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Summary: In this study field experiments were
conducted to test the ability of optimized spectral
indices and partial least squares (PLS) to estimate
leaf chlorophyll (Chl) content of rice from non-de-
structive canopy reflectance measurements. We in-
tegrated techniques involving the optimization of
narrow band spectral indices and the detection of
red edge position to optimize one type of spectral
indices, the ratio of reflectance difference index
(RRDI), for the estimation of leaf Chl content. The
optimized RRDI in the red-edge (RRDIre = (R~
R, )J/(R,,,—R,.,)) accounted for 62% — 72% of the
variation in leaf Chl content with an RMSE of
4.59 pg/cm? — 4.89 pg/cm?. Compared to spectral
indices, PLS improved the estimation of leaf Chl
content, yielding R? and RMSE of 0.85 pg/cm? and
3.22 pg/em?, respectively. Finally, the model based
on RRDI and the PLS model were further validated
by an independent dataset collected in farmer
fields. RRDI and PLS models yielded acceptable
accuracy with R? 0f 0.49 and 0.55, respectively, and
an RMSE of 5.47 pg/cm? and 5.13 pg/cm?. Our re-
sults suggest the potential to optimize spectral indi-
ces and also the significance of PLS technique for
mapping canopy biochemical variations.

Zusammenfassung: Abschdtzung von Blatt-Chlo-
rophyllgehalten von Reis mit Hilfe von Spektralin-
dizes und Partial Least Squares Analysen. In dieser
Studie wurden Feldversuche durchgefiihrt, um op-
timierte Spektralindizes und Partial Least Squares
(PLS) Analysen fiir die Abschidtzung von Blatt-
Chlorophyllgehalten von Reis mittels nicht de-
struktiven Reflexionsmessungen zu evaluieren. Es
wurden unterschiedliche Analysemethoden von
hyperspektralen Daten integriert. Ziel der Untersu-
chung ist die Optimierung eines bestimmten Typs
von spektralen Indizes, den Ratio of Reflectance
Difference Index (RRDI). Letzterer wurde fiir die
Abschitzung von Blatt-Chlorophyllgehalten ent-
wickelt. Der optimierte RRDI im red-edge (RRDI-
re = (R, ;—R,J(R,,—R,) erklérte 62% — 72% von
der Variabilitdt des Blatt-Chlorophyllgehalts mit
einem RMSE von 4.59 pg/cm? — 4.89 pg/em?. Im
Vergleich zu etablierten Spektralindizes kann mit-
tels der PLS Analyse die Abschidtzung von Blatt-
Chlorophyllgehalten signifikant verbessert werden
(R?=0.85, RMSE = 3.22 pg/cm?). SchlieBlich wur-
den die RRDI- und PLS-basierten Modelle anhand
eines unabhdngigen Datensatzes, der auf landwirt-
schaftlich genutzten Feldern erhoben wurde, zu-
satzlich validiert. Die RRDI- und PLS-Modelle er-
zielten eine akzeptable Genauigkeit mit jeweils ei-
nem R? von 0.49 und 0.55 und einem RMSE von
5.47 pg/cm? und 5.13 pg/cm?. Unsere Ergebnisse
unterstreichen das Potential fiir die Optimierung
von Spektralindizes sowie die Bedeutung von PLS
Analysen fiir die Bestandskartierung von bioche-
mischen Variationen.

1 Introduction

Rice is one of the main agricultural crops in
Northeast China. The Sanjiang Plain is well
known for large scale farming in China and
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is becoming more and more important in sup-
plying the food market with commercial rice
of high quality (Yao et al. 2012). For a high-
yield and environment-friendly agricultur-
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al development, real-time monitoring of the
growth status of rice is crucial to this region.

Remote sensing is increasingly being used
in agricultural applications owing to its po-
tential for the noninvasively gathering of in-
formation over larger areas (ATZBERGER 2013,
MuLra 2013). Hyperspectral remote sensing
of crop nutrient status is mainly based on the
estimation of leaf chlorophyll (Chl), which ab-
sorbs and converts solar light to biochemical
energy and thus often serves as an indicator of
plant stresses (FILELLA & PENUELAS 1994). Re-
cent studies have shown great potential of hy-
perspectral remote sensing for the estimation
of leaf chlorophyll (Zarco-TejapA et al. 2001),
plant nitrogen (N) (Yu et al. 2013), leaf area
index (LAI) (DarvisHzADEH et al. 2009), bio-
mass (Gnyp et al. 2013, Gnyp et al. 2014, KorpE
et al. 2012) and for disease detection (DELA-
LIEUX et al. 2009, LAUDIEN et al. 2006, LAUDIEN
& BareTH 2006).

