of build-
ings as the base 2D geometry? The laser
point data do not always match the 2D foot-
prints, resulting in ‘strange’ geometries
(Figs 2a and b).

The 3D Pilot participants assumed that
these agreements would also be important in
tendering processes, since they assure that
expectations of governmental organisations
(who will mostly outsource their data acqui-
sition) and companies (who will acquire the
data accordingly) are aligned. In addition,
most governmental organisations lack experi-
ence with 3D data and therefore it will be dif-
ficult for them to specify the expected 3D de-
liverables. For those municipalities, the imple-
mentation specifications may serve as an im-
portant source for their tendering documents.
Also, the precise specifications can be used as
acceptance criteria once the data is delivered.
With these objectives in mind, the 3D Pi-

lot defined implementation specifications for
3D IMGeo, i.e. CityGML data. These specifi-
cations contain data requirements for all IM-
Geo-CityGML feature types at different lev-
els of details GEONOVUM (2012b, 2012c). For
the buildings, the “Modellierungshandbuch
Gebäude” of SIG 3D in Germany has been
used as a basis, see SIG 3D (2012b, 2012c).
The implementation specifications have

been established after public consultation and
also include a description of how each require-
ment can be checked. The different require-
ments defined are:

a b

c c

Fig. 2: CityGML implementation choices and consequences. a, b: height point data used to obtain
roof-shapes do not match footprints; c, d: modelling roof-edges, footprints and roof-overhangs.
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tunity to evaluate our implementation speci-
fications. Therefore, the document has been
translated into English (GEONOVUM 2012c).
Also, this document resulted in a few change
requests for CityGML, which are currently
discussed in the OGC, for example, the re-
striction that building footprints and roofedg-
es should be horizontal.

2.2 Example 3D IMGeo Data

To understand how IMGeo works for the inte-
grated 2D and 3D approach, example 3D IM-
Geo data has been built and made available
to the public. The objective of the example
data is to help newcomers to understand the
national 3D standard including the details of
the different levels of detail. The example data
also serves as source for (new) parties to ex-
periment with 3D IMGeo data and it served as
test data in the development of the 3D valida-
tor (see section 2.3). Finally, the example City-
GML-IMGeo data was used to check wheth-
er CityGML compliant software is capable of
understanding the 3D IMGeo data (see section
2.4).
The test area for which the example data

was built, is situated in the municipality of
Den Bosch (southern part of The Netherlands)
containing a rural area, a residential area with
common houses, a river and a bridge.
The 3D IMGeo data have been generated

from 2D IMGeo, i.e. CityGML data (Fig. 3a)
and 3D source data. The 3D source datasets
that were made available on the 3D Pilot data
server, hosted by the Delft University of Tech-
nology are:
● stereo photos, provided by the municipality
of Den Bosch,

● high-resolution laser data, i.e. Actueel
Hoogtebestand Nederland (AHN) by Het
Waterschapshuis, with an average density
of 10 points per m2, available for the whole
country,

● orthophotos by Cyclomedia,
● a high resolution point cloud obtained from
terrestrial laserscanning by Cobra, see
Fig. 3b,

● point clouds generated from aerial photo-
graphs by Imagem,

● oblique photos by Slagboom & Peeters.

● Representation of building roof-edges,
footprints and roof surfaces in LOD2 (Figs
2c and d).

● Inclination of building footprints: Shall the
footprints always be horizontal as in the
CityGML specifications or are they allowed
to be inclined?

● Reasoning for the preference of represent-
ing a LOD2 building with a GML:Solid
over a GML:Multisurface.

● Representation of curved surfaces. Arcs
are allowed in 2D, but are not supported in
TINs.

● Significance of the influence of tree-data
upon the overall volume of the data.

● Requirements of aerial photographs neces-
sary to automatically obtain height points
from image matching.

As can be understood from these choices,
several variants of implementations are pos-
sible based on the available source data, i.e.
point clouds or high resolution photographs,
and the ambition level of the data, i.e. the
class-dependent LOD. These variants are de-
scribed in the resulting document and the pre-
ferred is given. Since the variants are depend-
ent on the intended use, a specific chapter is
dedicated to the requirements in relation to the
3D applications in which the 3D data will be
used.
Apart from the experiences in the pilot,

the implementation specifications are based
on experiences of cities that have invested in
3D city models in the CityGML format, i.e.
The Hague and Rotterdam. Both cities faced
difficulties in comparing offers from differ-
ent companies because the specifications in
the tendering documents appeared to be in-
terpretable in several ways. This also caused
problems in setting up acceptance criteria
for the delivered product. Consequently, the
CityGML datasets differ between the two cit-
ies but it is not always clear whether this was
intended. The jointly defined implementation
specifications will help to avoid similar situa-
tions in the future.
The resulting documentation is of interest

for an international public as it serves as a fur-
ther explanation and refinement of the City-
GML specifications. In addition, putting it in
an international discussion gives us the oppor-
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The geometries for the different feature
types and levels of detail were derived by var-
ious methods.
The LOD2 buildings with roof-shapes were

automatically reconstructed with the method
of OUDE ELBERINK & VOSSELMAN (2011). LOD1
buildings are automatically generated by ex-
truding the 2D footprints with the mean height
calculated from the height points within the
polygon. A filtering-technique is applied to
exclude the outliers.
The LOD3 Bridge was captured by terres-

trial measurements and manual modelling

The following example 3D IMGeo-City-
GML data (available at GEONOVUM 2012a)
were constructed from this data, most of them
automatically, see Fig. 4:
1. LOD0 Digital Terrain Model, i.e. triangu-
lated surfaces for all polygonal objects that
form together a topologically correct data
structure, by the Universty of Twente.

2. LOD1 and LOD2 Buildings, by the Univer-
sity of Twente.

3. LOD1 and LOD3 Bridge by the company
Coenradie.

4. LOD2 trees by the University of Wagenin-
gen.

a: 2D IMGeo data b: High resolution laser data,
obtained by terrrestrial laserscanning

Fig. 3: Example source data available for the 3D Pilot test area.

Fig. 4: Example 3D data compliant with the national CityGML ADE, generated in the research.
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company which is capable of restructuring
the once captured 3D data according to the
CityGML structure. To further help in this
process, an automated workflow for 3D IM-
Geo data reconstruction is currently being de-
veloped. This workflow available as a FME
workbench and as an Open Source tool starts
from 2D IMGeo, i.e. CityGML data and high-
resolution point data, i.e. AHN2, and gener-
ates the LOD0, LOD1 and LOD2 geometries
according to the above-mentioned methods
and writes CityGML-IMGeo at the end of this
process. The workbench implements the al-
gorithms for 3D reconstruction of OUDE EL-
BERINK (2010), OUDE ELBERINK & VOSSELMAN
(2011) and OUDE ELBERINK et al. (2013). Also
this workflow will soon be available for the
wider public.

2.3 3D Validator

A validator is necessary as an independent
tool to verify whether a dataset is compliant
with IMGeo 2.1 or not. When validating ob-
jects, it is necessary to validate both their se-
mantics and the geometry, the former accord-
ing to the classes of CityGML and/or of the
IMGeo extensions, and the latter according
to the international specifications. A valida-
tor for 2D IMGeo (and thus 2D IMGeo-City-
GML) already exists and is available as open
source software (GEONOVUM 2012d). However,
it only checks for two-dimensional primitives.
Therefore, the 3D Pilot studied the required

functionalities to validate the geometry of 3D
solids and developed a 3D validator according-
ly. During this study, we observed that several
real-world datasets have objects that appear to
be visually valid, but in fact are wrongly built.
Fig. 5 shows two examples. These wrong is-
sues are often small and hard to be detected

while the LOD1 representation is a simplifica-
tion of the LOD3 bridge model.
The LOD2 trees were automatically gener-

ated from AHN2 by the method of CLEMENT
(2011).
LOD0 (surface) representations for all class-

es were automatically generated from a com-
bination of the 2D IMGeo data and AHN2.
The LOD0 representation of the data is more
than a drape of the 2D data over the digital
terrain model. It consists of a triangulated sur-
face per polygonal object, generated by means
of a constrained triangulation with the polygo-
nal boundaries as constraints. All these trian-
gulated surfaces together form a topological
surface of the terrain as in 2D with height var-
iances modelled within a polygon. If neces-
sary, extra points are added on the boundaries
to better model the height variance.
The reconstruction of a topologically cor-

rect LOD0-IMGeo surface is not trivial. The
triangulated surfaces are reconstructed for
each polygon separately based on the height
points that fall within that polygon. Conse-
quently, gaps may occur at polygon bounda-
ries that are neighbours in 2D but not neces-
sarily in 3D. The approach of OUDE ELBERINK
(2010) was followed to fill these gaps. In this
approach, heights on polygon boundaries are
adjusted depending on the types of neigh-
bours. The result is a closed 2.5D surface.
After the geometries were created follow-

ing the several approaches, the Karlsruhe In-
stitute of Technology in Germany organized
the geometries according to CityGML and as-
signed CityGML semantics to the features. Fi-
nally, the data was validated with the devel-
oped 3D validation software (see section 2.3).
The main conclusion from this activity is

that many 3D source data is available in the
Netherlands as well as significant knowledge
on these data. However, there is hardly any

