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Abstract: In order to minimize discrepancies with-
in the overlap area of airborne laser scanning (ALS)
strips, strip adjustment can be performed. Apart
from the transformation model, the quality of strip
adjustment is strongly affected by the observations
used in this process. In order to exploit the full res-
olution of the data, correspondences should be es-
tablished on the basis of the original point cloud
instead of interpolated surfaces or rasters, so that a
loss in accuracy and systematic interpolation ef-
fects can be avoided. A surface matching method in
which correspondences are based on the original
point cloud is the iterative closest point (ICP) algo-
rithm. In this study several ICP variants suitable for
large amounts of data are investigated. We intro-
duce a new method for the selection of correspond-
ences which is based on the influence of a point on
the adjustment calculations. As a result of this
study, a combination of variants, forming a base-
line optimized for most ALS data, is presented. The
investigated variants provide a correspondence
framework for ALS strip adjustment. The benefit of
specific variants is demonstrated on the basis of a
challenging ALS scene.

Zusammenfassung: Korrespondenzen fiir die
ALS-Streifenausgleichung auf Basis von ICP.
Durch eine Streifenausgleichung kénnen systema-
tische Diskrepanzen im Uberlappungsbereich von
Airborne Laser Scanning (ALS)-Streifen mini-
miert werden. Die Qualitdt einer Streifenausglei-
chung hingt neben dem Transformationsmodell
wesentlich von den verwendeten Korrespondenzen
ab. Nutzt man fiir die Korrespondenzen die Punkt-
wolke selbst anstelle von interpolierten Fliachen
oder Rastern, so kann man davon ausgehen, keinen
Genauigkeitsverlust oder systematischen Fehler
durch Interpolationseffekte zu erleiden, und somit
sehr hohe Genauigkeitsanspriiche erfiillen zu kon-
nen. Eine Methode, auf die das zutrifft, ist der Iter-
ative Closest Point (ICP) Algorithmus. In dieser
Arbeit wurden mehrere fiir grofe Datenmengen
geeignete ICP-Varianten untersucht. Im Zuge des-
sen stellen wir eine neue Selektionsmethode fiir
Korrespondenzen vor, die auf dem Einfluss jedes
Punktes auf das Ausgleichungsergebnis aufbaut.
Als Ergebnis dieser Studie wird in diesem Artikel
eine Variantenkombination vorgestellt, die fiir ty-
pische ALS-Szenen optimiert ist. Diese kann als
Grundlage fur die Korrespondenzbildung einer
Streifenausgleichung herangezogen werden. Der
Vorteil bestimmter Varianten wird anhand einer
geometrisch herausfordernden ALS-Szene gezeigt.

1 Introduction

Airborne laser scanning (ALS) is the prime
data acquisition method for digital terrain
models (DTM), especially in forested areas or
areas with little texture. In order to georefer-
ence the scanner raw measurements, the fol-

© 2015 E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany

DOI: 10.1127/pfg/2015/0270

lowing information is required (SkaLoup &

LicuTi 2006, REssL ET AL. 2009):

1. The position and orientation of the acquisi-
tion platform. They are measured by a posi-
tion and orientation system (POS), consist-
ing of a GNSS system (global navigation
satellite system) and an INS (inertial navi-
gation system).
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2. The relative orientation of the scanner to the
POS, consisting of a rotational and a trans-
lational part (mounting calibration).

3. The time synchronization between scanner
and the POS system.

4. Internal scanner parameters, e.g. zero point
and scale of range and angle.

Any inaccuracy in these categories results
in wrong coordinates of the ground points. In
order to minimize and correct these systemat-
ic errors, a strip adjustment can be performed.
One of the major challenges in this context is
the necessity to handle large amounts of data,
thus algorithms have to be fast and efficient.
On the other hand, the initial orientations of
the strips are typically relatively good, since
systematic errors are small compared to the
extents of the strips.

The basic observations for a strip adjust-
ment are corresponding geometric elements,
e.g. points or planes, within the overlap area of
the strips. To exploit the full potential of ALS,
these correspondences should be established
on the highest data resolution level, i.e. on the
basis of the original point cloud, as interpo-
lation potentially introduces additional errors
(TotH 2008). A surface matching method in
which correspondences are based on the orig-
inal point cloud is the iterative closest point
(ICP) algorithm (BesL & McKay 1992, CHEN
& MEDiont 1991).

The aim of the ICP algorithm is finding the
optimal alignment of two overlapping point
clouds. The geometric transformation applied
within the ICP algorithm is typically a rigid
body transformation. In ALS strip adjustment
with trajectory information the transformation
model is more complex (SkaLoup & LicHTI
2006). However, we are interested in the cor-
respondence problem primarily. Therefore, we
only concentrate on a single strip pair, whose
alignment is an inherent part of ICP. The topic
of strip adjustment is only briefly addressed.

