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Summary: Surface models generated using dense 
image matching of aerial photographs have poten-
tial for use in the area-based prediction of forest 
inventory attributes. Few studies have examined 
the impact of the forest type on the performance of 
models used to predict forest attributes. Moreover, 
with regard to central European forests, little is 
known about how accurately attributes other than 
volume and basal area can be estimated using im-
age-based surface models. Thus, in this study, we 
assessed the accuracy of such estimates for five for-
est attributes – stem density N, basal area G, quad-
ratic mean diameter QMD, volume V, and Lorey’s 
mean height HL – for a beech- and a spruce-domi-
nated forest in northern Bavaria, Germany. These 
estimates were made using a workflow combining 
data from aerial photographs obtained from regu-
larly scheduled surveys and field plot measure-
ments from periodic forest inventories conducted 
in Bavarian state forests. Semi-Global Matching 
was used to derive surface models from the air pho-
tos which were normalized with terrain models 
from airborne laser scanning to derive canopy 
height models (CHM). Based on the CHM values at 
the respective field plots, a set of 14 predictor vari-
ables characterizing tree height distribution was 
computed. For the prediction, individual random 
forest models were trained and cross-validated sep-
arately for both test sites. With respect to relative 
RMSEs, i.e., divided by the observation means, 
most distinct differences were observed for the pre-
diction of QMD with a slightly higher level of ac-
curacy for the spruce-dominated forest. Best re-
sults were achieved for HL, while poorest model 
performances were obtained for N. The relative 
plot-level RMSEs for N, G, QMD, V, and HL were: 
70.3%, 36.0%, 32.3%, 37.8%, and 12.4% for the 
beech-dominated and 74.9%, 35.2%, 24.9%, 33.3%, 
and 12.4% for the spruce-dominated forest. Thus, 
with the exception of QMD, the forest type did not 
considerably influence the model accuracies.

Zusammenfassung: Verwendung von photogram-
metrischen Oberflächenmodellen und Random Fo-
rest zur Modellierung forstlicher Kenngrößen in 
buchen- und fichtendominierten Wäldern in Mittel-
europa. Aus Stereo-Luftbildern abgeleitete Ober-
flächenmodelle können für die flächige Modellie-
rung forstlicher Kenngrößen verwendet werden. 
Bisher wurde der Einfluss des Waldtyps auf die 
Genauigkeit der Modellierung nur in wenigen Stu-
dien untersucht. Außer für die Kenngrößen Holz-
volumen und Grundfläche gibt es für mitteleuropä-
ische Wälder bisher wenig Erfahrung, mit welcher 
Genauigkeit forstliche Kennwerte mit bildbasierten 
Oberflächenmodellen modelliert werden können. 
Deshalb wurde in dieser Studie die Modellierungs-
genauigkeit für fünf verschiedene forstliche Inven-
turmerkmale untersucht – Stammzahl N, Grundflä-
che G, quadratischer Mitteldurchmesser QMD, 
Volumen V und Lorey’sche Mittelhöhe HL – sowohl 
für eine buchendominierte als auch für eine fich-
tendominierte Untersuchungsfläche im Norden von 
Bayern. Hierfür wurde ein Arbeitsablauf angewen-
det, der regelmäßig erhobene amtliche Luftbilder 
mit terrestrischen Stichprobenmessungen einer 
Forstbetriebsinventur in bayerischen Staatswald-
flächen kombiniert. Die Berechnung von Oberflä-
chenmodellen aus den Luftbildern erfolgte mittels 
Semi-Global Matching, welche zur Ableitung von 
Kronenhöhenmodellen (KHM) mit einem Gelän-
demodell aus Laserscannermessung normalisiert 
wurden. Auf Grundlage der KHM wurden an den 
Stichprobenkreisen der Forstbetriebsinventur 14 
Prädiktorvariablen zur Charakterisierung der Hö-
henverteilung abgeleitet. Für die Schätzung wur-
den einzelne Random Forest Modelle jeweils ge-
trennt für beide Untersuchungsgebiete trainiert und 
validiert. Bezogen auf relative RMSEs, d.h. norma-
lisiert mit dem Mittelwert der Beobachtungen, 
wurden die deutlichsten Unterschiede für die 
Schätzung des QMD festgestellt, mit einer etwas 
besseren Genauigkeit für die fichtendominierte 
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est structure across the entire area of interest. 
In particular, high-resolution canopy height 
models (CHMs) can be valuable auxiliary 
datasets for this kind of application.