The red edge (ca. 680 nm — 750 nm) of
spectra is of particular interest for estimating
leaf chlorophyll content (FILELLA & PENUELAS
1994, MaIN et al. 2011). The red edge position
(Agg) is defined as the wavelength of the peak
(local maximum) on the first derivative reflec-
tance spectra (HorLER et al. 1983). Generally,
Ay shifts to longer wavelengths with the in-
crease of Chl content (FiLELLA & PENUELAS
1994). Several studies have found that two or
more peaks in red edge can be derived from
the derivative spectra (HorLER et al. 1983,
ZArco-TEjapa et al. 2002). HorLER et al. (1983)
suggested that the first peak at around 700 nm
is determined mainly by chlorophyll content
while the second peak at around 725 nm is
governed more by scattering effects.

Recent studies have shown that optimized
narrow band spectral indices perform better
than broad band indices for the estimation of
Chl and LAI (DaRrvisHzADEH et al. 2008, DAR-
VISHZADEH et al. 2009). In most of these studies
narrow band indices take the forms of simple
ratio (SR) and normalized difference vegeta-
tion index (NDVI) to find the best band com-
binations. Yu et al. (2012) found that the opti-
mized SR- and NDVI-like indices have simi-
lar sensitive bands and provide equal ability to
estimate Chl.

The objective of this study is to test the abil-
ity of new spectral indices and the partial least

squares (PLS) method to estimate the leaf Chl
content of rice.

2 Material and Methods

2.1 Study Area, Experimental and
Farmer Fields

The study area is located in the Sanjiang Plain,
Heilongjiang Province, China. The Sanjiang
Plain was originally dominated by marshes
and it was converted to agricultural produc-
tion six decades ago (Yao et al. 2012). The cli-
mate in this region is cool-temperate subhu-
mid continental monsoon, with very cold win-
ters and warm summers. The climatic charac-
teristics of Sanjiang Plain are suitable for rice,
soybeans, wheat, and corn crops. Rice farm-
ing has become the dominant land use in this
region in the last two decades. More informa-
tion about the Sanjiang Plain has been provid-
ed elsewhere (Gnyp et al. 2013, Yao et al. 2012,
Yu et al. 2013). In this study, two field experi-
ments (Exp. 1 and Exp. 2) were conducted, and
14 farmer fields were selected for data collec-
tion.

Exp. 1: The N rate experiment was conduct-
ed at two sites: Qixing and Keyansuo experi-
mental stations with a same experimental de-
sign in 2008. A randomized complete block
design with four replications including five N
rates (0, 35, 70, 105 and 140 kg N ha! as urea,
CO(NH,),) was applied at both stations, where
a local rice cultivar Kongyul31 was planted.
60 kg ha! P,O; (as triple super-phosphate) and
75 kg ha'! K,O (as potassium sulfate) were ap-
plied to ensure the supply of other nutrients.
All plots had the same size of 100 m? (10 m
by 10 m).

Exp. 2: Similar design with Exp. 1, Exp.2
was conducted under five N levels that used
70% of each of the five rates of Exp. 1, which
was 0, 24.5, 49, 73.5 and 98 kg N ha -, respec-
tively. The same cultivar Kongyul31 and same
amount of P- and K-fertilizers were used.

Farmer fields: In addition to the experi-
mental fields, 14 farmer fields managed by
two farmers were selected for data collec-
tion, which is to be used as the validation da-
taset. Farmers applied fertilizers according to
their own experiences and local practices. The
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same cultivar Kongyul3l was planted in those
farmer fields.

2.2 Spectral Measurement

Hyperspectral reflectance data was measured
from a height of 30 cm above the rice canopy
under clear sky conditions within 2 hours of
solar noon, using the FieldSpec 3 spectrora-
diometer (Analytical Spectral Devices, Inc.,
Boulder, CO, USA) connected to a fiber fore-
optic that has a 25 degree field-of-view. The
FieldSpec 3 spectroradiometer operates in the
350 nm — 2500 nm spectral region and has a
spectral resolution of 3 nm at 700 nm, 10 nm
at 1400 nm and 2100 nm. The detailed de-
scription of FieldSpec 3 can be found in GNyp
et al. (2013). Hyperspectral reflectance data in
I nm steps were automatically output by the
spectroradiometer. We used the reflectance
data of 350 nm — 900 nm in this study due to
the specific interest in Chl.