We study the effects of different ICP var-
iants on convergence speed and accuracy. A
few variants are newly introduced to meet the
special requirements in ALS. One of them ad-
dresses the problem of correspondence selec-
tion and is called “maximum leverage sam-
pling”. Using this new strategy the corre-
spondences which are best suited for the es-

timation of the transformation are selected.
All investigated variants are suitable for large
amounts of data, as they typically occur in
ALS.

After a review of related literature, the ba-
sic ICP concept is described, introducing a
taxonomy of the algorithm in five main steps,
derived from Rusinkiewicz & Levoy (2001).
Next, the investigated variants for each of
these steps are presented. In this context, a
combination of variants forming a baseline
optimized for most ALS data is introduced.
We conclude by demonstrating the benefits of
specific variants.

2 Related work

In the rich body of literature on ICP algo-
rithms, a huge number of modifications were
derived from the original works of BEsL &
McKay (1992) and CHEN & MEbiont (1991).
They refer to the selection of points, the
weighting of correspondences, the metric for
measuring the distance, and other aspects. A
summary has been given by RusiNkIEWICZ &
Levoy (2001), who suggest that a better ex-
pansion of the acronym ICP would be itera-
tive corresponding point instead of the origi-
nal iterative closest point. PLaniTz et al. (2005)
summarize methods based on intrinsic sur-
face parameters for solving the correspond-
ence problem. References to ICP variants
adopted for this study are given in section 5.
Strip adjustment methods are either formu-
lated in a rigorous way, i.e. with trajectory and
calibration parameters, (KaGer 2004, Ska-
Loup & LicHti 2006, KERSTLING et al. 2012)
or in an approximate way, i.e. without trajec-
tory (RessL et al. 2009). The strip discrepan-
cies can be minimized in a pairwise way or
simultaneously for all strip pairs. Correspond-
ences are either generated on the basis of the
original point cloud or of derived data, e.g. a
grid, a triangulation or higher order primitives
(Maas 2002). Most approaches use planes as
corresponding features. They can be of fixed
or variable size, in the latter case determined
by segmentation (PreiFEr et al. 2005, FiLin &
VosseLMAN 2004). In Akca (2010) reflectance,
colour and temperature are considered as ad-
ditional input for the matching of point clouds.
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An overview of strip adjustment methods is
given by TotH (2008).

3 General ICP Concept and
Taxonomy

The ICP algorithm improves the alignment of
two point clouds by minimizing the discrep-
ancies within the overlap area of these point
clouds. The alignment is optimized by trans-
forming iteratively the so called loose point
cloud, whereas the position of the other point
cloud remains fixed. To apply the algorithm, a
good estimate of the initial relative orientation
of the point clouds is necessary. This main re-
quirement is typically fulfilled in ALS.

The ICP algorithm can be broken down into
five main steps (Fig. 1):
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Fig. 1: Visualization of the five basic ICP steps
for two overlapping strips (blue = fixed strip,
red = loose strip, green = correspondence).

1. Selection
A subset of points is selected within the
overlap area in one point cloud.

2. Matching
Find the corresponding points of the select-
ed subset in the other point cloud.

3. Rejection
False correspondences (outliers) are re-
jected on the basis of the compatibility of
points.

4. Minimization
Estimation of transformation parameters
(for the loose point cloud) by minimiz-
ing the distances between corresponding
points.

5. Transformation
Transformation of the loose point cloud
using the estimated parameters.

Finally, a suitable convergence criterion
is tested. If it is not met, the process restarts
from step 1, or step 2 if point selection is not
repeated iteratively. In section 5 we will dis-
cuss some variants for each of these five steps.

4 Preprocessing of the ALS Data

The surface normal vectors of the point clouds
are required many times throughout the align-
ment process (section 5). Therefore, the pre-
processing of the ALS data includes the es-
timation of the normal vector n = (n n, n)"
(I|n]| = 1) and its reliability for each point.

The surface normal vectors can be esti-
mated for each point using a principal com-
ponent analysis of the co-variance matrix of
the co-ordinates of neighbouring points (SHaA-
KARJI et al. 1998). It is recommended to se-
lect a neighbourhood based on a fixed radius
search, where the search radius should be cho-
sen in dependence of (a) the point density and
(b) the topography of the strips. Considering
the point density in selecting the search ra-
dius should ensure that a sufficient number
of neighbouring points is used for the normal
vector estimation, e.g. n > 8§, whereas the to-
pography has to be considered so that the ra-
dius does not exceed the size of the available
smooth surface areas. Usually, we choose
the search radius in the range of 1 m — 3 m.
Given this set of » three dimensional points,
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Fig.2: ALS point cloud coloured by the rough-
ness attribute o,. For the alignment process
only points in smooth areas should be used,
e.g. points with o, < 0.1 m.