Canopy height measurements from air-
borne laser scanning (ALS) have been used 
successfully in operational forest manage-
ment inventories in different countries, e.g. 
in Norway (næSSet 2014), Finland (maLtamo 
& paCKaLen 2014), and Canada (WoodS et al. 
2011). The most commonly used method for 
modelling forest inventory attributes is the 
area-based approach (næSSet 2002a). For this 
purpose, height and density metrics describ-
ing the vertical distribution of ALS returns 
are related to measurements at field plots in 
order to train predictive models for subse-
quent wall-to-wall mapping. Both parametric 
and non-parametric approaches can be used 
in such modelling efforts, e.g. linear regres-
sions (meanS et al. 2000), the k-most similar 
neighbours method (paCKaLen & maLtamo 
2007), or random forest (Yu et al. 2010). As 
forest management planning can benefit from 
species-specific data, paCKaLen & maLtamo 
(2007) combined ALS data with aerial pho-
tographs to generate area-based predictions 
separately for Scots pine, Norway spruce and 
broadleaved trees (as a group) for a managed 
boreal forest in Finland. A general introduc-
tion to area-based predictions using ALS and 
field plot data is given in næSSet (2014).

According to WHite et al. (2013a) there has 
been a growing interest in alternative tech-
nologies capable of mapping surface heights 
over large areas, and image-based digital sur-
face models (DSMs) have emerged as a suit-
able substitute for ALS-based DSMs (WHite 
et al. 2015). Ongoing improvements in camera 
technology, as well as enhanced algorithms 
for image matching such as Semi-Global 
Matching (SGM; HirSCHmüLLer 2008) have 
provided further stimulus for these develop-
ments (HaaLa & rotHermeL 2012). Currently, 
digital aerial photogrammetry (DAP) is viable 
for practical forestry applications in Germany 
and several other European countries, since 
aerial photographs are updated regularly by 
the surveying authorities, e.g. in two- or three-
year cycles in Germany (Straub & Seitz 2014) 
or a maximum of six-year cycles in Switzer-
land (ginzLer & Hobi 2015). In contrast, ALS 

Fläche. Die besten Ergebnisse wurden für die Mo-
dellierung der HL erzielt, wohingegen die gerings-
ten Genauigkeiten für N festgestellt wurden. Auf 
Inventurkreisebene wurden die folgenden relativen 
RMSEs für N, G, QMD, V, und HL berechnet: 70.3%, 
36.0%, 32.3%, 37.8% und 12.4% für die buchendo-
minierte Fläche und 74.9%, 35.2%, 24.9%, 33.3% 
und 12.4% für den fichtendominierten Wald. Mit 
Ausnahme für den QMD hatte der Waldtyp dem-
nach keinen maßgeblichen Einfluss auf die Genau-
igkeit der Modelle.

1 Introduction

Quantitative estimates of certain forest inven-
tory attributes, such as mean tree height or 
timber volume per hectare, are crucial for sus-
tainable forest management practice. At pre-
sent, state forests in Bavaria, Germany, which 
account for 30% of the total forest area in Ba-
varia (tHünen-inStitut 2015), are inventoried 
once every 10 years by the Bavarian State For-
est Enterprise (BaYSF) to gain quantitative in-
formation about the current state and future 
development of the forest. In 2015, the BaYSF 
conducted such inventories for 73,805 hec-
tares, i.e., 10.2% of the total state forest area 
(BaYSF 2015). As fieldwork is time-consum-
ing and labour-intensive, terrestrial measure-
ments are restricted to sample plots which are 
distributed systematically across the state for-
ests based on a regular 200 m × 200 m grid. 
The field inventories are designed for evalu-
ations at the forest enterprise level for which 
characteristic values of specific forest attrib-
utes can be estimated based on statistical ev-
idence. These key figures are very valuable 
for strategic planning purposes. However, in-
formation for forest stand regions, which are 
the smallest management units, cannot be de-
duced from these data. Thus, in order to sup-
port operational planning and monitoring, 
higher resolution information about the spatial 
distribution of forest characteristics, which 
cannot be provided by the sample plot meas-
urements alone, would be beneficial.

Remote sensing can support such terres-
trial forest inventories. Here, remotely sensed 
measurements are frequently used as auxilia-
ry data that enable the generation of wall-to-
wall estimates of forest inventory attributes, 
thus providing maps of key elements of for-
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data are currently not updated on a regular ba-
sis by the surveying authorities.

As image-based height measurements are 
limited to the outer ‘envelope’ of the forest 
canopy, additional detailed information about 
the topography is a basic prerequisite for cal-
culating vegetation heights above ground. 
Here, pre-existing ALS-based digital terrain 
models (DTMs) can be used to normalize the 
photogrammetric measurements. With re-
spect to utilizing DAP for practical forestry 
applications in Germany, availability of the 
required ALS-based DTMs is not a limitation, 
since most surveying authorities have already 
produced DTMs based on ALS data for exten-
sive areas, e.g. a 1 m-DTM is available for the 
entire state of Bavaria (LDBV 2015a).

