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Summary: We present a calibration method for

multi-view cameras that provides a rigorous maxi-

mum likelihood estimation of the mutual orientation

of the cameras within a rigid multi-camera system.

No calibration targets are needed, just a movement of

the multi-camera system taking synchronized images

of a highly textured and static scene. Multi-camera

systems with non-overlapping views have to be ro-

tated within the scene so that corresponding points

are visible in different cameras at different times of

exposure. By using an extended version of the pro-

jective collinearity equation all estimates can be opti-

mized in one bundle adjustment where we constrain

the relative poses of the cameras to be fixed. For sta-

bilizing camera orientations – especially rotations –

one should generally use points at the horizon within

the bundle adjustment, which classical bundle adjust-

ment programs are not capable of. We use a minimal

representation of homogeneous coordinates for im-

age and scene points which allows us to use images of

omnidirectional cameras with single viewpoint like

fisheye cameras and scene points at a large distance

from the camera or even at infinity.

We show results of our calibration method on (1)

the omnidirectional multi-camera system Ladybug 3

from Point Grey, (2) a camera-rig with five cameras

used for the acquisition of complex 3D structures and

(3) a camera-rig mounted on a UAV consisting of four

fisheye cameras which provide a large field of view

and which is used for visual odometry and obsta-

cle detection in the project MoD (DFG-Project FOR

1505 “Mapping on Demand”).

Zusammenfassung: Bündelausgleichung und Sys-
temkalibrierung mit Punkten im Unendlichen für
omnidirektionale Kamerasysteme. In diesem Artikel

stellen wir eine Kalibrierungsmethode für Multika-

merasysteme vor, welche eine strenge Maximum-

Likelihood-Schätzung der gegenseitigen Orientierun-

gen der Kameras innerhalb eines starren Multika-

merasystems ermöglicht. Zielmarken werden nicht

benötigt. Das synchronisiert Bilder aufnehmende Ka-

merasystem muss lediglich in einer stark texturier-

ten statischen Szene bewegt werden. Multikamera-

systeme, deren Bilder sich nicht überlappen, wer-

den innerhalb der Szene rotiert, so dass korrespon-

dierende Punkte in jeder Kamera zu unterschiedli-

chen Aufnahmezeitpunkten sichtbar sind. Unter Ver-

wendung einer erweiterten projektiven Kollinearitäts-

gleichung können alle zu schätzenden Größen in ei-

ner Bündelausgleichung optimiert werden. Zur Sta-

bilisierung der Kameraorientierungen – besonders

der Rotationen – sollten Punkte am Horizont in der

Bündelausgleichung verwendet werden, wozu klas-

sische Bündelausgleichungsprogramme nicht in der

Lage sind. Wir benutzen eine minimale Repräsentati-

on für homogene Koordinaten für Bild- und Objekt-

punkte, welche es uns ermöglicht, mit Bildern omni-

direktionaler Kameras wie Fisheye-Kameras und mit

Objektpunkten, welche weit entfernt oder im Unend-

lichen liegen, umzugehen.

Wir zeigen Ergebnisse unserer Kalibrierungsme-

thode für (1) das omnidirektionale Multikamerasys-

tem Ladybug 3 von Point Grey, (2) ein Kamerasys-

tem mit fünf Kameras zur Aufnahme komplexer 3D-

Strukturen und (3) ein auf eine Drohne montiertes

Kamerasystem mit vier Fisheye-Kameras, welches

ein großes Sichtfeld besitzt und zur visuellen Odo-

metrie und zur Hinderniserkennung im Projekt MoD

(DFG-Projekt FOR 1505
”
Mapping on Demand“)

verwendet wird.
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1 Introduction

1.1 Motivation

The paper presents a rigorous bundle adjust-

ment for the estimation of the mutual camera

orientations in a rigid multi-camera system. It is

based on an extended version of the projective

collinearity equation which constrains the rela-

tive poses of the cameras to be fixed, whereby

all estimates can be optimized in one bundle

adjustment. Further it enables the use of im-

age and scene points at infinity like the bundle

adjustment “BACS” (Bundle Adjustment for

Camera Systems) presented in SCHNEIDER et

al. (2012).

Bundle adjustment is the work horse for ori-

enting cameras and determining 3D points. It

has a number of favourable properties: It is sta-

tistically optimal in case all statistical tools are

exploited, highly efficient in case sparse matrix

operations are used, useful for test field free self

calibration, and can be parallelized to a high de-

gree. In this paper we want to extend bundle

adjustment with the estimation of the parame-

ters of the mutual camera orientation in a multi-

camera system.

Multi-camera systems are used to increase

the resolution, to combine cameras with dif-

ferent spectral sensitivities (Z/I DMC, Vexcel

Ultracam) or – like omnidirectional cameras –

to augment the effective aperture angle (Blom

Pictometry, Rollei Panoscan Mark III). Fol-

lowing SCARAMUZZA (2008), omnidirectional

cameras have a viewing range of more than

a half-sphere, such as multi-cameras systems,

catadioptric cameras including mirrors, or also

special fisheye lenses, such as the Lensagon

BF2M15520. Additionally, multi-camera sys-

tems gain importance for the acquisition of

complex 3D structures.