m:}t

P={p,, P, Ps; -, P,}, P € R3, the 3x3 co-vari-
ance matrix of its co-ordinates is denoted by
C(P). The principal components of C(P) are
its eigenvectors and form an orthogonal basis.
The associated eigenvalues correspond to the
variance in the directions of the eigenvectors.
Assuming a descending ordering of the eigen-
values (A, = A, > 1,), the third eigenvector e,
is a least-squares estimate for the normal vec-
tor of the adjusting plane (n = e,). The square
root of the third eigenvalue can be used as a
reliability measure for the normal vector. This
value corresponds to the standard deviation of
the selected points from the estimated plane
and can therefore be interpreted as a meas-
ure for the roughness of the adjusting plane
(0, =1, (Fig. 2).

To ensure a high reliability of the normal
vectors, only points on smooth surface areas
should be retained for the alignment process,
e.g.0,<0.1m.

Each of these remaining points is then de-
scribed for the subsequent steps by its co-
ordinates p = (x y z)’, its normal vector n =
(n,n,n)" and its roughness measure .

5 ICP Variants Suitable for ALS
Data

This section covers some variants of the ICP
algorithm for each of the steps introduced in
section 3. A special focus lies on the applica-
bility on large amounts of data, as they typi-
cally occur in ALS. The new proposed selec-
tion method called maximum leverage sam-
pling is briefly introduced here. A detailed de-
scription follows in section 6.

Variants forming a baseline optimized for
most ALS scenes are marked by an asterisk

).

5.1 Selection (Step 1)

For comparatively small point clouds each
point may be selected. However, for ALS data
this is not feasible. This is particularly true if
the single strip pair problem is generalized to
an ALS strip adjustment of a complete data
acquisition campaign, in which hundreds of
strip pairs have to be processed simultane-
ously. Thus, compared to the full amount of
available data (up to several million points),
only a comparatively small number (a few
thousands) of points can be selected within
the overlap area of each strip pair. Since the
selected subset heavily affects the final align-
ment accuracy, the selection of relevant points
is crucial.

We consider the following four strategies
for the selection of points in one point cloud.
They are sorted by increasing computational
complexity (Fig. 3):

1. Random sampling

This is the fastest of the investigated op-

tions: points are randomly selected within

the overlap area (Masupa & Yokova 1995).

Since the point density of ALS is only vary-

ing slightly, compared e.g. to typical TLS

datasets, this option can be considered as an
approximation of uniform sampling.
2. Uniform sampling
Uniform sampling in object space gives a
homogeneous distribution of the selected
points within the overlap area. This op-
tion was implemented by dividing the over-
lap area into a voxel structure and select-
ing the closest point to each voxel centre.

Consequently, the mean sampling distance

in each coordinate direction corresponds to

the edge length of a single voxel. A k-d tree
was used for the closest point search.
3. Maximum leverage sampling (*)

This strategy selects those points which are

best suited for the estimation of the trans-

formation parameters. For this purpose, the
leverage of each point on the parameter es-
timation is considered. This method is de-

scribed in section 6.
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4. Normal space sampling
The aim of this strategy is to select points
such that the distribution of their normals
in angular space is as uniform as possible
(Rusinkiewicz & Levoy 2001). For this the
angular space (slope vs. aspect) is divided
into classes, e.g. 2.5° x 10°, and points are
randomly sampled within these classes.
Strategies 3 and 4 are useful when one nor-
mal direction is predominating, but the data
still include some valuable features for the
alignment. This is especially true for ALS
data acquired over flat terrain.
A comparison of the methods is shown in

Fig. 3. For this figure, a synthetic point cloud

Random sampling

100 -1.m "

Fig. 3: Comparison of different selection strat-
egies. With each strategy 10% of points are
selected.

made of 10,201 points (=101%) was generat-
ed by sampling a plane with two orthogonal
ditches. For each strategy 10% of the original
points were selected.

5.2 Matching (Step 2)

In this step the correspondences are estab-
lished, i.e. each selected point from the previ-
ous step is matched with one point in the other
point cloud.

The simplest strategy is to match the select-
ed points to their closest points (*), as pro-
posed by BesL & McKay (1992). We found that
for ALS data this is an adequate choice, main-
ly due to the good initial relative orientation
and the high point density of ALS strips. The
search for closest points can be realized effi-
ciently using k-d trees.

Further matching methods are either com-
putationally too expensive, ¢.g. normal shoot-
ing, (CHEN & MEDIONI 1991), reverse calibra-
tion (Brais & LEVINE 1995), or not necessary
(PraniTz et al. 2005) due to the good initial
orientation of the strips, e.g. closest compati-
ble point (Suarp et al. 2002). Thus, within this
study, no other variants were investigated for
this step.