Fig. 5: Two real-world invalid buildings.
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(2011) give axioms to validate 3D city models,
but also do not consider holes in primitives of
dimensions 2 and 3. In fact, they define solids
as shells without holes in their surfaces. We
have also noticed that commercial GIS soft-
ware products ignore interior shells. ESRI
(with ArcGIS) and Bentley are two examples.
Oracle Spatial considers interior shells in its
validation function, but does not allow holes
in surfaces.
Our 3D validator does not contradict the

previous results and implementations, but
simply extends them so that solids are validat-
ed against the international standards. It uses
advanced data structures and operations to an-
alyse the topological relationships between 3D
objects. It does not only validate solid geom-
etries for LOD2 buildings, but also 3D Mul-
tiSurfaces that together form a 3D volume as
these are often used in practice. However, it
gives a warning to the user that the stricter
solid-geometry is preferred. The validator is
available as an open source tool (GEONOVUM
2012e) and is also implemented as standard
functionality in FME by Safe software.

2.4 Maintaining and Updating 3D
IMGeo Data

After the investment in a good 3D model, the
maintenance and update of the model become
the key questions. Can commercially avail-
able database management systems (DBMSs)
be used? How shall the update process be or-
ganized? Shall it be integrated in the existing
processes, shall the 3D data be recreated after
a change of the 2D data changes or shall both
methods be mixed?
The 3D Pilot identified one open source, i.e.

3D CityDB (3DCityDB 2013), and two com-

at the usual visualization scale of city mod-
els. However, they cause problems in practice
when for instance converting objects to other
formats including BIM and CAD, or when an-
alysing them. The volume of an invalid solid
could impossibly be calculated. It may even
cause a program crash.
While different definitions of a valid 3D ob-

ject are used in different disciplines, the de-
veloped 3D validator focuses on the definition
given in the ISO 19107 standards (ISO 2003)
and implemented with GML (OGC 2007). A
GML Solid is defined as follows: “The extent
of a solid is defined by the boundary surfaces
as specified in ISO 19107:2003. gml:exterior
specifies the outer boundary, gml:interior the
inner boundary of the solid” (OGC 2007).
Without going into details, we can state that
a solid is represented by its boundaries (sur-
faces), and that, like its counterpart in 2D (the
polygon), a solid can have “holes”, i.e. inner
shells or cavities, that are allowed to touch an-
other hole or the outer boundary, under cer-
tain conditions. To be considered a valid sol-
id, a solid must fulfil several properties. The
most important are: 1) it must be simple (no
self-intersection of its boundary). 2) It must be
closed, or “watertight”. 3) Its interior must be
connected. 4) Its boundary surfaces must be
properly oriented. 5) Its surfaces are not al-
lowed to overlap each other.
It should be pointed out that the develop-

ment of a new 3D validator was necessary
since none of the surveyed GIS packages was
fully compliant with the definition of the ISO:
Often a more restrictive definition of a solid is
used. For instance, BOGDAHN & COORS (2010)
andWAGNER et al. (2013) discuss the validation
of solids for city modelling, but do not con-
sider holes in surfaces and totally omit that
interior shells are possible. GRÖGER & PLÜMER

Fig. 6: Screenshots of StrateGis solution for the CityGML-competition.
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and to offer a source of inspiration to policy
makers and newcomers in the field, the 3D Pi-
lot built a website that collects and portrays
examples of 3D applications that are already
practised. The growing interest for 3D is prov-
en by about 1000 visitors from all parts of the
world in a few months.

3 Conclusions and Future Work

This paper presents the 3D Pilot that defined,
established and implemented a national 3D
standard in The Netherlands. The national 3D
standard, IMGeo, is defined as an application
domain extension of CityGML. Among the
end results are: implementation specifications
of the national 3D standard which assures a
topologically, geometrically and semantically
correct model, example 3D IMGeo data, a 3D
validator, best practice documents of how to
acquire, maintain, update and disseminate 3D
IMGeo data, and a website that collects and
portrays 3D showcases.
The main conclusion of running the 3D Pi-

lot between January 2010 and December 2012
is the change of vision concerning 3D in The
Netherlands. At the start of the 3D Pilot, many
saw that 3D had potentials, but did not know
how to apply them. In the course of the pi-
lot the ambitions for 3D have become much
more focused, also supported by the national
3D standard. Now, these ambitions are further
developed since the second phase of the pilot
has finished.
Several aspects appeared to be crucial for

the adoption and implementation of the 3D
standard. Firstly, the engagement of many
stakeholders was important to gain the neces-
sary support. Secondly, the alignment to the
international standard CityGML, which made
it possible that CityGML compliant software,
is able to deal with IMGeo data as well as to
the ongoinging 2D efforts let 3D applications
become feasible and attractive for governmen-
tal organizations. In addition, collaboration
appeared to be important to share knowledge
on the wide variety of topics in the complex
3D domain. Finally, it was found important
that a number of national organizations took
the responsibility to facilitate the process. Al-
though the pilot is a joint effort of the 3D com-

mercial solutions, CPA Systems and M.O.S.S.,
for maintaining 3D IMGeo-CityGML data in
DBMSs (Oracle and PostGIS).
In addition to test tools for maintaining the

CityGML data, two competitions were organ-
ized. In the first competition, six companies,
i.e. Bentley, CPA systems, M.O.S.S., Safe
Software, StrateGis and Toposcopie, proved
that they are able to edit and store the updat-
ed version of existing CityGML data of The
Hague (Fig. 6).
In the second competition, four vendors,

i.e. Bentley, M.O.S.S., Safe Software and CPA
Systems, executed several tests (published at
GEONOVUM 2012f) on the 3D IMGeo example
data that has recently become available. The
four companies submitted a video in which
they showed the tests followed by a validation
process at the end of the process. These experi-
ments proved that software that supports City-
GML is also able to recognize and deal with
IMGeo-data as IMGeo is an extension of City-
GML. This is important for the acceptance of
3D IMGeo in the Netherlands. The compiled
video that summarises these four company re-
sults is available at GEONOVUM (2012g).
From the experiences of this activity it can

be concluded that for many municipalities a
hybrid approach for updating an existing 3D
model will work best, i.e. periodically auto-
mated updates for larger areas combined with
manual updates in specific project areas. The
automated updates can be done by a combina-
tion of existing 2D topographic data and high-
resolution height points. The height-points
acquired from laser scanning are a perfect
3D source, but in The Netherlands this data-
set, i.e. AHN2, is only collected once every
5 years. In between, aerial photographs with
sufficient overlap, i.e. 60 %, can be used to
automatically generate high-resolution height
points. This may require a change in the re-
quirements of these images.

2.5 Collecting and Portraying 3D
Showcases

Although 3D applications are common prac-
tice for many professionals, 3D is new and
considered as “complex” and “expensive” to
others. To show the need and potentials for 3D
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CITYGML, 2013: Application Domain Extensions,
www.citygmlwiki.org/index.php/CityGML-
ADEs (9.5.2013).

CZERWINSKI, A., KOLBE, T.H., PLÜMER, L. & STÖ-
CKER-MEIER, E., 2006: Interoperability and accu-
racy requirements for EU environmental noise
mapping. – InterCarto, InterGIS, Berlin 2006.

CZERWINSKI, A., SANDMANN, S., STÖCKER-MEIER, E.
& PLÜMER, L., 2007: Sustainable SDI for EU
noise mapping in NRW – best practice for IN-
SPIRE. – International Journal of Spatial Data
Infrastructures Research 2: 90–111.

CLEMENT, J., 2011: Presented at the second meeting
of 3D Pilot Phase II, http://www.geonovum.nl/
sites/default/files/3D/december.zip (9.5.2013).