2.3 Leaf Chlorophyll Measurement

On the same day of spectral measurements,
leaf chlorophyll was measured using a SPAD-
502 (Konica Minolta, Inc.) chlorophyll meter.
In those spectroradiometer-scanned plants, a
total of 10 — 15 newly, fully expanded leaves
were selected for recording SPAD values. For
each leaf, 3 replicates were recorded in the
middle position of the leaf base to tip and then
averaged. Finally, SPAD values were trans-
formed to area-based leaf chlorophyll content
(Chl, pg/cm?) using an empirically calibrated
function commonly used in remote sensing
studies (ATzBERGER et al. 2003, DARVISHZADEH
et al. 2008, MARKWELL et al. 1995).

2.4 Reflectance Indices

An NDVI-like index, the normalized reflec-
tance difference index (NRDI, (1)), was op-
timized using a lambda-by-lambda band op-
timization (LLBO) method, which has been
widely used in recent studies (DARVISHZADEH
et al. 2008, DARvisHZADEH et al. 2009, Yu et
al. 2013).

NRDI = X~z
Ry + Ry,

M
where R, is the reflectance at the wavelength
A. The LLBO method thoroughly examines all
the possible pairs of the bands A1 and A2 for
NRDI for the correlation with the response
variable of interest, chlorophyll in this study.

To test whether we can further improve the
robustness of optimized indices, we made a
hypothesis, which assumes that R_is the re-
flectance in response primarily to chloro-
phyll and is a function of the wavelength A,
ie., R = f(4). However, due to effects of soil,
water background and phenological develop-
ment, the measured canopy reflectance (R)
can be further assumed as a function of R and
the constants, a and b, that have multiplicative
and additive factors respectively, across wave-
lengths (2),

R=a-f(A)+b. )

Although such a linear hypothesis is rare in
nature, we expect that it allows for the removal
of the adverse effects added to the canopy re-
flectance (R). R, could be then calculated by
eliminating the factors @ and b from the mea-
sured reflectance R, following (3),

R =(R-b)/a- A3

However, since a and b are difficult to de-
termine, an alternative approach to eliminate
a and b is to use the ratio of reflectance differ-
ence as shown in (4),

Rc,ﬂ.l - Rc,/12
Rc,l3 - Rc,l4

— Rﬁ,l _R/12 . (4)
Rl3 - RM

Finally, we define the ratio of reflectance
difference index (RRDI, (5)) as:

R, —R
RRD] = 422 | ®)

A3 R/M

for which A1 — A4 are random wavelengths to
be optimized for the estimation of Chl. The
RRDI optimization is achieved through two
steps. First step, all possible 2-band combina-
tions of A1 and A2 within the range of 350 nm
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— 900 nm are examined for the correlation
with Chl, for which the best correlation (high-
est R?) produces the best NRDI. The best A1
and A2 determined in this step will be used as
the numerator in RRDI. Second step, all pos-
sible band combinations of A3 and A4 are ex-
amined for the correlation with Chl, for which
the best correlation produces the best RRDI.

2.5 PLS Model

The PLS method is an efficient tool for multi-
variate modeling and is increasingly used for
handling high dimensional hyperspectral data
(RicHTER et al. 2012). The PLS regression re-
duces the data dimension by extracting the la-
tent variables (factors) as new predictors and
regress the response variables on these fac-
tors. Compared to multiple linear regression,
the PLS regression has the desirable property
that solves the problem of strong co-linearity
(ATzBERGER et al. 2010). Therefore, PLS was
also used to estimate Chl in this study. PLS
has the advantage that the precision of the
model improves with the increasing num-
ber of variables and observations (WoLD et
al. 2001). To optimize the number of factors
(latent variables), leave-one-out cross valida-
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tion was used to test the significance of the in-
crease in the predicted residual sum of squares
(PRESS) (vaN DER VOET 1994).

3 Results

3.1 NRDI Optimization

Fig. 1A shows the lambda-by-lambda R? plot
for the correlations between NRDIs and Chl.
The highest R? values were obtained by the
red edge bands paired with NIR bands.

Fig. 1B shows the best NRDI (highest R?)
with A1 and A2 at 745 nm and 740 nm, respec-
tively. This NRDI accounted for 70% of the
variation in Chl with an RMSE of 4.8 pg/cm?
(Fig. 1B).

3.2 Red Edge Position

The red edge position (A,;) was determined
as the maximum of the first derivative of the
reflectance. Fig. 2 shows that A, ranged from
700 nm to 740 nm and yielded significant dif-
ference only when N rate was higher than
105 kg/ha.