5.3 Rejection (Step 3)

The aim of this step is the a priori detection
and rejection of false correspondences (out-
liers), as they may have a large effect on the
result of the minimization step. One option is
the rejection on the basis of the distances
between corresponding points (*). For this
strategy the distribution of the a priori dis-
tances between corresponding points is ana-
lyzed. For the recommended point-to-plane
error metric (see next step), the signed distanc-
esd,,d,, ..., d are assumed to have a Gaussian
distribution. A robust estimator for the stan-
dard deviation (HAaMPEL 1974) of this contami-
nated normal distribution is given by

0,00 = 1.4826-mad , )

where mad is the median of the absolute dif-
ferences (with respect to the median)
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mad = median, (|dl. — median j(d].)|) : )

In this work, all correspondences with dis-
tances outside the range
dmax = d * 3O-mad (3)
are rejected, where d denotes the median of
the point-to-plane distances.

Another option is the rejection based on
the angle between the normal vectors of
corresponding points (*). The angle between
the normals of two corresponding points p and
q is defined as:

o =acos(n, -n,). )

To ensure that two corresponding points
belong to the same plane, e.g. a roof, we re-
commend to reject all correspondences with
a larger than

a,, =5° )
Additionally, a rejection based on addi-
tional attributes of corresponding points
can be performed if invariant attributes are
available for the ALS points. For example, if
reflectance values are available, false corres-
ponding points can possibly be detected by
comparing their reflectance values.

It is recommended to apply all of the pre-
sented rejection strategies. However, it is not
guaranteed that this will lead to an a priori re-
jection of all outliers in the observation data.
Thus, a robust adjustment method is used for
the detection and removal of the remaining
ones.

5.4 Minimization (Step 4)

The transformation parameters are usually
estimated by minimizing the sum of squared
distances between the established correspond-
ences. Two types of distances are commonly
used (Fig. 4).

1. Euclidean (unsigned) distance between cor-
responding points (“point-to-point” error
metric As) (BEsL & McKay 1992):

The objective function to be minimized is
E=Yas =Y |1(p) -4 ©)

where p, and ¢, are the corresponding points,
and T denotes a transformation. The fixed
point cloud is formed by the points ¢, and the
loose point cloud by the points p..

This error metric should be avoided in ALS,
because due to the different ground sampling
of two ALS strips, no real point-to-point cor-
respondences exist and the convergence speed
is somewhat slow (RusinkiEwicz & Levoy
2001). If a rigid-body transformation is ap-
plied, a closed form solution exists for this er-
ror metric (HorN et al. 1998).

2. Perpendicular (signed) distance of one point
to the tangent plane of the other point (“point-
to-plane” error metric Ap) (¥*) (CHEN & ME-
DIONI 1991):

The objective function to be minimized is:

E=Yap =3[(rp)-a) n]. @

where n, are the normal vectors in ¢,.

fixed

" loose

Fig.4: Comparison of point-to-point (As) and
point-to-plane (Ap) error metric.

In contrast to the point-to-point error met-
ric, for this error metric it is not necessary for
the corresponding points to be identical in ob-
ject space. The only requirement is that the
corresponding points belong to the same plane
in object space, e.g. roof. This error metric is
characterized by a high convergence speed, as
flat regions can slide along each other without
costs, i.e. without increasing the value of the
objective function E. A closed form solution
exists for the rigid-body transformation only
after linearizing the rotation matrix, i.e. for
small rotations (CHEN & MEDIONI 1991).
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In this study, the optimization problem was
solved using the Gauss-Markov adjustment
model, also called least-squares adjustment by
indirect observations. Outliers were detected
by using adaptive weights within the adjust-
ment (Kraus 1997). The closed form solutions
were used for verification.

5.5 Transformation (Step 5)

Using a rigid body transformation with 6
parameters for rotation and translation for im-
proving the relative and absolute orientation of
ALS strips appears to be a reasonable choice.
However, as pointed out in RESSL ET AL. (2009),
if additionally the effects of a wrong mounting
calibration shall be reduced without consider-
ing the GNSS-INS trajectory data, then it is
important to use an affine transformation
with 12 parameters.

Reformulating (7) the objective function to
be minimized for the recommended point-to-
plane error metric is

E:Z[(Rpi+t—qi)T'ni:|2, ®)

where ¢ denotes a 3-by-1 translation vector and
R denotes a 3-by-3 orthogonal rotation matrix
for the rigid-body transformation or a 3-by-3
affine matrix for the affine transformation.

6 Maximum Leverage Sampling

The quality of the parameter estimation de-
pends heavily on the selected subset of points
(step 1). For example, if too many correspond-
ences are situated in featureless regions, the
ICP algorithm may fail to converge because
of lack of constraints. Here we propose a new
method for the selection of points, which min-
imizes the uncertainty of the estimated trans-
formation parameters. That is, we select the
points which provide the strongest constraints
on the transformation. As a consequence, a
very small number of correspondences is suf-
ficient for the alignment of two ALS strips.
This is of particular advantage when hundreds
of strip pairs have to be processed simultane-
ously within a strip adjustment.