GEONOVUM, 2013a: List of 3D Pilot participants,
http://www.geonovum.nl/dossiers/3d-pilot/
deelnemersvervolg (9.5.2013).

GEONOVUM, 2012a: 3D CityGML-IMGeo toolkit,
www.geonovum.nl/3d/toolkit (9.5.2013).

GEONOVUM, 2012b: Implementation specifications
for 3D IMGeo-CityGML, www.geonovum.nl/
sites/default/files/3D/
toolkit/3DIMGeoBestekteksten.pdf (in Dutch),
(9.5.2013).

GEONOVUM, 2012c: Technical specifications for the
reconstruction of 3D IMGeo CityGML data,
www.geonovum.nl/sites/default/files/3D/
toolkit/3DFinalReport_2013_1.01.pdf (9.5.2013).

GEONOVUM, 2012d: Validator for 2D IMGeo, http://
validatie-dataspecificaties.geostandaarden.nl/
genericvalidator/content/standard/19 (9.5.2013).

GEONOVUM, 2012e: 3D Validator software, http://
www.geonovum.nl/3D/toolkit (9.5.2013).

GEONVOUM, 2012f: List of tasks that needed to be
performed in the 3D IMGeo-CityGML chal-
lenge, http://www.geonovum.nl/sites/default/
files/scenario_3d_imgeo_relay_final.pdf
(9.5.2013).

GEONOVUM, 2012g: Resulting video of the 3D City-
GML IMGeo relay, http://www.youtube.com/
watch?v=APFIO_czwms&feature=youtube
(9.5.2013).

GRÖGER, G. & PLÜMER, L., 2011: How to achieve
consistency for 3D city models. – GeoInformati-
ca 15: 137–165.

HIJAZI, I., EHLERS, M., ZLATANOVA, S., BECKER, T. &
VAN BERLO, L., 2010: Initial investigations for
modeling interior Utilities within 3D Geo Con-
text: Transforming IFC-interior utility to City-
GML/UtilityNetworkADE. – 5th International
3D GeoInfo Conference, November 2010, Ber-
lin.

ISO, 2003: ISO 19107:2003 Geographic informa-
tion – Spatial schema, http://www.iso.org/iso/
search.htm?qt=19107&sort=rel&type=simple&
published=on&active_tab=standards (9.5.2013).

munity, national organizations have to initiate
and facilitate such a network organization and
they are important for anchoring the results.
The work of 3D implementation is not fin-

ished and several issues remain. These are
currently taken up by the national 3D Special
Interest Group that has been specially estab-
lished for this purpose. The objectives of this
3D SIG are to address the still open 3D issues
in collaboration with all stakeholders. Among
these are open issues concerning implementa-
tion of the 3D standard, the integration of 3D
IMGeo with the subsoil, i.e. geology and ca-
bles & pipelines (see also the work of BECK-
ER et al. (2010), HIJAZI et al. (2010), ZOBL &
MARSCHALLINGER (2008)), further alignment
between BIM and GIS, and 3D extensions in
other domains such as spatial planning and
noise modelling STOTER et al. (2008).
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Dreiländertagung D – A – CH
(DGPF, OVG und SGPF) und
33. Wissenschaftlich-Technische
Jahrestagung der DGPF,
27. 2. – 1. 3. 2013, in Freiburg

Die drei nationalen Gesellschaften für Photo-
grammetrie, Fernerkundung und Geoinfor-
mation Deutschlands, Österreichs und der
Schweiz trafen sich vom 27. 2. bis zum 1. 3.
2013 an der Albert-Ludwigs-Universität in
Freiburg im Breisgau.
Der Präsident der DGPF, Prof Dr. THOMAS

KOLBE, begrüßte die Ehrenmitglieder und Eh-
rengäste der DGPF sowie die Teilnehmer der
Tagung, die nicht nur aus Deutschland, Öster-
reich und der Schweiz, sondern auch aus Grie-
chenland, der Slowakei und der Tschechischen
Republik angereist waren. Er stellte fest, dass
von den 312 Teilnehmern über 30 % unter 30
Jahren waren und begrüßte insbesondere die
großeGruppe von 57 Studierenden der FHNW
Muttenz in der Schweiz. THOMAS KOLBE be-
dankte sich bei der Gastgeberin, Frau Prof. Dr.
BARBARA KOCH mit ihrem Team der Universi-
tät Freiburg, und dem Organisationsteam aus
den drei Ländergesellschaften, HERBERT
KRAUSS, EBERHARD GÜLCH, KLAUS KOMP
(DGPF), MICHAEL FRANZEN (OVG) und KIRS-
TEN WOLFF (SGPF), für die sehr gute Vorberei-
tung und wünschte allen Teilnehmern eine
erfolgreiche Tagung.
Der Präsident der Universität Freiburg,

Prof. Dr. Dr. h.c. HANS-JOCHEN SCHIEWER, be-
grüßte die Teilnehmer der Tagung sehr herz-
lich und zeigte viele Anknüpfungspunkte der
Uni zur DGPF auf, z.B. die erst kürzlich durch
Umstrukturierung geschaffene Fakultät für
Umwelt und Natürliche Ressourcen mit BAR-
BARA KOCH an der Spitze.
Im Rahmen der Eröffnungsveranstaltung

wurden die Preisträger des Karl-Kraus-Nach-
wuchsförderpreises 2013 geehrt. Unter der
Moderation von GÖRRES GRENZDÖRFFER über-
gab URSULA KRAUS, die Witwe des Namensge-
bers des Preises, die Urkunden. Danach über-
gab MICHAEL FRANZEN das Widmungsexem-

plar der Karl-Kraus-Medaille der ISPRS an
URSULA KRAUS. Der Hansa-Luftbild-Preis
2013 für den besten PFG-Artikel eines Nach-
wuchswissenschaftlers ging an JOCHEN MEI-
DOW für den Beitrag „Efficient Multiple Loop
Adjustment for Computer Vision Tasks“, über-
reicht von PAUL HARTFIEL, Firma Hansa Luft-
bild. Der Festvortrag zum Thema „Probabi-
listische Verfahren für die autonome Naviga-
tion und Umgebungskartierung mit mobilen
Robotern“ hielt Prof. WOLFRAM BURGARD von
der Universität Freiburg und zeigte höchst
spannend und unterhaltsam, wie Autos in
Parkhäusern allein ihren Parkplatz ansteuern,
ein Roboter namens Obelix seinen Weg durch
Freiburg findet und autonom fliegende Platt-
formen Räume vermessen.
Am 28. 2. 2013 und 1. 3. 2013 wurden die

Fachvorträge der Arbeitskreise parallel in je-
weils drei Sitzungen gehalten. Einzelheiten zu
den Inhalten und Ergebnissen finden sich in
den Berichten der Arbeitskreisleiter. Die Pos-
terbeiträge wurden durch eine Kombination
von Kurzpräsentation und einer zusätzlichen
gemeinsamen Poster-Sitzung deutlich aufge-
wertet. Über 20 Firmen haben Ihre Produkte
und Dienstleistungen auf der Fachfirmenaus-
stellung präsentiert. Die Ausstellung wurde
von BERNHARD HORST und KLAUS KOMP, Ge-
schäftsführer der Geomatik Tagungs-GmbH,
organisiert. Zwei der Aussteller haben in ei-
nem neu geschaffenen Solution-Forum der
Premium-Aussteller in Form von Beiträgen
vertiefend die neuesten Entwicklungen ihrer
Produkte vorgestellt. Sieben weitere Sponso-
ren haben Beiträge für die Tagungstasche bei-
gesteuert. Allen Organisationen – besonders
den Premiumausstellern – sei für die großzü-
gige finanzielle Unterstützung der Dreiländer-
tagung gedankt.
Am 27. 2. 2013 wurden ein wissenschaftli-

ches Tutorium vom FELIS-Institut der Uni-
versität Freiburg und anwenderorientierte Tu-
torien durch drei Firmen angeboten. Mit nahe-
zu 60 Teilnehmern für die vier Tutorien kann
eine deutliche Nachfrage nach dieser Art von
Weiterbildungsveranstaltung festgestellt wer-
den. Ebenfalls am 27. 2. 2013 wurde eine Be-
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12. Oldenburger 3D-Tage,
13.–14. 2. 2013