20", R?=0.70

° RMSE = 4.80
p < 0.0001
10 !
0.02 0.04 0.06 0.08

NRDI=(R;,5R; 40/ (R745+R740)

Fig.1: A: Lambda-by-lambda R? plot showing the performance of different band combinations of
Al and A2 for the optimization of NRDI. B: Scatter plot showing the relationship between Chl and
the best 2-band combination of A1 and A2 derived from Fig. 1A.
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Fig.2: Boxplot showing the changes in red
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Fig.3: Leaf chlorophyll content (Chl, pg/cm?)
plotted as a function of the red edge position
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The N rates of 105 kg/ha and 140 kg/ha pro-
duced a A, shift to longer wavelengths and
yielded higher values of A, compared to the
low-N rates.

To investigate the response of A, to Chl
variations, Chl was plotted as a function of
Agg- Fig.3 shows that A, was positively re-
lated to Chl. The highest value of A, ca.
740 nm, corresponded to the highest Chl con-
tent that was 65 pg/cm? approximately.

3.3 RRDI Optimization

Fig. 4 shows the lambda-by-lambda R? plot for
the correlations between RRDIs and Chl. Re-

Wavelength A3 (nm)

5

400 500 600 700 800 900
Wavelength 44 (nm)
0.2 04 0.6

Fig. 4: Lambda-by-lambda R2 plot showing the
performance of different band combinations of
A3 vs. M for the RRDI. White rectangle high-
lights the red edge range of 700 nm — 740 nm.

sults indicate that RRDI greatly increased the
sensitivity to Chl across the whole wavelength
range compared to NRDI (Fig. 1A).

One of the significantly hot zones for A3
vs. A4 locates in the wavelengths of 700 nm
— 740 nm, which agrees well with the range
of A, (Figs. 2 and 3). Therefore, the A3 vs. A4
were optimized within the range of 700 nm —
740 nm and, they were finally determined as
740 nm and 700 nm based on the highest R2,
respectively, for the best RRDI.

The best RRDI = (R, — R, )/(R,,; — R, )
accounted for 72% of the variation in Chl with
an RMSE of 4.59 pg/cm? (Tab. 1).

Exp. 2 dataset was used to test the reliabil-
ity of the best NRDI and RRDI for the esti-
mation of Chl. Results show that NRDI and
RRDI accounted for 60% and 62% of the vari-
ation in Chl, respectively, with an RMSE of
477 pg/cm? and 4.63 pg/cm? (Tab. 1: Results
of R2 and RMSE (pg/cm2) for different da-
tasets using NRDI = (R745 — R740)/(R745 +
R740), RRDI = (R745 — R740)/(R740 — R700)
and the PLS model).

3.4 Chl Estimation for Farmer Fields

Regression models based on RRDI and NRDI
were calibrated using the pooled data of the
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Fig.5: (A) RRDI model based on the pooled
experimental data (Exp. 1 + 2). (B) NRDI model
based on the pooled data.

two experiments and were applied to farmer
fields for the estimation of Chl.

Fig.5 shows the calibration results for
RRDI and NRDI. RRDI and NRDI account-
ed for 65% and 62% of the variation in Chl of
pooled data (Exp.1 + 2), respectively.

Tab. 1 summarizes both the calibration and
validation results for farmer fields. The R? for
the predicted Chl by RRDI and NRDI against
the measured Chl were 0.49 and 0.45, respec-
tively, with an RMSE of 5.47 pg/cm? and
5.68 pg/cm? (Fig. 6A—B and Tab. 1).

3.5 Chl Estimation for Farmer Fields
Using PLS model

The PLS model was also calibrated using
the pooled data of two experiments. Results
showed that PLS model accounted for 85% of
the variation in Chl (Tab. 1) with an RMSE of
3.22 pglem?.

The calibrated PLS model was further used
to estimate the Chl of farmer fields. Fig. 6C
shows that R? for the predicted Chl by PLS
against the measured Chl was 0.55 with an
RMSE of 5.13 pg/cm?.

The PLS model accounted for a larger por-
tion of the variation in Chl of both experi-
mental and farmer fields and yielded a lower
RMSE compared to the univariate regression
models based on NRDI and RRDI (Tab. 1 and
Fig. 6).

Tab. 1: Results of R? and RMSE (ug/cm?) for different datasets using NRDI = (R,,, — R,,))/(R,,; +
R..), RRDI = (R, — R,,0)/(R,,, — R,,,) and the PLS model.

o NRDI RRDI PLS
Dataset Description n
R2 RMSE R2 RMSE R2 RMSE
Exp. 1 Optimize 160 0.70 4.80 0.72 4.59
Indices
Exp. 2 Test 80 0.60 4.77 0.62 4.63
Indices
Exp.1+2 Model 240 0.62 5.10 0.65 4.89 0.85 3.22
Calibration
Farmer fields Model 70 0.45 5.68 0.49 5.47 0.55 5.13
Validation

n, number of observations
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Fig. 6: Scatter plots showing the measured by
predicted values of Chl using (A) RRDI, (B)
NRDI and (C) PLS models calibrated on the
pooled data of two experiments (Exp.1 + 2).
Dashed line is the 1:1 line.