We start from some basic formulae of the
Gauss-Markov adjustment model. Then we
derive the hat matrix A on which the present-
ed method is based, including some brief ex-
planations of its properties. Subsequently, an
example of the hat matrix for a specific case
(point-to-plane error metric and rigid body
transformation model) is given. Finally, the
point selection algorithm is presented.

6.1 The Hat Matrix H

We consider a system of linear equations
given by

1~ Ax, ©)

where the # unknown transformation para-
meters x are linked with the » original obser-
vations / by the full-column rank »-by-u coef-
ficient matrix A. This over-determined equa-
tion system (» > u) is solved by introducing
residuals v for the observations /
[+v =A% (10)
and minimizing the least-squares objective
function E = v"v. By substituting v with 4% — 1
and setting the partial derivatives 0E /0% = 0
the estimates for the parameters X are deter-
mined by
x=(A"A)"A"1. an

The unknown rms-error of the weight unit
6, can be estimated by

(12)

The covariance matrix ) .. of the estimated

X

unknown parameters X is then given by

i =00, 13)
O =A")7". (14)

_ If we denote the estimated observations by
I =1+v, (10) can be rewritten together with
(11) as
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I=AA" A" AL (15)
To emphasize the fact that each ll is a linear

combination of the original observations I,
(15) can be written as

[=HI, (16)
with
H=AA"A)"4". a17)

The n-by-n matrix H is known as the hat
matrix, as it “puts a hat on /”. On the one hand
H is a projection matrix, as it projects / into /.
On the other hand H describes the amount of
leverage or influence each observed value in
[ has on each fitted value in /. For instance,
the i-th row of H contains the influence of the
original observations / on the estimated obser-
vation /. More precise, the element /4, can be
interpreted as the influence of the observation
[;on [. This value is independent from the ac-
tual value of lj, because for uncorrelated and
unweighted observations H only depends on
A.

Due to these properties, the hat matrix can
be used to identify observations which have
a large influence on the parameter estimation.
Such influential observations are defined ac-
cording to BELSLEY et al. (1980) as:

“An influential observation is one which,
either individually or together with several
other observations, has a demonstrably larg-
er impact on the calculated values of various
estimates (...) than is the case for most of the
other observations.”

For a specific observation /, the influence
on the parameter estimates is most directly
reflected in its leverage on the corresponding
estimated observation / (HoacLIN & WELSCH
1978). This information is precisely contained
in the corresponding diagonal element 4, of
the hat matrix. Thus, we focus our analysis on
the diagonal elements of H, the so called lev-
erages. They can be directly computed by

h,=a(A"A)'a] (18)

where a, denotes the i-th row of 4. In this way
the memory-intensive computation of the off
diagonal elements of H can be avoided.

The leverages have two important proper-
ties. According to HoaGgLIN & WELscH (1978)
for the leverages #,, it holds that
0<h,<1. (19

Further, as a projection matrix, H is sym-
metric and idempotent (H? = H). The trace
of an idempotent matrix is equal to its rank,
i.e. trace(H) = rank(H). From (17), it can be
seen that rank(H) = rank(4) = u, and hence
trace(H) = u, i.e.

n

Zhﬁ =u,

i=1

(20)

where v denotes the number of parameters.
The redundancy numbers, which are com-
monly used in adjustment theory, are linked to
the leverages by

@

According to FORSTNER (1979), the redun-
dancy number describes the contribution of a
single observation to the overall redundancy
r=n—uie Y r,=r.

A side note about partial leverages: The
leverages discussed so far are relevant when
all parameters are of equal interest. However,
an observation may be influential only for one
or a few parameters. For instance, a point on
horizontal terrain is especially important for
the estimation of the vertical component of the
translation vector, but at the same time it is en-
tirely redundant for the estimation of its hori-
zontal components. Thus, the partial influence
of an observation on a single parameter may
be of interest. It is given by the partial lever-
ages.

The partial leverage 4, describes the influ-
ence of the i-th observation on the estimation
of the j-th parameter and is defined according
to CHATTERJEE & Hapi (1986) as

v
Joi T
J

: 22

Vi

2
J>

v

v, =(I-H)4, (23)
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with [/  n-by-n identity matrix,
H,, hat matrix calculated by omitting
the j-th column of 4,
4;  j-th column of 4,
v,; i-thelement of v,.