In die 12. Runde gingen die diesjährigen Ol-
denburger 3D-Tage und demonstrierten dabei
ihre weiterhin hohe Attraktivität im Bereich
von Fachveranstaltungen zur Optischen 3D-
Messtechnik, Photogrammetrie und Laser-
scanning. 55 Fachbeiträge in zwei parallel lau-
fenden Sessions, eine umfangreiche Fachaus-
stellung sowie die Möglichkeit für intensive
fachliche Diskussion in den Pausen boten eine
hervorragende Basis für den Informationsaus-
tausch. Hervorzuheben ist zudem, dass neben
den „Stammbesuchern“ und -vortragenden
ein hoher Anteil an „Neuzugängen“ zu ver-
zeichnen war: Das hält die Veranstaltung auch
für „Dauergäste“ interessant.
Den Eröffnungsvortrag „Von optischer 3D-

Messtechnik zur lichtfeldbasierten Bildauf-
nahme und -verarbeitung“ hielt Prof. BERND
JÄHNE vom Heidelberg Collaboratory of Image
Processing (HCI) und zeigte dabei eindrucks-
voll die erweiterten Möglichkeiten plenopti-
scher Kamerasysteme. Die nachfolgenden auf
zwei Vortragssäle verteilten Parallelsessions
waren inhaltlich nach dem Themenkomplexen
„Laserscanning“ bzw. „Bildbasierte Ansätze“
vorsortiert, so dass die entsprechenden Inter-
essensbereiche klar abgesteckt waren. Dass
viele Besucher an unterschiedlichsten The-
men interessiert waren, zeigte der „Traffic“
zwischen den Sälen während der laufenden
Veranstaltung.
Der erste „Laserscanning“-Vortragsblock

behandelte in der Session „RGB und Infrarot“
die Kombination von Punktwolken bzw. Mo-
dellen mit zusätzlichen Informationen wie
Thermal- und Infrarotbildern. Die Erfassung
von Punktwolken stellt heute keine Herausfor-
derung mehr dar, die Kombination mit ande-
ren Sensoren zur Generierung eines Mehr-
wertes wird dafür immer wichtiger. Dass ins-
besondere „Dynamische Prozesse“ ein weites
Anwendungsspektrum aufweisen und hierbei
mit unterschiedlichsten Sensoren gemessen
wird, zeigten die Beiträge in der gleichnami-
gen Session.
Im zweiten Block des Tages hatten dann

nach der Mittagspause sechs Hersteller die
Möglichkeit, ihre Produkte näher vorzustel-
len. Im Vordergrund standen nicht nur Syste-

sichtigung des Staatsweingutes Freiburg mit
Weinprobe organisiert. Die Teilnehmer konn-
ten sich dabei über diese Einrichtung der Uni-
versität Freiburg informieren und verschiede-
ne Weine der Region verkosten. Beim zwang-
losen Vorabendtreffen im Restaurant und
Weinstube Heiliggeist Stüble konnten für die
über 150 Teilnehmer bei trefflicher Stimmung
der fachliche Austausch sowie vertiefte Kon-
takte mit den lokalen Spezialitäten initiiert
werden. Bei der Abendveranstaltung am
28. Februar im ehrwürdigen „Alten Kauf-
haus“ am Münsterplatz setzten die über 200
Teilnehmer im festlichen Rahmen das (Soci-
al-)Networking bis in die späten Nachtstunden
fort.
In der Closing Session am 1. 3. 2013 konnte

der Vizepräsident der DGPF, Prof. Dr. UWE
STILLA, noch über 120 Teilnehmer zu einem
kurzen Fazit begrüßen. Prof. THOMAS KERSTEN
lud die Teilnehmer zur Jahrestagung 2014 an
die Hafen-City-Universität (HCU) vom 26.–
28. 3. 2014 nach Hamburg und Prof. LENA HA-
LOUNOVÁ, Kongressdirektorin des ISPRS Kon-
gresses 2016, zu dieser großen internationalen
Veranstaltung nach Prag ein. Der Vorstand
der DGPF bedankte sich mit einem kleinen
Geschenk bei den Studierenden ALICIA UNRAU
aus Freiburg und TOBIAS SCHWARZ aus Berlin
für die herausragende und immer sehr auf-
merksame Unterstützung in der Vorbereitung
und während der Tagung.
Der Tagungsband wurde in Form einer

DVD in bewährter Weise von ECKHARDT SEY-
FERT erstellt und die Tagungshomepage von
MANFRED WIGGENHAGEN betreut. Großer Dank
gebührt allen Autoren, Gutachtern und Mit-
gliedern des Programmkommittees für die
Zusammenstellung des sehr attraktiven Ta-
gungsprogramms.
Den gelungenen Abschluss bildete am

1. 3. 2013 die Führung durch den Dachstuhl
des Freiburger Münsters mit demMotto „Eine
Reise in den Wald des Mittelalters“.

EBERHARD GÜLCH, HFT Stuttgart,
Sekretär der DGPF
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der u. a. Beiträge über prototypische An-
wendungen gezeigt wurden.
Nach der Mittagspause, die für regen Be-

trieb in der Firmenausstellung sorgte, fand
das zweite Herstellerforum statt, in dem noch-
mals fünf Firmen ihre neuesten Hard- und
Softwareentwicklungen präsentierten. Das
weitere Vortragsprogramm erstreckte sich
über die Sessions „Sensoren und Systeme“
(u. a. mit UAV-Anwendungen), „Geomonito-
ring und Mobile Mapping“ sowie „Anwendun-
gen Photogrammetrie“. Die Vortragenden
zeigten einmal mehr das weite Anwendungs-
spektrum der Photogrammetrie, hierbei auch
in Kombination mit anderer Sensorik.
Zwischen den wie immer in zwei parallel

laufenden Sessions gehaltenen Präsentationen
war reichlich Zeit, sich bei Kaffee und Bröt-
chen in der mit 23 Ständen gut besetzten Fir-
menausstellung über neueste Entwicklungen
in den Bereichen Hard- und Software zu in-
formieren. Demonstrationen wurden gegeben
und überall waren rege fachliche Diskussio-
nen und ein intensiver Austausch über neu Er-
lerntes oder gerade Gehörtes zu beobachten.

me zur Datengenerierung, sondern auch um
Softwarelösungen zur intelligenten Datenver-
arbeitung mit Schnittstellen, z. B. zu CAD-
Systemen. Die parallel angesetzte Session
„Laser und Licht“ war ein Beispiel für Expe-
rimentierfreudigkeit und Innovation der betei-
ligten Institutionen. Den Abschluss des Tages
bildete schließlich ein Vortragsblock über die
Registrierung von Punktwolken. Drei Vorträ-
ge zu diesem Thema lassen hier auch ganz
deutlich den Trend zum markerlosen Vorge-
hen erkennen. Die Aufnahme im Feld kann
somit weiter vereinfacht und beschleunigt
werden. Aktuelle Auswertetechniken prägten
die zeitgleiche Sitzung zur „3D-Rekonstruk-
tion“.
Am zweiten Tag wurden in der ersten Sessi-

on vielerlei Anwendungsmöglichkeiten prä-
sentiert, die wiederum das sehr breite Spek-
trum des terrestrischen Laserscannings ver-
deutlichten. Dass nicht nur Laserscanner
sondern auch andere hochspezialisierte Sys-
teme und deren Kalibrierung eine entschei-
dende Rolle in der Qualitätssicherung spie-
len, war Thema der folgenden Session, in

Im Rahmen der Oldenburger 3D-Tage: Bernd Jähne (Universität Heidelberg), Manfred Weis-
sensee (Vizepräsident Jade Hochschule), Sandra Heller (AXIOS 3D Services), Thomas Luhmann
und Gerd Schwandner (Oberbürgermeister Oldenburg).
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ben dem alljährlichen kulinarischen „Grün-
kohl-Highlight“ und dazugehörigen „Regulie-
rungsgetränken zur Fettverbrennung“ konn-
ten alle Beteiligten die künstlerische Seite von
THOMAS LUHMANN kennenlernen, und zwar als
einem der Akteure im Showcase Musical The-
ater e.V. (www.showcasemusicals.com).