Far or even ideal points, i.e. points at infinity,

e.g. points at the horizon or luminous stars are

effective in stabilizing the orientation of cam-

eras, especially their rotations.

In order to exploit the power of a bundle

adjustment, it therefore needs to be extended

to handle multi-camera systems and image and

scene points at infinity, see Fig. 1.

1.2 Notation

Vectors and matrices are typed slanted boldface,

e.g. x and R. Homogeneous vectors and ma-

trices are typed upright, e.g. x and M. The

Fig. 1: A two-camera system with fisheye cam-
eras c = 1, 2 with projection centers Ztc, rigid
motion Mc and time-varying motion Mt, having
a field of view larger than 180◦ shown at two
exposure times t = 1, 2 observing two points
Xi, i = 1, 2, one being close-by, the other at infin-
ity. Already a block adjustment with a single cam-
era moving over time will be stabilized by points
at infinity.

skew 3×3-matrix S(a) induces the cross prod-

uct, hence S(a)b = a× b, vertical vector con-

catenation e.g. of x and y is written in Matlab

syntax [x;y] = [xT,yT]T.

1.3 The Idea

The classical collinearity equations for

image points x ′
it([x

′
it; y

′
it]) of scene point

Xi([Xi;Yi;Zi]) in camera t with rotation

matrix Rt([rkk′ ]) with k and k′ = 1, ..., 3 and

projection center Zt([X0t;Y0t;Z0t]) read as

x′it=
r11(Xi−X0t)+r21(Yi−Y0t)+r31(Zi−Z0t)

r13(Xi−X0t)+r23(Yi−Y0t)+r33(Zi−Z0t)
(1)

y′it=
r12(Xi−X0t)+r22(Yi−Y0t)+r32(Zi−Z0t)

r13(Xi−X0t)+r23(Yi−Y0t)+r33(Zi−Z0t)
(2)

Obviously, these equations are not useful for far

points or ideal points, as small angles between

rays lead to numerical instabilities or singulari-

ties. They are not useful for bundles of rays of

omnidirectional cameras, because rays perpen-

dicular to the viewing direction, as they may

occur with fisheye cameras, cannot be trans-

formed into image coordinates. This would re-

quire different versions of the collinearity equa-

tion depending on the type of sensor as one

would need to integrate the camera model into

the bundle adjustment.

We can avoid these disadvantages by using

homogeneous coordinates x′
it and Xi for im-
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age and scene points, a calibration matrix Kt

and the motion matrix Mt, containing the pose

parameters of the camera system, in: x′
it =

λit[Kt | 0]M−1
t Xi = λitPtXi. Obviously, (a)

homogeneous image coordinates allow for ideal

image points, even directions opposite to the

viewing direction, (b) homogeneous scene co-

ordinates allow for far and ideal scene points,

and including an additional motion is simply an

additional factor.

However, this leads to two problems. As

the covariance matrices Σx′
itx′

it
of homoge-

neous vectors are singular, the optimization

function of the maximum likelihood estimation∑
it |xit − λitPtXi|2Σx′

it
x′
it

formally cannot be

used. A minor, but practical problem is the in-

crease of the number of unknown parameters,

namely the Lagrangian multipliers, which are

necessary when fixing the length of the vec-

tors Xi. In large bundle adjustments with more

than a million scene points this prohibitively in-

creases the number of unknowns by a factor 5/3.

1.4 Task and Challenges

The task is to model the projection process of a

camera system as the basis for a bundle adjust-

ment for a multi-view camera system, which (a)

consists of mutually fixed single-view cameras,

(b) allows the single cameras to be omnidirec-

tional, requiring to explicitly model the cam-

era rays and (c) which allows for far or ideal

scene points for stabilizing the configuration.

The model formally reads as

xitc = Pc(M −1
c (M −1

t (Xi))) (3)

with the I scene points Xi, i = 1, ..., I , the T
motions Mt, t=1, ..., T of the camera system

from the scene coordinate system, the C mo-

tions Mc, c = 1, ..., C of each single camera

from the camera system, which makes the mu-

tual orientation explicit, the projection Pc into

the camera systems c = 1, ..., C, and the ob-

served image points xitc of scene point i in cam-

era c at time/pose t.
In order to realize this we need to be able to

represent bundles of rays together with their un-

certainty, using uncertain direction vectors, to

represent scene points at infinity using homo-

geneous coordinates, and minimize the number

of parameters to be estimated. The main chal-

lenge lies in the inclusion of the statistics into

an adequate minimal representation.