As their name already implies, the sum of
the partial leverages of an observation gives
its overall leverage

hy=Yh,.
Jj=1

To be complete, in presence of a weight ma-
trix P = Q, ' for the observations based on a
covariance matrix Q,, the hat matrix becomes

(24)

H=A(A™PA) AP, (25)
i.e. H depends on 4 and P. If the observations
are correlated, i.e. the weight matrix P is not a
diagonal matrix, the leverages are not restrict-
ed to the range [0,1].

Partial beverages h,

6.2 Leverage Calculation Example

Let us assume the point-to-plane error met-
ric (step 4) and the rigid body transformation
model (step 5) were chosen for the alignment
of two ALS strips. Due to the good initial rela-
tive orientation of the point clouds, the rota-
tion matrix R can be linearized, substituting
cos(a) = 1 and sin(e) = . Thus (8) can be writ-
ten as

=Sllnsrnrical ], o

where r = (a, a, a )" is the vector containing
the rotation angles about the x, y, and z axes,
respectively, and 7 = (¢, 7, 7)" is the translation
vector. After a few algebraic steps, the n-by-
6 coefficient matrix 4 can be found for x” =
"t as

Leverages Iy

3d view of point cloud

—

Fig. 5: Partial leverages (left) and leverages (right) of the synthetic point cloud introduced in Fig. 3.

(red = high leverage, blue = low leverage).
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(pxn) nl 6.3 The Selection Algorithm
T T
A= (p,xnm)  n 7) Usually the leverages are used for the identifi-

(p,xn)" n,

As can be seen, each point p, contributes
one row to 4, i.e. it corresponds to one obser-
vation. It is clear that not all of the points have
an equal importance in the least-squares ad-
justment. Thus, with (18) the leverage h, of
each point p, can be computed. This tells us
how much influence a point p, has on the es-
timation of the transformation parameters. If
the estimation of the leverages should rely ex-
clusively on the points p,, the normals in (27),
which according to (7) belong to the points ¢,,
can be replaced by the normals of p, due to (5).

In Fig.5 the partial leverages and the lev-
erages are visualized for the synthetic point
cloud introduced in section 5.1. It can be clear-
ly seen that the partial leverages (left) identify
those points which are most influential for the
estimation of a single transformation parame-
ter. For instance, for the rotation parameter & ,
points with larger distances from the rotation
axis x are more influential than points next to
it. The leverages (right), as the sum of the par-
tial leverages, represent the influence of each
point on the simultaneous estimation of all six
transformation parameters. As expected, the
points in the ditches and at the edges of the
point cloud have the largest impact on the pa-
rameter estimation.

Summarizing the contents of this section,
the diagonal elements of the hat matrix, called
leverages, describe the influence of an obser-
vation on the parameter estimation. For uncor-
related and unweighted observations, the hat
matrix can be calculated exclusively from the
coefficient matrix 4, see (17). Otherwise, the
weight matrix P is also necessary, see (21).
Since in the ICP algorithm each point cor-
responds to one observation, the leverages
can be used to describe the influence of each
point on the estimation of the transformation
parameter. In the next section we show how
points are selected on the basis of this infor-
mation.

cation of potential blunders in the observation
data. However, we use the leverages to iden-
tify those points which are best suited for the
estimation of the transformation parameters,
i.e. have the largest impact on the parameter
estimation. In terms of redundancy numbers
(21), the points with the lowest redundancy
are selected. This selection of points with low
redundancy does not pose a problem on the
identification of blunders within a robust ad-
justment. Because of the high overall redun-
dancy in the ICP algorithm (hundreds of ob-
servations vs. few transformation parameters)
the redundancy of the selected high leverage
points is still very high: In the examples con-
sidered in this article the redundancy of these
selected points is still always above 0.99. The
following scheme provides a description of the
algorithm.

Algorithm Maximum leverage sampling

Input:
Point cloud: P = {p, p,, ... p,}
Normals: N={n,n,, ..., n}
No. of points to select: m
Initialize vector with indices of all points:
s=(12..n"
Compute coefficient matrix 4
while rows(4) > m do

O =(4"4)" (14)
for i =1 to rows(4) do

h; = aiQSa%aiT (18)
end for

Find index j of point with lowest 4.
J = find(min(k,))
Delete row a, from 4
Delete j-th element from s
end while
Return s with indices of selected points

The selection algorithm starts with the
indices of all » points in a vector s, i.e. at
the beginning all points are selected. Based
upon this, the points with the lowest lever-
ages are removed iteratively from s until m
points are left. Please note that due to the
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correlation of the leverages (17) one cannot
simply select m points after the first compu-
tation of the leverages, but they have to be
recomputed in each iteration.

To speed up the algorithm, instead of re-
moving only one single point, the & points
with the lowest leverages may be removed
from s in each iteration. We found out em-
pirically that for relatively small values of &,
e.g. k=10, this has a negligible effect on the
final selection of points, but it leads to a sub-
stantial reduction in processing time.