MAREN LINDSTAEDT, Hamburg &
HEINZ-JÜRGEN PRZYBILLA, Bochum

Die insgesamt 216 Teilnehmer kamen wie
im Vorjahr zu 45 % aus dem Hochschulbe-
reich. Anwender (20 %) und Hersteller (22 %)
waren in etwa gleich stark vertreten, die rest-
lichen 13 % waren den Dienstleistern zuzu-
ordnen. Dass die Oldenburger 3D-Tage letzt-
lich nicht nur dem Wissensaustausch dienen,
sondern auch kulturell einiges zu bieten ha-
ben, wurde einmal mehr auf der Abendveran-
staltung in der Weser-Ems-Halle deutlich. Ne-

Hochschulnachrichten

Universität Stuttgart

Frau Mag. YEVGENIYA FILIPPOVSKA wurde am
12. September 2012 von der Fakultät Luft- und
Raumfahrttechnik und Geodäsie der Univer-
sität Stuttgart mit der Dissertation Evaluie-
rung generalisierter Gebäudegrundrisse in
großen Maßstäben zum Dr.-Ing. promoviert.
1. Gutachter: Prof. Dr.-Ing. habil. DIETER
FRITSCH, Universität Stuttgart.
2. Gutachter: Prof. Dr.phil. habil. MANFRED F.
BUCHROITHNER, Universität Dresden.
Kurzfassung:
Bei der Erzeugung von Karten werden die
darzustellenden räumlichen Objekte in Ab-
hängigkeit des angestrebten Maßstabs ausge-
wählt, verändert und auf eine Art und Weise
arrangiert, dass deren Form und Verteilung zu
einem bestmöglichen Verständnis der räumli-
chen Gegebenheiten führt. Dabei weist die
kartographische Abbildung unvermeidliche
und zuweilen tiefgreifende geometrische Ver-
änderungen im Vergleich zur Realität auf,
welche durch eine übergeordnete Kontrollin-
stanz zu verifizieren und zu bewerten sind. Da
dieser als kartographische Generalisierung
bezeichnete Prozess heutzutage vermehrt au-
tomatisiert stattfindet, strebt man auch eine
formalisierte Qualitätsbewertung der dabei
erzeugten Ergebnisse an, um auf dieser for-
malen Grundlage entsprechende Werkzeuge
zu entwickeln. Die Bewertung der kartogra-
phischen Generalisierung im Hinblick auf die
Qualität ist Gegenstand dieser Arbeit. Hierbei
werden im Speziellen 2D-Grundrisse in Be-
tracht gezogen, da diese einen wesentlichen

Teil der im urbanen Raum vorkommenden
Geodaten ausmachen und deren Qualitätsbe-
wertung bislang noch nicht hinreichend unter-
sucht wurden.
Obwohl die kartographische Generalisie-

rung die Lesbarkeit der Gesamtkomposition
zum Ziel hat, muss die Qualitätsbewertung
zuerst auf der untersten Generalisierungsebe-
ne, der sogenannten Mikroebene erfolgen, in-
dem die Geometrie- bzw. die Formverände-
rungen der Einzelobjekte bemessen werden.
Denn neben dem Straßennetz dienen den Kar-
tennutzern vor allem markante Gebäude als
Orientierungshilfe, welche aus diesem Grund
nicht allzu großen Veränderungen unterliegen
dürfen. Im Rahmen dieser Arbeit werden
dementsprechend Qualitätscharakteristiken
aufgezeigt, welche auf dem direkten Vergleich
von zwei Gebäudegrundrissen – original und
generalisiert – basieren.
Als Motivation der Arbeit wird ein Wahr-

nehmungstest vorgestellt, welcher die Bewer-
tung von generalisierten Grundrissen durch
menschliche Betrachter untersucht. Der Ver-
such diese Wahrnehmungsprozesse mathema-
tisch zu formalisieren wird als Ähnlichkeits-
schätzung bezeichnet. Die Grundlagen dazu
werden in der Arbeit aufgearbeitet und in die-
sem Zusammenhang auch eine einheitliche
Klassifizierung der Objektmerkmale basie-
rend auf der zugrundeliegenden Berechnungs-
methode vorgeschlagen.
Daran anschließend werden die im Rahmen

der Arbeit neu entwickelten Charakteristiken
zur Ähnlichkeitsanalyse vorgestellt, welche
die Objekte unter den beiden Aspekten der
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die hinzugekommenen als Extrusionen be-
zeichnet werden. Es folgen deren Definitionen
durch Operatoren der Mengenlehre, wobei
sich die Gesamtveränderung der räumlichen
Erstreckung durch die symmetrische Diffe-
renz von Intrusionen und Extrusionen ergibt.
Quantitativ lässt sich so nicht nur leicht zei-
gen, wie eine Fläche durch die Generalisie-
rung zu- bzw. abnimmt, sondern auch deren
absolute und ausgeglichene Gesamtverände-
rung. Eine Diskussion betreffend die Normie-
rung der eingeführten Charakteristiken, wel-
che primär der Quantifizierung der Objektver-
änderungen dienen, zeigt deren Umrechnung
und Anwendung zu Qualitätsmaßen.
Um die Aussagekraft und Praxistauglich-

keit der vorgeschlagenen kontur- und flächen-
bezogenen Charakteristiken zu prüfen, wird
eine Evaluierung von generalisierten Gebäu-
degrundrissen auf der Mikro- und Makroebe-
ne durchgeführt. Zuerst erfolgt auf der Mikro-
ebene die Qualitätsbewertung von Einzel-
objekten bzw. Landmarken, um anschließend
den Vergleich alternativer Generalisierungs-
ergebnisse zu diskutieren. Für diesen Zweck
wird ein Aggregationsansatz vorgeschlagen,
der alle Charakteristiken in Ähnlichkeitsma-
ße umwandelt, welche zusammengefasst
Merkmalsvektoren in einem mehrdimensio-
nalen Merkmalsraum darstellen. Dank der
normierten Werte dieses Vektors kann nun
mittels der euklidischen Distanz der Gesamt-
unterschied zwischen dem originalen und ge-
neralisierten Grundriss beurteilt werden, wo-
durch sich die Gesamtqualität der Generalisie-
rung durch ein einzelnes Maß ausdrücken
lässt.
Auf der Makroebene wird die Qualität der

Generalisierung für großflächige Areale eva-
luiert. Dabei spielt insbesondere auch die an-
schauliche Präsentation der Ergebnisse eine
zentrale Rolle, so dass die verschiedenen
Möglichkeiten zur Darstellung der einzelnen
Charakteristiken im Hinblick auf eine gute
Diskriminierbarkeit der Qualitätsangaben im
Schwerpunkt stehen. Abschließend erfolgt
wiederum ein Vergleich von alternativen Ge-
neralisierungen, der zur Bestimmung der
bestgeeigneten Generalisierungslösung in Ab-
hängigkeit einer Anwendung notwendig ist.
Die Dissertation ist elektronisch bei der Bi-

bliothek der Universität Stuttgart (http://elib.

Kontur- und Flächentreue hin vergleichen. Da
eine Zuordnung zwischen den Formelementen
der beiden zu vergleichenden Grundrisse all-
gemein nicht zweifelsfrei festgestellt werden
kann, werden die Objekte gemäß der Standar-
disierung von Geodaten als Punktmengen be-
trachtet. Dies erlaubt es, die geometrischen
Berechnungen fast ausschließlich auf den
Standardoperatoren der Mengentheorie auf-
zusetzen. In Kombination mit den topologi-
schen Algorithmen der Graphentheorie hat
dies den erwünschten Nebeneffekt, dass sich
alle Charakteristiken ohne Änderungen auch
auf 3D-Geodaten anwenden lassen.
Bei den Charakteristiken zur Konturtreue

werden die maximale Konturabweichung und
der Anteil der Konturüberlappung basierend
auf den objektbeschreibenden Randmengen
berechnet. Hierzu wird für die erste Charakte-
ristik eine Modifikation der Hausdorff-Dis-
tanz vorgeschlagen, die nicht unter Betrach-
tung der vollständigen Konturen beider Ob-
jekte durchgeführt wird, sondern nur auf de-
ren Differenzbereiche. Dadurch ergeben sich
Distanzen, bzw. Punkte maximaler Diskre-
panz, die für den Menschen plausibler er-
scheinen und damit leichter nachvollziehbar
sind als die Ergebnisse der Originalmetrik. Es
zeigt sich dabei, dass für konkave Differenz-
bereiche die Distanz nicht entlang der direk-
ten Verbindung von zwei Punkten erfolgen
sollte, sondern entlang eines innerhalb dieses
Bereichs verlaufenden Linienzugs. Für die
Bestimmung der Konturüberlappung wird
eine Kombination von Puffer- und Mengen-
operatoren aufgezeigt, die zu einer möglichst
geringen Fehlabschätzung führen. Der Grund
ist, dass die Generalisierung von Gebäude-
grundrissen oftmals eine Anpassung hinsicht-
lich der Rechtwinkligkeit, Parallelität und
Kollinearität von Liniensegmenten durch-
führt, so dass sich die zwei zu vergleichenden
Konturen nicht mehr vollständig überdecken.
Vielmehr muss mit Toleranzbereichen gear-
beitet werden, deren verfälschenden Effekt es
zu minimieren gilt.
Auch die Flächentreue kann unter zwei As-