2 Related Work

Multi-camera systems are proposed by many

authors. E. g. MOSTAFA & SCHWARZ (2001)

present an approach to integrate a multi-camera

system with GPS and INS. NISTÉR et al. (2004)

discuss the advantage to use a stereo video rig in

order to avoid the difficulty with the scale trans-

fer. SAVOPOL et al. (2000) report on a multi-

camera system for an aerial platform to increase

the resolution. In all cases, the multi-view ge-

ometry is only used locally.

Orientation of a stereo rig is discussed

in HARTLEY & ZISSERMAN (2000, p. 493).

MOURAGNON et al. (2009) propose a bun-

dle solution for stereo rigs working in terms

of direction vectors, but they minimize the

angular error without considering the covari-

ance matrix of the observed rays. FRAHM et

al. (2004) present an approach for orienting a

multi-camera system, however not applying a

statistically rigorous approach. MUHLE et al.

(2011) discuss the ability to calibrate a multi-

camera system in case the views of the indi-

vidual cameras are not overlapping. IKEDA et

al. (2003) describe a geometric and photometric

camera calibration for omnidirectional multi-

camera systems using a calibration board and a

total station. CARRERA et al. (2011) calibrate a

general multi-camera system by mapping each

camera individually and applying a global bun-

dle adjustment afterwards. ZOMET et al. (2001)

discuss the problem of re-calibrating a rig of

cameras due to changes of the internal param-

eters. Bundle adjustment of camera systems

are extensively discussed in the thesis of KIM

(2010).

Uncertain geometric reasoning using pro-

jective entities is extensively presented in

KANATANI (1996), but only using Euclideanly

normalized geometric entities and allowing the

estimation for some single geometric entities

only. HEUEL (2004), eliminating these de-

ficiencies, proposes an estimation procedure

which does not eliminate the redundancy of the

representation and also cannot easily include el-

ementary constraints between observations, see

MEIDOW et al. (2009). The following devel-

opments are based on the minimal representa-

tion schemes proposed in FÖRSTNER (2012)

which reviews previous work and generalizes

e.g. BARTOLI (2002).
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3 Concept

3.1 Model for a moving single-view
Camera

3.1.1 Image coordinates as observations

Using homogeneous coordinates

x′
it = λitPtXi = λitKtR

T
t [I3 | −Zt]Xi (4)

with a projection matrix

Pt = [Kt | 03×1]M
−1
t , Mt =

[
Rt Zt

0T 1

]
makes the motion of the camera explicit. It

contains for each pose t: the projection center

Zt and the rotation matrix Rt, describing the

translation and rotation between the scene co-

ordinate system and the camera system, and the

calibration matrix Kt, containing parameters for

the principal point, the principal distance, the

affinity, and possibly lens distortion, see MC-

GLONE et al. (2004, 3.149 ff.) and (10). In

case of an ideal camera with principal distance

c, thus Kt = Diag([c, c, 1]), and Euclidean nor-

malization of the homogeneous image coordi-

nates with the k-th row AT
t,k of the projection

matrix Pt

x′e
it =

PtXi

AT
t,3Xi

=

⎡⎣ AT
t,1Xi/A

T
t,3Xi

AT
t,2Xi/A

T
t,3Xi

1

⎤⎦ (5)

we obtain (1) and (2), e. g.

x′
it = AT

t,1Xi/A
T
t,3Xi.

Observe the transposition of the rotation ma-

trix in (4), which differs from HARTLEY &

ZISSERMAN (2000, (6.7)), but makes the mo-

tion of the camera from the scene coordinate

system into the current camera system explicit,

see KRAUS (1997).

3.1.2 Ray directions as observations

Using the directions from the cameras to the

scene points we obtain the collinearity equa-

tions

kx
′
it = λit

kPtXi = λitR
T
t (Xi −Zt)

= λit[I3 | 0]M−1
t Xi . (6)

Instead of Euclidean normalization, we now

perform spherical normalization xs = N(x) =

x/|x|, where |x| is the length of x, yielding the

collinearity equations for camera bundles

kx
′s
it = N(kPtXi) . (7)

We thus assume the camera bundles to be given

as T sets {kxit, i ∈ It} of normalized direc-

tions for each time t of exposure. The unknown

parameters are the six parameters of the motion

in kPt and the three parameters of each scene

point. Care has to be taken with the sign: We

assume the negative Z-coordinate of the cam-

era system to be the viewing direction. The

scene points then need to have non-negative

homogeneous coordinate Xi,4, which in case

they are derived from Euclidean coordinates via

Xi = [Xi; 1] always is fulfilled. In case of

ideal points, we therefore need to distinguish

between the scene points [Xi; 0] and [−Xi; 0]
which are points at infinity in opposite direc-

tions.

As a first result we observe: The difference

between the classical collinearity equations and

the collinearity equations for camera bundles

is twofold. 1.) The unknown scale factor is

eliminated differently: Euclidean normalization

leads to the classical form in (5), spherical nor-

malization leads to the bundle form in (7). 2.)