7 Experimental Results

In this section, the introduced correspondence
framework is demonstrated on the basis of
synthetic ALS data. The motivation for using
synthetic data is that the correct orientation
is known exactly, and the correctness of the
estimated transformations can be evaluated
relative to this “ground truth” orientation. A
digital elevation model (DEM) of the select-
ed ALS scene, which consists primarily of al-
most flat terrain intersected by a narrow ditch,
is shown in Fig. 6. This dataset was chosen be-
cause it is a rather difficult scene for most ICP
variants, as there is only one feature - the ditch
- which can constrain the transformation at the
finest level. Thus, this dataset is used to em-
phasize the differences between the presented
variants.

The two synthetic point clouds were gener-
ated by the following steps:
1. Extraction of a 1000 m x 100 m area from a

real ALS strip.

Shaded DEM of one point chowd
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2. Derivation of a DEM from this point cloud
(least-squares moving planes interpolation,
grid size = 0.5 m).

3. Generation of the two synthetic ALS strips:
bilinear interpolation of the DEM at ran-
domly distributed positions in the xy plane
for each of the two point clouds (mean point
density = 4 points/m?). Consequently, each
strip consists of 400,000 points.

4. Transformation of one of the two point
clouds by a rigid body transformation. For
the first two experiments (section 7.1 and
7.2) a translation vector = (0.5 0.5 0.5)" m
and a rotation about the z axis with o, =
0.1° were chosen. This leads to point dis-
placements at the edges of the point cloud
of about 1 m, which is far more than usual
displacements between real ALS strips. For
the third experiment (section 7.3), each of
the 6 transformation parameters was varied
within a specific range, whereas the other 5
transformation parameters were set to zero.
The ICP algorithm tries to bring back the

transformed point cloud to its original posi-
tion. After each iteration, for each point the
Euclidean distance between its current posi-
tion and its original position can be comput-
ed. We denote the root-mean-square of these
distances as alignment error and use this er-
ror metric for the comparison of different
ICP variants. The rigid body transformation
(3 rotations, 3 translations) was chosen as the
transformation model. The proposed baseline
method, marked by an asterisk (*) throughout
this document, is applied for all steps which
are not under investigation in the subsequent
examples.

zimj cross-saction alter stip sdjustnient

o =3l - MES =) -2k
i)

Fig. 6: Top: digital elevation model of ALS test scene, bottom: cross-section through ditch before

and after the strip adjustment.
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7.1 Comparison of Selection
Strategies

First, we examine the effect of the selection
strategies introduced in section 5.1 on the con-
vergence of the ICP algorithm. For this pur-
pose, with each strategy about 300 points (or
0.075% of all points) are selected for the es-
timation of the 6 transformation parameters.
As can be seen in Fig.7, using random
sampling (RS) and uniform sampling (US),
most of the points are selected in flat regions,
containing a lot of redundant information for
the alignment process. From these points the
translation in x and y, as well as the rotation
about the z axis can hardly be estimated. For

Swrawegy | Random sampling (305 sebecied poims)

Strategy 20 Uniform sampling {30 selected poinis)

/

Strategy 4: Normal space sampling (305 selected points)

Strategy 3 Maximum leverage sampling (305 selected poinis)

these 3 parameters, points within the ditch
would be most useful, but as these strategies
do not focus on local terrain features, only a
few points are selected within this area.
However, normal sampling (NS) and max-
imum leverage sampling (MLS) consider the
usefulness of points for the alignment process.
Especially the MLS strategy selects the points
with the highest leverage on the estimation of
the transformation parameters. Thus, for the
test scene, points are predominantly selected
within the ditch and, in order to constrain the
rotation about the ditch axis, in a direction
perpendicular to it. It can also be recognized
that the algorithm prefers points near the edg-
es, as they better constrain the transformation.

Alignment error (cm)
b S o e
1 = Ramdom sampling —+ Z.0em
L = Lniform sampling ~+ LZem
i @ Maximum leverage sampling — (k8cm
& Normal space i -+ |.3em
1 = — S
i = — |
1 1 3 4 F]
Termion

-

Fig. 7: Effect of different correspondence selection strategies on convergence and condition num-

ber.