pekten beurteilt werden: quantitativ und
räumlich. Hierzu wird zunächst eine einheitli-
che Benennung der Strukturveränderungen
eingeführt, wobei die durch die Generalisie-
rung eliminierten Teile als Intrusionen und
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orten von Personen, wofür ein aussehensba-
sierter Ansatz mit implizitem Modell verwen-
det wird. Dieser nutzt für die Detektion so-
wohl weiterentwickelte Bildmerkmale als
auch den optional vorhandenen Personen-
schatten, welcher direkt in das visuelle Ob-
jektmodell integriert wird. Der Trainingspro-
zess zum Lernen dieses Modells wird dahin-
gehend verbessert, dass beim automatischen
Sammeln von Hintergrundbeispielen nun
auch Bereiche in Objektnähe sowie der jewei-
lige Konfidenzwert mit berücksichtigt wer-
den.
Da Personen in Luftbildern mit einer Bo-

denauflösung von etwa 15 cm pro Pixel nur
sehr schwach zu erkennen sind, lässt sich eine
robuste Detektion oft nicht auf Basis eines
einzelnen Bildes durchführen. Aus diesem
Grund wird in dieser Arbeit erstmals die De-
tektion mit implizitem visuellem Modell in
das Multi-Hypothesen-Tracking-Verfahren
(MHT) integriert. Hierfür werden die Ergeb-
nisse der Objekterkennung stochastisch mo-
delliert und der MHT-Formalismus entspre-
chend erweitert. Die Detektion von Personen
erfolgt somit erst während des Trackings,
wenn mehr Informationen zur Verfügung ste-
hen und zuverlässigere Entscheidungen ge-
troffen werden können. Das MHT-Verfahren
wird ebenfalls weiterentwickelt, so dass sich
die Vorteile der hypothesen- und trajektorien-
tierten Variante gleichzeitig nutzen lassen.
Zusätzlich wird eine neue Methode zur auto-
matischen Bestimmung der Auftrittswahr-
scheinlichkeiten von Falschalarmen und neu-
en Objekten integriert, sowie das besonders
wichtige Clusterverfahren durch eine verbes-
serte Datenstruktur stark vereinfacht.
Das entwickelte System bestimmt in an-

spruchsvollen Testsequenzen die Trajektorie
von etwa einem Drittel aller Personen annä-
hernd vollständig. Die Ergebnisse sind beson-
ders gut in Bereichen mit geringer Objekt-
dichte und hoher Erkennbarkeit. Bilden sich
jedoch Gruppen oder gar Menschenmassen,
sind Einzelpersonen visuell nicht mehr unter-
scheidbar und das Detektionsverfahren stößt
an seine Grenzen. Das Auswertesystem müss-
te um weitere Module zur Behandlung dieser
Phänomene ergänzt werden, um die einheitli-
che und vollständige Analyse eines gesamten
Luftbildes.

uni-stuttgart.de/opus/volltexte/2012/7768/
pdf/MainDOC.pdf) und bei der DGK (http://
dgk.badw.de/fileadmin/docs/c-693.pdf) publi-
ziert worden.

Karlsruher Institut für Technologie
(KIT)

Herr Dipl.-Inf. FLORIAN SCHMIDT promovierte
am 23. November 2012 an der Fakultät für
Bauingenieur-, Geo- und Umweltwissen-
schaften (Institut für Photogrammetrie und
Fernerkundung) des KIT mit der Arbeit „Ein
integraler stochastischer Ansatz zur automa-
tischen Bestimmung von Personentrajektori-
en aus Luftbildsequenzen“ zum Dr.-Ing.
1. Gutachter: Prof. Dr.-Ing. STEFAN HINZ, KIT,
2. Gutachter: Hon.Prof. Dr.-Ing. PETER REI-
NARTZ, Universität Osnabrück und DLR Ober-
pfaffenhofen,
3. Gutachter: Prof. Dr.-Ing. PETER VORTISCH,
KIT.
Kurzfassung:
Luftbilder stellen eine bedeutende Quelle viel-
fältiger Informationen über unsere Umwelt
dar. In der Vergangenheit wurden sie haupt-
sächlich zur Beschreibung der Topographie
genutzt. Moderne Kamerasysteme mit einer
Aufnahmefrequenz von wenigen Hertz er-
möglichen es, nun auch dynamische Prozesse
großflächig zu beobachten. Für eine effektive
Auswertung dieser Luftbildsequenzen werden
automatische Methoden benötigt, die jedoch
oftmals noch entwickelt oder an die spezifi-
schen Herausforderungen angepasst werden
müssen. Hier liegt die übergeordnete Zielset-
zung dieser Arbeit. Im Detail beschäftigt sie
sich mit der Fragestellung, in wie weit es mög-
lich ist, Informationen über das Bewegungs-
verhalten von Personen aus Luftbildsequen-
zen zu gewinnen. Diese ließen sich z. B. zur
besseren Koordination von Großveranstaltun-
gen oder zur Evaluation von weiträumigen In-
frastrukturanlagen einsetzen.
In dieser Arbeit wird daher eine Strategie

entwickelt, umgesetzt und evaluiert, die es
erstmalig ermöglicht, automatisch Einzelper-
sonen im Luftbild zu erkennen und ihre Bewe-
gung durch eine Sequenz hinweg zu verfol-
gen. Die Auswertung beginnt für jede Auf-
nahme mit der Suche nach potentiellen Stand-
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seitigkeit und Toleranz gegenüber Störeinflüs-
sen, wie etwa nichtoptimaler Bildqualität ge-
legt. Neben einem auf direktem Bildvergleich
und einem auf Rückwärtsprojektion basieren-
den Ansatz zur 2D-3D Registrierung, wird ein
neues, gemischtes Verfahren vorgestellt, wel-
ches eine höhere Zuverlässigkeit bieten soll.
Durch Einsatz einer radiometrischen Regist-
rierung simulierter Röntgenbilder wird das
Verfahren weiter verbessert. Über die Regist-
rierungsverfahren hinaus wird ein neuesÄhn-
lichkeitsmaß für den Bildvergleich vorgestellt,
das ebenfalls dazu dient, die Zuverlässigkeit
gegenüber anderen existierenden Maßen zu
verbessern.
Da neben der Lagemessung, die Kalibrie-

rung der verwendeten Röntgenkamerasyste-
me für die erreichbare Genauigkeit von ent-
scheidender Rolle ist, wird ein Algorithmus
zur automatischen Kalibrierung vorgeschla-
gen, der die Detektion von Kalibriermarkern
in Röntgenbildern beinhaltet und die Schät-
zung stochastischer Fehler im Gauß-Helmert
Modell erlaubt. Die Kamerakalibrierungen
für einzelne Ansichten werden in ein Gesamt-
modell für die rotierbare Bestrahlungsanlage
eingebettet, das die Bewegungsbahnen der
Kamerakomponenten nähert und Rückschlüs-
se auf die Kameraparameter und ihre zufälli-
gen Fehler bei beliebigen Anlageneinstellun-
gen ermöglicht. Darüber hinaus wird gezeigt,
welchen Einfluss zufällige Fehler verschiede-
ner Systemkomponenten auf die gemessene
Patientenlage haben. Unsicherheiten des
Messsystems werden für in Betrieb befindli-
che Anlagen ermittelt und können z. B. dazu
verwendet werden, bei der Bestrahlungspla-
nung die Sicherheitsabstände der Tumordefi-
nition anzupassen. Schließlich wird erstmals
ein Ansatz vorgestellt, der eine Selbstdiagno-
se des Messsystems ermöglicht. Basierend auf
einem an ein Hidden Markov Modell ange-
lehntes Konzept, werden Beobachtungen der
Zwischenergebnisse einzelner Systemkompo-
nenten verwendet, um eine Gesamtdiagnose
zu erstellen und Rückschlüsse auf wahr-
scheinliche Fehlerursachen zu erlauben.
Zur Evaluierung der Methoden werden