The calibration is handled differently: In the

classical form it is made explicit, here we as-

sume the image data to be transformed into

camera rays taking the calibration into account.

This will make a difference in modelling the in-

dividual cameras during self-calibration, a topic

we will not discuss in this paper.

3.1.3 Handling far and ideal scene points

Handling far and ideal scene points can easily

be realized by also using spherically normal-

ized coordinates Xs
i for the scene points lead-

ing to

kx
′s
it = N(kPtX

s
i ) . (8)

Again care has to be taken with points at infin-

ity.

The confidence ellipsoid of 3D points can

be used to visualize the achieved precision, in

case the points are not too far. For a simul-

taneous visualization of confidence ellipsoids

of 3D points which are close and far w.r.t. the

origin one could perform a stereographic pro-

jection of the 3D-space into a unit sphere, i.e.
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X �→ X/(1+ |X|) together with the transfor-

mation of the confidence ellipsoids. The rel-

ative poses of points close to the origin then

will be preserved, far points will sit close to

the boundary of the sphere. Their uncertainty

in distance to the origin then can be inferred us-

ing their distance to the boundary of the sphere.

3.2 Model for Sets of Camera
Systems

With an additional motion Mc(Rc,Zc) for each

camera of the camera system we obtain the gen-

eral model for camera bundles

kx
′s
itc = N

(
[I3 |03×1] M−1

c M−1
t Xs

i

)
(9)

which makes all elements explicit: The ob-

served directions x ′
itc(

kx
′
itc) represented by

normalized 3-vectors, having two degrees of

freedom, unknown or known scene point coor-

dinates Xi(X
s
i ), represented by spherically nor-

malized homogeneous 4-vectors, having 3 de-

grees of freedom, unknown pose Mt of camera

system, having 6 parameters for each time a set

of images was taken and unknown calibration

Mc containing the relative pose of the cameras

which are assumed to be rigid over time, hav-

ing 6 parameters per camera. We refer relative

poses to the first camera as reference camera

with R = I3 and Z = 0.

3.3 Generating Camera Directions
from observed Image Coordi-
nates

In most cases the observations are made using

a digital camera whose sensor is approximately

planar. The transition to the directions of the

camera rays needs to be performed before start-

ing the bundle adjustment. As mentioned be-

fore, this requires the internal camera geom-

etry to be known. Moreover, in order to ar-

rive at a statistically optimal solution, one needs

to transfer the uncertainty of the observed im-

age coordinates to the uncertainty of the camera

rays. As an example we discuss two cases.

3.3.1 Perspective cameras

In case of perspective cameras with small image

distortions, we can use the camera-specific and

x’
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kX

kZy’

y’k

kX

Yk
x’

Z
k

k

X

Z

X

c < 0

Z

c > 0

’x

x’

’x

x’

Fig. 2: The direction of the homogeneous image
coordinate vector and the direction of the ray is
different depending on the sign of the principal
distance c.

maybe temporally varying calibration matrix

K(x′, q)=

⎡⎣c cs x′
H+Δx(x′, q)

0 c(1+m) y′H+Δy(x′, q)
0 0 1

⎤⎦ (10)

for the forward transformation

gx
′
= K(x′, q) kx

′s
(11)

leading to the observable image coordinates
gx′

. The g indicates that the mapping can han-

dle general distortions via additional parame-

ters q. Besides the basic parameters, namely

the principal distance c with the image plane
kZ = c, the shear s, the scale difference m,

and principal point x′
H , the calibration matrix

contains additive corrections for modelling lens

distortion or other deviations, which depend on

the additional parameters q and on x, the po-

sition of the image point. In case of small de-

viations (11) can easily be inverted. However,

one must take into account the different signs of

the coordinate vector and the direction from the

camera to the scene point (Fig. 2),

kx
′s ≈ s N

(
K−1(gx

′
, q) gx

′)
(12)

with s ∈ {−1,+1} such that kx
′s
3 < 0. This

relation is independent of the sign of the third

element of the calibration matrix. Given the

covariance matrix Σgx′gx′ of the image coordi-

nates, the covariance matrix of kx
′
can be deter-

mined by variance propagation, omitting the de-

pendency of the calibration matrix on the point

coordinates x′. Note that a point gx′
at infinity

corresponds to the direction kx
′

perpendicular

to the viewing direction.
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Fig. 3: Relation between sensor point, viewing
direction and viewing ray.

3.3.2 Omnidirectional single-viewpoint
cameras

As an example for an omnidirectional single-

view camera we take a camera with a fisheye-

lens. We model the fisheye objective with the

equidistant-model described in ABRAHAM &

FÖRSTNER (2005). The interior orientation

of a camera is determined separately by cam-

era calibration according to ABRAHAM & HAU

(1997) using Chebyshev polynomials. Using

the equidistant-projection and applying all cor-

rections, we obtain image points ex which

lie closer to the principal point H than the

gnomonic projections gx of the scene points

(Fig. 3). The ray direction kx
′s

can be derived

from ex by using the normalized radial distance

r′ = |ex| growing with the angle φ between the

viewing direction and the camera ray.