4 Discussion

The lambda-by-lambda band optimization
method has been used to optimize NDVI- and
SR-like indices for the estimation of canopy
characteristics in different species (DARvVISH-
zADEH et al. 2008, DARviSHZADEH et al. 2009,
Yu et al. 2012, Yu et al. 2013). However, the
potential of linking red edge characteristics
to the optimization of NDVI- or SR-like in-
dices have not been fully explored. As shown
in the lambda-by-lambda R? plots, the RRDI
optimization increases the sensitivity over the
entire wavelengths compared to NRDI (Figs.
1 and 4). In addition to the significant zone at
red edge range, the range for NIR vs. red edge,
e.g. 760 nm — 820 nm vs. 720 nm) also showed
the best performance. However, the NIR range
is governed primarily by LAI (DARVISHZADEH
et al. 2008), thus the red edge might be more
appropriate for Chl estimation.

The best RRDI= (R, — R, )/(R,,, — R,
could be considered as the ratio of derivative
of reflectance at 740 nm, i.e. dA,, = (A, —
X,,)/5) and the relative change in the red edge
positions. Similarly, LEg et al. (2008) found
that the derivative of reflectance at 735 nm
could be used to estimate rice N. Soil back-
ground is one of the main factors that affect
the hyperspectral remote sensing of leaf chlo-
rophyll. DARvISHZADEH et al. (2008) optimized
the SAVI2 type indices to estimate Chl and
found that it yielded equivalent accuracy in
terms of RMSE compared to narrow band
NDVI, i.e., NRDI in this study. However, the
optimization of SAVI2 type indices requires
the soil-line coefficients, which are difficult to
determine for this study due to the flooding
environment of rice field. Our results suggest
that RRDI seems to be able to reduce to some
extent the effects of soil, water background
and phenological development compared to
NRDL

Spectral indices are not able to represent all
spectral variability because they often employ
a limiting number of bands. Also, the simple
regression models based on spectral indices
are easy to be over-fitted to the limiting ob-
servations. In contrast, PLS takes into account
how the response variables co-vary with the
explanatory variables, and it is particularly
relevant in the situation where modeling data
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consist of many predictors, i.e., hyperspectral
narrow bands, relative to the number of ob-
servations (WoLD et al. 2001, Yu et al. 2014).
As expected, PLS outperformed both the opti-
mized NRDI and RRDI and resulted in lower
RMSE. Both NRDI and RRDI showed an un-
derestimation of high Chl values compared to
the PLS model (Fig. 6). This corroborates the
suggestion to use PLS for the full spectrum
analysis (ATzBERGER et al. 2003). However, the
determination of sensitive bands and optimi-
zation of spectral indices might be useful as
an early indicator of plant physiological status
and potential stresses before a more precisely
quantitative approach made by full spectrum
analysis.

Considering that spectral indices are char-
acterized by simplicity and are compatible for
different sensors with different resolutions or
bands, the optimization of spectral indices
still has practical value for applications of re-
mote sensing in agriculture. Robust spectral
indices will also contribute to the develop-
ment of end-user-friendly crop sensors. Bet-
ter development and validation of more com-
plex, but more reliable, indices could be also
achieved by integrating more rigorous cross-
validation or bootstrap techniques (RICHTER et
al. 2012).

5 Conclusions

The red edge plays a crucial role in estimating
chlorophyll (Chl). This stresses the high poten-
tial of the red edge bands for the optimization
of spectral indices. Two indices based on red
edge: the normalized reflectance difference in-

dex (NRDI = (R,,. — R, )J/(R,,. + R,,)) and the

ratio of reflectance difference index (RRDI =
(R,,s — R, ))/(R,,, — R, ) are robust indicators
of leaf Chl content of rice (R? =0.60 — 0.72,
RMSE = 4.59 pg/em? — 5.1 pg/cm?) according
to experimental data. They showed accept-
able performance for mapping the Chl varia-
tion in agricultural fields, yielding an RMSE
of 5.68 pg/cm? and 5.47 pg/cm?, respective-
ly, although the partial least squares (PLS)
model delivered higher accuracy (RMSE =
5.13 pg/em?). The results show the potential
of mapping canopy biochemical traits through

the optimization of spectral indices and other
feature reduction techniques such as PLS.
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