Phantomdaten und klinische Daten verschie-
dener Partikeltherapiezentren verwendet. Die
vorgestellten Registrierungsmethoden werden
untereinander und mit anderen existierenden

Die Dissertation ist erschienen in der Reihe
C der DGK, Heft 696, und elektronisch ver-
fügbar unter www.dgk.badw.de/fileadmin/
docs/c-696.pdf

Technische Universität München

Herr Dipl.-Inf. PETER SELBY promovierte am
25. Februar 2013 an der Fakultät für Bauinge-
nieur- und Vermessungswesen (Fachgebiet
Photogrammetrie und Fernerkundung) der
Technischen Universität München mit der Ar-
beit „Bildgestützte 3D-Vermessung von Pati-
enten zur Positionierung für die radiologische
Krebstherapie“ zum Dr.-Ing.
1. Gutachter: Prof. Dr.-Ing. UWE STILLA, Tech-
nische Universität München (TUM),
2. Gutachter: Prof. Dr.-Ing. JOACHIM HORNEG-
GER, Friedrich-Alexander-Universität Erlan-
gen-Nürnberg,
3. Gutachter: Prof. Dr.-Ing. GEORGIOS SAKAS,
Medcom GmbH
Kurzfassung:
In den letzten Jahren konnten bedeutende
technologische Fortschritte bei der strahlen-
therapeutischen Tumorbehandlung gemacht
werden. Das noch relativ junge Gebiet der
Partikelbestrahlung setzt sich, seitdem 1990
die erste klinische Einrichtung den Betrieb
aufgenommen hat, immer mehr als überlegene
Behandlungstechnik durch. Dies liegt daran,
dass die Vorteile, der gegenüber der her-
kömmlichen Behandlung wesentlich zielge-
naueren Dosisapplikation, die Nachteile des
höheren Aufwandes bei weitem überwiegen.
So kann Tumorgewebe gezielter behandelt
werden, während umliegendes Gewebe weni-
ger in Mitleidenschaft gezogen wird. Patien-
ten können allerdings nur von der höheren
Genauigkeit profitieren, wenn es gelingt, ihre
Lage in der Bestrahlungsanlage exakt zu be-
stimmen und sie relativ zum Behandlungs-
strahl so zu positionieren, dass die Strahlen-
dosis genau auf den Tumor abgegeben wird.
Deshalb ist es Ziel dieser Arbeit, automati-

sche Verfahren zu entwickeln, die ein hohes
Maß an Genauigkeit und Zuverlässigkeit bei
der röntgenbasierten Lagemessung gewähr-
leisten. Da die Verfahren in unterschiedlichen
Anlagen und für verschiedene Körperregio-
nen einsetzbar sein sollen, wird Wert auf Viel-
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Prof. CHRISTIAN HEIPKE (Leibniz Universität
Hannover) wurde für seine wesentlichen Bei-
träge zur Forschung und Entwicklung der
Photogrammetrie mit dem Photogrammetric
(Fairchild) Award der Amerikanischen Ge-
sellschaft für Photogrammetrie und Ferner-
kundung (ASPRS) ausgezeichnet. Der seit
1934 vergebene Preis, der nur selten ins Aus-
land geht, gilt als die höchste wissenschaftli-
che Anerkennung der ASPRS.

Leibniz Universität Hannover,
Ehrenmitgliedschaft von Gottfried
Konecny in der Tschechischen
Gesellschaft für Photogrammetrie
und Fernerkundung

Für seine herausragenden wissenschaftlichen
Leistungen und Verdienste um die Tschechi-
sche Gesellschaft für Photogrammetrie und
Fernerkundung wurde Prof. em. GOTTFRIED
KONECNY, Leibniz Unversität Hannover, die
Ehrenmitgliedschaft der Gesellschaft verlie-
hen. Die Präsidentin Prof. LENA HALOUNOVÁ
von der Technischen Universität Prag über-
reichte Konecny die hohe Auszeichnung am
23.4.2013 während der Interexpo Geo-Siberia
2013 in Novosibirsk.

Verfahren nach gängigen Kennzahlen vergli-
chen. Die Erstellung markerbasierter Gold-
standards erlaubt die Genauigkeit zu quantifi-
zieren.
Mit der neuen Registrierungsmethode kann

eine Verringerung der Fehlerrate bei der La-
gemessung an klinischen Daten erzielt wer-
den. Das vorgeschlagene Ähnlichkeitsmaß
zeigt sich im Vergleich zu zahlreichen ande-
ren Maßen als sehr robust bei der Registrie-
rung von Röntgenbildern und dürfte auch für
den Einsatz in anderen Registrierungsanwen-
dungen geeignet sein. Mit der Methode zur
geometrischen Kalibrierung kann, zusammen
mit einer Fehlerfortpflanzung für andere be-
teiligte Systemkomponenten, eine Bestim-
mung der zu erwartenden Fehler bei der Lage-
messung und Positionierung des Patienten
durchgeführt werden. Der Selbstdiagnosean-
satz ist in der Lage, Fehlmessungen der Pati-
entenlage zuverlässig als solche zu erkennen
und erlaubt zudem, Fehlmessungen auf ihre
Ursache zurückzuführen.
Die Dissertation ist verfügbar unter: http://

www.pf.bv.tum.de/pub/2013/
selby_phd13_dis.pdf

Leibniz Universität Hannover,
Photogrammetric (Fairchild) Award
für Christian Heipke

CHRISTIAN HEIPKE und die Präsidentin der
ASPRS, ROBERTA E. LENCZOWSKI, bei der Über-
reichung des Photogrammetric (Fairchild)
Award 2013 im März 2013.

GOTTFRIED KONECNY (Mitte) zusammen mit Prä-
sidentin LENA HALOUNOVÁ und Schatzmeister
KAREL VACH, Tschechische Gesellschaft für
Photogrammetrie und Fernerkundung, bei der
Überreichung der Urkunde im April 2013.
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Wechsel in der Schriftleitung
Fernerkundung

Die redaktionelle Betreuung einer wissen-
schaftlichen Zeitschrift ist eine sehr verant-
wortungsvolle, und gleichzeitig extrem auf-
wändige und von außen kaum wahrgenomme-
ne Arbeit. So ist es nur mehr als verständlich,
dass der Einzelne nach einigen Jahren diese
Verantwortung einem Nachfolger übertragen
möchte. Prof. Dr. rer. nat. CARSTEN JÜRGENS hat
10 Jahre lang die Fernerkundung der PFG be-
treut und zum umfangreichsten Teil unserer
Zeitschrift entwickelt. Unter der Federfüh-
rung von Herrn Kollegen JÜRGENS sind über
150 Artikel zur Fernerkundung publiziert
worden – fast die Hälfte aller. Im Namen der
gesamten Schriftleitung danke ich ihm ganz
herzlich für sein Engagement und die umfang-
reiche Arbeit für die PFG.
Als Hauptschriftleiter freue ich mich sehr,

Ihnen, liebe Leserinnen und Leser, als Nach-

In eigener Sache

folger im Amt des Schriftleiters Fernerkun-
dung Prof. Dr. rer. nat. ULRICH MICHEL vorstel-
len zu dürfen. ULRICH MICHEL ist Professor für
Geoinformatik an der Pädagogischen Hoch-
schule Heidelberg, und national und internati-
onal sehr gut vernetzt. Für die PFG hat er be-
reits in der Vergangenheit einzelne Hefte mit-
gestaltet und war für unsere Zeitschrift neben
anderen auch als Gutachter tätig. ULRICH MI-
CHEL ist einer der Sprecher des Arbeitskreises
Fernerkundung der Deutschen Gesellschaft
für Geographie. Darüber hinaus leitet er eine
der größten Fernerkundungskonferenzen in
Europa, die jährlich stattfindende SPIE Remo-
te Sensing. Neben seinen Forschungsinteres-
sen im Bereich der Fernerkundung und der
Geoinformationstechnologien setzt er sich da-
für ein, dass der Bereich der digitalen Geome-
dien in Schulen etabliert wird. Wir heißen ihn
ganz herzlich in der Gruppe der Schriftleiter
willkommen.