Again, the uncertainty of the image coordi-

nates can be transformed to the uncertainty of

the direction kx
′s

of the camera ray via variance

propagation. In all cases the covariance matrix

of the camera ray is singular, as the normalized

3-vector only depends on two observed image

coordinates.

3.4 The Estimation Procedure

The collinearity equations in (9) contain three

equations per observed camera ray and four pa-

rameters for each homogeneous scene point,

though, both being unit vectors. Therefore, the

corresponding covariance matrices are singu-

lar and more than the necessary parameters are

contained in the equations. We therefore want

to reduce the number of parameters to the nec-

essary minimum. We do this after linearization.

3.4.1 Linearization and update for pose
and relative pose parameters

Linearization of the non-linear model leads to

a linear substitute model which yields correc-

tion parameters that allow to derive corrected

approximate values. We start with approximate

values for the poses of the reference camera

given for every time of exposure t = 1, ..., T
by Ra

t for the rotation matrix and Za
t for the

projection center, the relative poses from the

reference camera to each other camera c =
2, ..., C given by Ra

c and Za
c , Xsa

i for the i =
1, ..., I spherically normalized scene points,

and xa
itc = N

(
[I3 |03×1] M−1

c M−1
t Xs

i

)
for the

normalized directions.

The Euclidean coordinates will be simply

corrected by Z = Za +ΔZ, the three param-

eters ΔZ are to be estimated. The rotation ma-

trix will be corrected by pre-multiplication with

a small rotation, thus by R = R(ΔR)Ra ≈
(I3 + S(ΔR))Ra, where the small rotation

R(ΔR) depends on a small rotation vector ΔR
that is to be estimated.

3.4.2 Reduced coordinates and update
of coordinates

The correction of the unit vectors is performed

using reduced coordinates (FÖRSTNER 2012).

These are coordinates, say the 2-vector xr of

the direction xs, in the two-dimensional tangent

space null
(
xsaT

)
= [r, s] of the unit sphere S2

evaluated at the approximate values xsa

xr = null
T
(
xsaT

)
xs =

[
rTxs

sTxs

]
. (13)

The corrections Δxr of these reduced coordi-

nates are estimated. This leads to the following

update rule

xs = N
(
xsa + null

(
xsaT

)
Δxr

)
. (14)

Obviously, the approximate vector xsa is cor-

rected by

Δx = null

(
xsaT

)
Δxr (15)

and then spherically normalized to achieve the

updated values xs.

Using (13) we now are able to reduce the

number of equations per direction from three to

two, making the two degrees of freedom of the



Johannes Schneider & Wolfgang Förstner, Bundle Adjustment 315

observed direction explicit. This results in pre-

multiplication of all observation equations on

(9) with nullT
(
kx

saT
itc

)
. Following (15) we use

the substitution ΔXs
i = null

(
XsaT

i

)
ΔXr,i

when linearizing the scene coordinates. Then

we obtain the linearized model

kxr,itc + v̂xr,itc (16)

= JTRaT
c RaT

t S(Xa
i0)Δ̂Rt

−Xa
ihJTRaT

c RaT
t Δ̂Zt

+ JTRaT
c S

(
RaT

t (Xa
i0−Xa

ihZ
a
t )
)
Δ̂Rc

−Xa
ihJT RaT

c Δ̂Zt

+ JT[I3 |03](M
a
c )

−1(Ma
t )

−1
null

(
XaT

i

)
Δ̂Xri

with

J =
1

|x|

(
I3−

xxT

xTx

)
null(xT)

∣∣∣∣
x=kx

a

itc

(17)

and the partitioned homogeneous vector Xs =

[X0;Xh] depending on Δ̂Rt, Δ̂Zt, Δ̂Rc,

Δ̂Zc and Δ̂Xr,i.

We now arrive at a well-defined optimization

problem: find Δ̂Xr,i, Δ̂Rt, Δ̂Zt, Δ̂Rc, Δ̂Zc

minimizing

Ω
(
Δ̂Xr,i, Δ̂Rt, Δ̂Zt, Δ̂Rc, Δ̂Zc

)
(18)

=
∑
itc

v̂T
r,itcΣ

−1
xr,itcxr,itc

v̂r,itc

with the regular 2×2-covariance matrices

Σxr,itcxr,itc (19)

= kJ
T

s (
kx

a

itc)

[
Σxitcxitc 0

0T 0

]
kJs(

kx
a

itc) .

4 Experiments

4.1 Implementation Details

We have implemented the bundle adjustment as

a Gauss-Markov model in Matlab. Observa-

tions are bundles of rays, the interior orienta-

tions of all cameras of the camera system are

assumed to be known. To overcome the rank

deficiency we define the gauge by introducing

seven centroid constraints on the approximate

values of the scene points. This results in a free

bundle adjustment, where the trace of the co-

variance matrix of the estimated scene points

is minimal. We can robustify the cost function

by down-weighting measurements whose resid-

ual errors are too large by minimizing the robust

Huber cost function HUBER (1981).