Philipp Glira et al., A Correspondence Framework for ALS Strip Adjustments

287

Tab.1: Precision of estimated transformation
parameters for different sampling strategies in
first ICP iteration. RS = random sampling, US =
uniform sampling, MLS = maximum leverage
sampling, NS = normal sampling.

translation rotation
(mm) (")=1/3600°
O't\ O'[r 0’: 0-(1\ 0-0‘, Ga:
RS 38.0 | 29.6 | 0.3 |0.033|0.003|0.410
us 30.5 | 23.8 | 0.2 [0.024]0.003|0.314
MLS | 11.5 | 22.2 | 0.6 |0.059]0.007 | 0.261
NS 17.8 | 479 | 0.7 10.079(0.009 | 0.661

The convergence of the ICP algorithm for
different selection strategies can be com-
pared in Fig.7. As stated above, the results
are based on the point-to-plane-distance. One
can see that with RS and US the convergence
rate is rather slow and, even worse, the final
alignment error is 23 times larger than with
MLS. NS performs relatively well, but since
points are not selected optimally, the final er-
ror is considerably larger than with MLS. The
point selection does not only influence the
convergence of the ICP algorithm, but also
the a posteriori stochastic of the parameters.
The standard deviations of the transforma-
tion parameters for the first ICP iteration can
be compared in Tab. 1. For further iterations,
the ratios between different selection strate-
gies remain similar. This is also confirmed by
a comparison of the condition numbers of the
normal equation matrix N = A" 4, which indi-
cate if the equation system is ill-conditioned
(high condition number) or well-conditioned
(low condition number).

Alignment error (m)

7.2 Comparison of Error Metrics

In section 5.4 the point-to-point and point-to-
plane error metric were introduced. As shown
in Fig. 8, the convergence speed of the point-
to-point error metric is very slow, and even
for a good initial alignment many ICP itera-
tions are necessary until the final alignment
is reached. However, with the point-to-plane
metric flat regions can slide along each other
within one iteration without causing costs
and therefore the speed of convergence is im-
proved dramatically.

7.3 Convergence Analysis

The errors to be minimized by strip adjust-
ment typically have magnitudes of up to a
few decimetres. Only in exceptional cases the
displacements of ALS strips are affected by
gross errors, e.g. due to an accidentally wrong
processing of the trajectory. Such errors can
cause point displacements in the range of sev-
eral metres. In this experiment we tried to find
out if the presented method converges also
with such bad initial orientations, and if so,
how many iterations are necessary until the
global minimum is reached. For this purpose,
each of the six transformation parameters was
varied (for the transformation of one point
cloud, see section 7, step 4) within a specific
range, whereas the remaining five parameters
were set to zero. For each transformation pa-
rameter the range limits were selected so that
they cause maximum point displacements of
about 10 m. In Fig. 9 the numbers of iterations
which are necessary to reach an alignment er-
ror smaller than 1 cm (stop criterion) are re-
ported for each experiment. For example, for
t=6m(and? =t =a =a =a =0)the pre-
sented method needs 7 iterations to reach the

I T > m .
0 x*“\\’( ¥ POIRE-10-POINL CImoT Meirie
i Ik . o point-to-plane error metric
0.6 Y ——
fid \ ——— e I
z T —
i \\ - e e  x
ol h

2 3 4 5 6 7 8 9

10

11 i2 13 14 15 3] 17 18 19 20

lteration

Fig. 8: Effect of different error metrics on the convergence of the strip adjustment. The results are

based on uniform sampling for point selection.
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stopping criterion. It can be seen that even for
this difficult scene, all adjustments converged
to the right solution. However, it should be
noted that if the initial alignment is very bad,
a relatively high number of iterations can be
necessary, e.g. 9 iterations for 7 = — 10 m. In
our experience, gross errors in ALS data are
always far below the selected range limits and
therefore a divergence of strip adjustment can
almost be ruled out as long as there are enough
terrain features to constrain the transforma-
tion.

Varmnon of 1, in the range of [-10, 10] m

A ol

iterations

=T IV S - -
m—__ o
1) —

Variation of t, in the range of [-10, 0] m

iterations

iterations

itlerations

iterations

iterations

Fig.9: Convergence analysis by variation of
transformation parameters.

8 Conclusions and Outlook

This article presents a study of different op-

tions for ALS strip adjustment. A baseline of

variants optimized for most typical ALS data-
sets was found by the comparison of several
variants. The main findings of this work are:

e Correspondences have to be established
carefully, because they have a large effect
on the final alignment and the convergence
speed of the strip adjustment. Within this
study a new selection method called max-
imum leverage sampling was introduced,
which considers the usefulness of points
for the alignment process. This leads to a
higher convergence rate and a better condi-
tion number of the normal matrix in the ICP
algorithm.

e No real point-to-point correspondences ex-
ist in ALS data. This fact has to be consid-
ered by minimizing the distances between
points and their corresponding tangent
plane (instead of minimizing point-to-point
distances).

e As the initial relative orientation of point
clouds in ALS is typically quite good, only
few iterations (< 5) are necessary in order to
reach the global minimum of the error func-
tion. A divergence of the strip adjustment is
very unlikely even if strips are affected by
gross errors.

The correspondence framework presented
here is already integrated in the module ICP
of the software package OPALS (www.geo.
tuwien.ac.at/opals). Currently we are working
on the rigorous formulation of the strip adjust-
ment problem, ie. with the consideration of
the trajectory information (SkAaLoub & LICHTI
2006).
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