WOLFGAN KRESSE, Neubrandenburg
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Veranstaltungskalender

2013

3.–6. Juni: 33rd EARSeL Symposium in
Matera, Italien. www.earsel.org/
symposia/2013-symposium-Matera/

5.–7. Juni: International Conference on
Earth Observation for Global Changes
(EOGC’2013) in Toronto, Canada. www.
eogc2013.blog.ryerson.ca/

19.–20. Juni: Fachtagung Mobile Mapping
inMainz. www.3dgi.ch/mm2013/

23.–28. Juni: Computer Vision and Pattern
Recognition (CVPR 2013) in Portland,
USA. www.pamitc.org/cvpr13/

2.–5. Juli: GI_Forum 2013 in Salzburg,
Österreich. www.gi-forum.org

14.–20. Juli: International Computer Vision
Summer School in Punta Sampieri, Italien.
svg.dmi.unict.it/icvss2013/

21.–26. Juli: IGARSS 2013 in Melbourne,
Australien. www.igarss2013.org/

25.–30. August: 26th International
Cartographic Conference (ICC) inDresden.
www.icc2013.org/

2.–6. September: XXIVth CIPA Heritage
Documentation Symposium in Strasbourg,
Frankreich. cipa.icomos.org

4.–6. September: UAV-g Workshop in
Rostock. www.uav-g.org

9.–10. September: UAV-based Remote
SensingMethods forMonitoring Vegetation
in Köln. www.tr32db.de/workshop2013

9.–13. September: 54. Photogrammetrische
Woche in Stuttgart. www.ifp.uni-stuttgart.
de/phowo

9.–13. September: British Machine Vision
Conference (BMCV 2013) in Bristol,
England. bmvc2013.bristol.ac.uk

15.–18. September: International Conference
on Image Processing (ICIP 2013) in
Melbourne, Australien. www.ieeeicip.org

11.–17. November: SSG2013 - ISPRS TC II,
III, IV & VII Joint Meeting (u.a. mit CMRT
2013, Laser Scanning 2013, ISA 2013; s.u.), in
Antalya, Türkei. www.isprs2013-ssg.org

11. November: ISA2013, Image Sequence
Analysis for Object and Change Detection, in
Antalya, Türkei. www.tnt.uni-hannover.de/
isprs/isa13

11.–13. November: Laser Scanning 2013, in
Antalya, Türkei. www.cirgeo.unipd.it/
laserscanning2013

12.–13. November: CMRT13, City Models,
Roads, and Traffic, in Antalya, Türkei. www.
cmrt13.tum.de

26.–29. November: 3D GeoInfo 2013 in
Istanbul, Türkei. 3dgeoinfo.com

8.–15. Dezember: ICCV 2013, International
Conference on Computer Vision, Sydney,
Australien. www.iccv2013.org

10.–11. Dezember: LowCost 3D in Berlin.
www.lc3d.net

2014

1.–6. Februar: SPIE Photonics West 2014 in
San Francisco, USA. www.spie.org/
photonics-west.xml

13.–14. Februar: Oldenburger 3D Tage in
Oldenburg. www.jade-hs.de/fachbereiche/
bauwesen-und-geoinformation/
geoinformation/oldenburger-3d-tage/

Weitere Konferenzen und Workshops finden
sich beispielsweise unter:
isprs.org/calendar/
iris.usc.edu/Information/Iris-Conferences.
html
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Firmen
AEROWEST GmbH
AICON 3D Systems GmbH
aphos Leipzig AG
Becker GeoInfo GmbH
Bernhard Harzer Verlag GmbH
Blom Deutschland GmbH
Brockmann Consult GmbH
bsf swissphoto GmbH
Büro Immekus
CGI Systems GmbH
DB Netz AG
DELPHI IMM GmbH
Deutsches Bergbau-Museum
EFTAS Fernerkundung Technologietransfer GmbH
ESG Elektroniksystem- und Logistik-GmbH
Esri Deutschland GmbH
EUROPEAN SPACE IMAGING
Eurosense GmbH
fokus GmbH
g.on experience gmbh
GAF GmbH
GeoCart Herten GmbH
GeoContent GmbH
Geoinform. & Photogr. Engin. Dr. Kruck & Co. GbR
geoplana Ingenieurgesellschaft mbH
GEOSYSTEMS GmbH
GGS - Büro für Geotechnik, Geoinformatik, Service
Hansa Luftbild AG
IGI - Ingenieur-Gesellschaft für Interfaces mbH
ILV Ingenieurbüro für Luftbildauswertung undVermessung
Infoterra GmbH
INVERS - Industrievermessung & Systeme
ITT Visual Information Solutions Germany
J. Linsinger ZT-GmbH
Leica Geosystems GmbH
Luftbilddatenbank-Würzburg
Messbildstelle GmbH
Microsoft Photogrammetry
MILAN Geoservice GmbH
M.O.S.S. Computer Grafik Systeme GmbH
PHOENICS GmbH
PMS - Photo Mess Systeme AG
RapidEye AG
RIEGL Laser Measurement Systems GmbH
RWE Power AG, Geobasisdaten/Markscheidewesen
technet GmbH
topometric GmbH
TRIGIS Vermessung + Geoinformatik GmbH
Trimble Germany GmbH
trimetric 3D Service GmbH
Wichmann, VDE Verlag GmbH
Z/I Imaging Ltd.

Behörden
Amt für Geoinformationswesen der Bundeswehr
Bayerische Landesanstalt für Wald und Forstwirtschaft
Bundesamt für Kartographie und Geodäsie
Bundesmininisterium für Ernährung, Landwirtschaft
und Verbraucherschutz

Hessisches LA für Bodenmanagement und Geoinformation
Innenministerium NRW, Gruppe Vermessungswesen
Institut für Umwelt- und Zukunftsforschung

LA für Geoinformation und Landentwicklung, BW
LA für Vermessung und Geoinformation, Bayern
LB Geoinformation und Vermessung, Hamburg
LB für Küstenschutz, Nationalpark und Meeresschutz,
SH

Landesvermessung und Geobasisinformation Nieders-
achsen

Märkischer Kreis, Vermessungs- und Katasteramt
Regierungspräsident Tübingen, Abt. 8 Forstdirektion
Regionalverband Ruhr
Staatsbetrieb Sachsenforst Pirna
Stadt Bocholt, Fachbereich 31
Stadt Düsseldorf, Vermessungs- und Katasteramt
Stadt Köln, Amt für Liegenschaften, Vermessung und
Kataster

Stadt Wuppertal, Vermessung, Katasteramt und Geo-
daten

Thüringer LA für Vermessung und Geoinformation

Hochschulen
BTU Cottbus, Lehrstuhl für Vermessungskunde
FH Frankfurt a.M., FB 1, Studiengang Geoinformation
FH Mainz, Institut für Raumbezogene Informations- und
Messtechnik

Jade Hochschule, Institut für Angewandte Photogramme-
trie und Geoinformatik

HCU HafenCity Universität Hamburg, Geomatik
HfT Stuttgart, Vermessung und Geoinformatik
HS Bochum, FB Vermessung und Geoinformatik
HS Karlsruhe, Fakultät für Geomatik
HTW Dresden, FB Vermessungswesen/Kartographie
LUH Hannover, Institut für Kartographie und Geoinfor-
matik

LUH Hannover, Institut für Photogrammetrie und Geoin-
formation

MLU Halle, FG Geofernerkundung
Ruhr-Uni Bochum, Geographisches Institut
RWTH Aachen, Geodätisches Institut
TU Bergak. Freiberg, Institut für Markscheidewesen und
Geodäsie

TU Berlin, Computer Vision & Remote Sensing
TU Berlin, Institut für Geodäsie und Geoinformations-
technik

TU Braunschweig, Institut für Geodäsie und Photogr.
TU Clausthal, Institut für Geotechnik und Markscheide-
wesen

TU Darmstadt, Institut für Photogrammetrie und Karto-
graphie

TU Dresden, Institut für Photogrammetrie und Ferner-
kundung

TU München, FG Photogrammetrie und Fernerkundung
TU Wien, Institut für Photogrammetrie und Fernerkun-
dung

Uni Bonn, Institut für Photogrammetrie
Uni Göttingen, Institut für Waldinventur und Wald-
wachstum

Uni Heidelberg, IWR Interdisziplinäres Zentrum für
Wissenschaftliches Rechnen

Uni Kassel, FB Ökologische Agrarwissenschaften
Uni Kiel, Geographisches Institut
Uni Stuttgart, Institut für Photogrammetrie
Uni Würzburg, Geographisches Institut
Uni zu Köln, Geographisches Institut
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