For the initialization sufficiently accurate ap-

proximate values for the scene point coordi-

nates Xa
i and for the translation and the rota-

tion of the relative poses Ma
c of each camera in

the camera system of the reference camera as

well as for the poses Ma
t of the reference cam-

era in the scene coordinate system at the times

of synchronized exposure are needed. Firstly,

we determine the pose of each camera without

considering the cameras as a rigid multi-camera

rig using the bundle adjustment program Au-

relo provided by LÄBE & FÖRSTNER (2006).

With the first camera as the reference camera

we then determine approximate values for all

c = 2, ..., C relative poses Ma
c robustly using

the median quaternion and median translation

over all t = 1, ..., T unconstrained estimated

relative poses. Scene points are triangulated by

using all corresponding image points that are

consistent with the approximated relative poses

and the poses of the reference camera in the

scene coordinate system. Ray directions with

large residuals are discarded.

4.2 Test on Correctness and
Advantage

We first check the correctness of the imple-

mented model and then show the advantage of

including far points or points with glancing in-

tersections within the bundle adjustment based

on a simulated scenario.

4.2.1 Simulated Scenario

We simulated a multi-camera system moving

on a radiused square, observing 50 close scene

points and 10 scene points far away at the hori-

zon, i.e. at infinity (Fig. 4). The multi-camera

system contains three single-view cameras. Ev-

ery scene point is observed by a camera ray

from all 20 positions of the camera system. The

simulated set-up provides a high redundancy

of observations. Assuming the standard devi-

ation of an image coordinate to be 0.3 pixel and
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Fig. 4: Simulation of a moving multi-camera sys-
tem (poses of reference camera shown as bold
tripods) with loop closing. Scene points nearby
(crossed dots) and at the horizon (empty dots)
being numerically at infinity are observed.

a principal distance of 500 pixel, we add nor-

mally distributed noise with σl = 0.3/500 ra-

diant on the spherically normalized camera rays

to simulate the observation process (Fig. 4). As

initial values for the bundle adjustment we ran-

domly disturb both the generated spherical nor-

malized homogeneous scene points Xs
i , which

are directions, by 6◦, the generated motion pa-

rameters of the reference camera Rt and Zt of

Mt by 3◦ and 2 cm, and the relative pose pa-

rameters of the remaining cameras Rc and Zc

of Mc by 3◦ and 10 % of the relative distances

between the projection centres.

The iterative estimation procedure stops after

eight iterations, when the maximum normalized

observation update is less than 10−6. The resid-

uals of the observed image rays in the tangent

space of the adjusted camera rays, which are

approximate angles between the rays in radi-

ants, do not show any deviation from the normal

distribution. The estimated a posteriori vari-

ance factor σ̂2
0 = 0.99252 approves the a pri-

ori stochastic model with the variance factor

σ2
0 = 1. In order to test if the estimated ori-

entation parameters and scene point coordinates

represent the maximum likelihood estimates for

normally distributed noise of the observations,

we have generated the same simulation 2000

times with different random noise. The mean

of the estimated variance factors is not signif-

icantly different from one, indicating an unbi-

Fig. 5: Multi-camera system consisting of five
overlapping perspective camera views: Infrared
camera on top, RGB camera in the middle and
three monochromatic cameras. The distances
from the RGB camera to the others are about 10
cm.

ased estimator with minimum variance. These

results confirm the correctness of the approach

and implementation.

4.2.2 Decrease of rotational precision
excluding far points

Bundle adjustment programs, such as Aurelo,

cannot handle scene points with glancing inter-

sections, e.g. with maximal intersection angles

lower than γ = 1 gon, which therefore are ex-

cluded in the estimation process to avoid nu-

merical difficulties. Far scene points, however,

can be observed over long periods of time and

therefore should improve the quality of the ro-

tation estimation significantly. We investigate

the decrease of precision of the estimated rota-

tion parameters of R̂t and R̂c when excluding

scene points with glancing intersection angles.

In detail, we will determine the average empiri-

cal standard deviation σαt = σ̂0

√
trΣ

̂Rt
̂Rt
/3

and σαc = σ̂0

√
trΣ

̂Rc
̂Rc
/3 for all esti-

mated rotation parameters and report the av-

erage decrease of precision by excluding far

points. They are determined by the geometric

mean, namely exp
[∑T

t log(σ′
αt
/σαt)/T

]
and

exp
[∑C−1

c log(σ′
αc
/σαc)/(C − 1)

]
, where

σ′
αt

and σ′
αc

represent the resulting average em-

pirical standard deviations when scene points

whose maximal intersection angle are lower

than a threshold γ are excluded.

We determine the decrease of precision for

the estimated rotation parameters by exclud-

ing a varying number of scene points at infin-

ity on the basis of the introduced simulation
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Fig. 6: Left: Illustration of the estimated scene points and poses of the reference camera. The red
line denotes the known length on a poster for scale definition. Right: The estimated relative poses.

of a moving multi-camera system. Again we

generate 50 scene points close to the multi-

camera positions and vary the number of scene

points at infinity to be 5, 10, 20, 50 and

100. The resulting average decrease in preci-

sion of the estimated rotations in M̂c is 6.21 %,

8.98 %, 19.90 %, 42.29 % and 75.60 % and in

M̂t 7.15 %, 11.77 %, 27.67 %, 54.56 % and

91.28 %, respectively. This strongly proves the

points at infinity to have a highly relevant posi-

tive influence on the rotational precision.

4.3 Calibration of Multi-Camera
Systems

4.3.1 Calibration with overlapping views

We now describe the calibration of the camera

system shown in Fig. 5 with highly overlapping

views, which is used for 3D reconstruction of

vines. In order to determine the relative poses

of the multi-camera system we apply the bun-

dle adjustment to 100 images of a wall draped

with highly textured posters. The images were

taken at 20 stations in a synchronized way. We

use Aurelo without considering the known rel-

ative orientation between the cameras to ob-

tain an initial solution for each camera and the

scene points. The dataset contains 593,412 im-

age points and 63,140 observed scene points.

Starting from an a priori standard deviation

of the image coordinates of σl = 1 pixel, the

a posteriori variance factor is estimated with

σ̂2
0 = 0.112 indicating the automatically ex-

tracted Lowe points to have an average preci-

sion of approximately 0.1 pixel. This high pre-

cision of the point detection results mainly from

the good images and the calibration quality of

the camera used. Fig. 6 illustrates the estimated

scene points and poses as well as the estimated

relative poses.

The estimated uncertainty of the estimated

rotations of the cameras with regard to the ref-

erence camera is 0.1 mgrad – 0.2 mgrad around

the viewing direction axis and 0.4 mgrad –

0.8 mgrad orthogonal to it. We scale the pho-

togrammetric model by using a measured dis-

tance of 1.105 m with an error of about 0.1 %.

The uncertainty of the estimated relative trans-

lations is 0.02 mm – 0.04 mm in viewing direc-

tion and 0.1 mm – 0.2 mm orthogonal to it.

4.3.2 Multi-camera system Ladybug 3

The omnidirectional multi-camera system La-

dybug 3 consists of six cameras, five of which

are mounted in a circular manner, one show-

ing upwards, together covering 80 % of the

full viewing sphere. Neighbouring images only

have a very small overlap, which is too weak

for system calibration without additional in-

formation. We have mounted the omnidirec-

tional multi-camera system Ladybug 3 on a

robot (Fig. 7a), which executes a circular move-

ment with a radius of 50 cm in a highly textured

room while the Ladybug is taking synchronized

images. This ensures overlapping images of

different cameras at different times of the ex-

posure. Approximate values for this image se-

quence consisting of 150 images taken by the

five horizontal cameras at 30 exposure times

are obtained with Aurelo that provides 135,012

image points of 24,078 observed scene points.

The resulting 150 camera poses are shown in

Fig. 7b.

After applying our bundle adjustment the es-

timated a posteriori variance factor amounts to

σ̂2
0 = 0.252 using a priori stochastic model with

σl = 1 pixel for the image points, indicating the
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(a)

(b)

Fig. 7: (a) Ladybug 3 on robot, (b) Estimated
camera poses.

automatically extracted Lowe points to have a

quite good precision. Two parallel walls with a

known distance of 7.01 m can be estimated out

of the estimated scene points, which is used to

define the scale between the estimated relative

camera poses. The estimated rotation parame-

ters show a very high precision. The maximal

deviation to the manufacturer’s calibration pa-

rameters is 0.6◦. The estimated uncertainties of

the rotations and translations between the cam-

eras are in the order of 1.5 mgrad – 2.5 mgrad

and 0.1 mm – 0.2 mm, respectively.

To compare the estimated poses with the

ones provided by the manufacturer we apply a

rigid transformation which minimizes the dis-

tances between the estimated and given projec-

tion centers. The resulting estimated relative

poses in Fig. 8 show significant translational de-

viations in the order of 1 mm – 4 mm compared

to the manufacturer’s calibration parameters.

The interior angles differ from a regular pen-

tagon where each interior angle is 108◦ by up

to 13◦. Possible reasons for the deviations are

to few observed scene points near to the camera

system and that we have used a different inte-

rior orientation for each camera from our own

calibration, which is different from that of the

manufacturer.
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Fig. 8: Comparison of relative poses: estimated
(solid) and manufacturer given (dashed).

Fig. 9: Illustration of the UAV and the stereo cam-
eras used in the MoD-project. One stereo pair is
looking forward and one backwards giving a wide
field of view.

4.3.3 Multi-camera system with fisheye
lenses

We make the same investigation on an im-

age sequence consisting of 96 images taken

by four synchronized cameras with Lensagon

BF2M15520 fisheye lenses having a field an-

gle up to 185◦. The cameras are mounted on an

UAV (unmanned aerial vehicle) to generate two

stereo pairs, one looking ahead and one look-

ing backwards, providing a large field of view

(Fig. 9). The UAV moves along a circle at a

height of 5 m above a parking lot while rotating

around its own axis, providing four overlapping

images at each time of exposure.

Fisheye objectives cause severe distortions at

the image boundary. Thus, in order to find cor-

responding points using the SIFT-operator we

need to use a transformation between overlap-

ping images which is very similar to a con-

formal projection, i.e. one that preserves an-

gles because the SIFT operator is translation,
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Fig. 10: Sample images of the Ladybug 3 dataset.

scale and rotation invariant. For this reason we

transform the original images using the stere-

ographic fisheye model. This ensures a con-

formal mapping between two different images

when observing a scene at infinity as they them-

selves are conformal mappings of the spherical

image of the scene. We obtain low deviations

from a similarity transformation for locally pla-

nar points not too close to the cameras, fulfilling

the preconditions for rotation and scale invari-

ant SIFT-matching.

Aurelo provides approximate values for the

96 camera poses and 81,821 image points of

15,344 observed scene points which are trans-

formed into image directions using (16). Af-

ter the bundle adjustment the estimated variance

factor is σ̂2
0 = 1.472 using an a priori stochastic

model with σl = 1 pixel for the image points,

indicating a quite poor precision of the point de-

tection. The cause for this low precision, which

still needs to be analyzed, may be a lower image

quality caused by both, the fisheye projection,

or vibrations. The uncertainty of the estimated

rotations and translations between the cameras

within a stereo pair is 2 mgrad – 6 mgrad and

0.5 mm – 1.5 mm, respectively, and the uncer-

tainty of the estimated rotations and transla-

tions between the forward and backward look-

ing stereo camera systems is 5 mgrad – 9 mgrad

and 1.5 mm – 2.5 mm.

4.4 Decrease of rotational Precision
excluding far Points

In order to examine the decrease of the rota-

tional precision of the estimated camera sys-

tem poses we apply the bundle adjustment to

an image sequence consisting of 360 images

taken by four of the six cameras of the multi-

camera system Ladybug 3 (Fig. 10) excluding

and including far points. The Ladybug 3 is

mounted on a hand-guided platform and is trig-

gered for one shot per meter with the help

of an odometer. Approximate values are ob-

tained with Aurelo by combining the individual

cameras into a single virtual camera by adding

distance-dependent corrections to the camera

rays (SCHMEING et al. 2011).

The dataset contains 10,891 of 26,890 scene

points observed with maximal intersection an-

gles per point significantly lower than γ =
1 gon (histogram in Fig. 11a�. The average stan-

dard deviation of each estimated rotation pa-

rameter is shown in Fig. 11b showing the indi-

vidual gain in precision, sorted according to as-

cending rotational standard deviation. For some

images the gain obviously is very large. The

gain is mainly obtained due to a higher num-

ber of observed scene points at the individual

poses, which can be seen in the scatter plot in

Fig. 11c. Some of the estimated rotations show

very large differences in the precision, demon-

strating the relevance of the far scene points in

the Ladybug 3 dataset. The use of far points re-

sults in an almost constant precision of the rota-

tion parameters over all camera stations, com-

pared to the results of the bundle adjustment if

far points are excluded. The estimated a pos-

teriori variance factor is σ̂2
0 = 1.052 using an

a priori stochastic model with σl = 1 pixel for

the image points, indicating a quite poor preci-

sion of the point detection which mainly results

from the low image quality.

5 Conclusions and Future Work

We proposed a rigorous bundle adjustment for

omnidirectional and multi-view cameras which

enables an efficient maximum likelihood esti-

mation using image and scene points at infin-

ity and which can be used to calibrate a general
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(a) Number of scene points with small intersection angles.

(b) Average empirical standard deviation of estimated rotations.

(c) Scatter plot of σαt against the number of observed scene points at t.

Fig. 11: The histogram in (a) shows the number of scene points in the multi-camera dataset with
small intersection angles. The average precision σαt determined by excluding and including scene
points with γ < 1 gon for all poses t = 1, ..., T is compared to each other in (b) and against the
number of observed scene points in (c).

multi-camera system. Our experiments on sim-

ulated data show that scene points at the hori-

zon can stabilize the orientation of the cam-

era rotations significantly. Future work will

focus on improving the precision of the rela-

tive poses by testing different image acquisition

strategies. Furthermore, we are developing a

fast C-implementation and eventually will ex-

tend our software by a self calibration part.

Software

The Matlab code of the proposed bun-

dle adjustment will be made available at:

www.ipb.uni-bonn.de/bacs.
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