The computation of surface models from 
aerial photographs has been studied for many 
years. In the study of adLer & KoCH (1999) 
an automatically generated surface model 
was compared to manually measured eleva-
tion points for a spruce-dominated stand in 
southern Germany. It was found that the au-
tomatically generated surface model had a 
similar reliability as the manually measured 
height values. Several studies, conducted 
in Germany, Norway, and Finland, have as-
sessed the direct estimation of stand heights 
from surface models derived from scanned 
aerial photographs (KätSCH & StÖCKer 2000, 
næSSet 2002b, KorpeLa & anttiLa 2004). In 
these studies, it was observed that, on aver-
age, stand heights were underestimated. To 
decrease this bias, næSSet (2002b) suggested 
a calibration with field data. KätSCH & StÖCK-
er (2000) mentioned the difficulty to obtain 
reliable height measurements of the terrain 
(bare Earth) from the aerial photographs. As 
possible solution to this problem, St-onge et 
al. (2004) proposed a normalization of photo-
grammetric tree height measurements with an 
ALS-based DTM. Moreover, St-onge et al. 
(2008) compared CHMs derived from DAP 
(normalized with an ALS-based DTM) to 
purely ALS-based CHMs. The authors con-
cluded that height metrics derived from both 
types of CHMs were generally highly corre-
lated.

More recent studies have compared the ca-
pability of using canopy height data obtained 
from DAP in conjunction with an ALS-based 

DTM to the use of purely ALS-based height 
data for the area-based estimation of for-
est inventory attributes. Most of these stud-
ies were carried out in conifer-dominated 
boreal forests, e.g. in Finland (nurminen et 
al. 2013, VaStaranta et al. 2013), in Norway 
(raHLF et al. 2014, gobaKKen et al. 2015), and 
in northeastern Ontario, Canada (pitt et al. 
2014). Generally, the aforementioned studies 
have confirmed the applicability of image-
based height measurements as an alternative 
to ALS data for the prediction of forest attrib-
utes such as mean height, mean diameter, total 
volume, total biomass or basal area, although 
root-mean-squared errors (RMSEs) were fre-
quently slightly higher for DAP. Additionally, 
as stated e.g. by VaStaranta et al. (2013), DAP 
lacks the penetration into the sub-canopy, and 
thus is disadvantageous to ALS when charac-
terizing the vegetation density.

Similarly, WHite et al. (2015) investigated 
the modelling performance of both DAP and 
ALS for a complex coastal temperate rainfor-
est on Vancouver Island, Canada; and Straub 
et al. (2013) compared DAP and ALS in a 
mixed central European test site dominated 
by double and multi-layered stands in south-
eastern Bavaria, Germany. Both studies af-
firmed the general finding that DAP is a suit-
able alternative for modelling forest inventory 
attributes, but the RMSEs reported for both 
ALS and DAP exceeded those obtained in the 
boreal test sites previously mentioned, though 
to a minor extend. Several factors might have 
influenced the modelling performances in the 
above-mentioned studies: the aerial camera 
systems, the photogrammetric software pack-
ages used for image matching, the size of the 
field plots, the modelling approaches, and the 
validation techniques used. Nevertheless, we 
assume that the differences in RMSEs ob-
served for the aforementioned studies can be 
largely attributed to the different forest types 
and structures in the different test sites. As 
described by næSSet (2002b), the forest struc-
ture might even influence the performance of 
the image matching itself. He speculated that 
matching performs better for dense, even-
aged broadleaved stands with rounded crowns 
compared with more heterogeneous conifer-
ous stands with peaked crowns.
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Thus, the present study was designed to ex-
plicitly evaluate the potential impact of the 
prevailing forest type on the modelling of for-
est attributes in central European forests. For 
this objective, we adopted a workflow devel-
oped in previously published work (Straub 
et al. 2013, Stepper et al. 2015). In the work 
presented here, this workflow is verified un-
der practical conditions in both a beech- and 
a spruce-dominated test site, which represent 
common broadleaf- and conifer-dominated 
forest environments in Germany (tHünen-in-
Stitut 2015). As the above-mentioned studies 
conducted in central European forests have 
focussed on the prediction of basal area and 
timber volume, there is still a need to test how 
accurately other attributes can be estimated. 
Thus, we evaluated models for a set of five dif-
ferent forest inventory attributes – stem den-
sity, basal area, quadratic mean diameter, vol-
ume, and Lorey’s mean height.

2 Materials

2.1 Test Sites

For this study, we selected two test sites (Spes-
sart 49° 57’ N, 9° 24’ E and Frankenwald, 50° 
21’ N, 11° 27’ E) in the northern part of Ba-
varia, Germany, because the relative stock-

ing of the species, present in each of the two 
test sites, represent common forest types in 
Germany, i.e., the beech and the spruce types 
(which cover 16.6% and 29.3% of the total for-
est area in Germany, respectively; tHünen-in-
Stitut 2015). Tab. 1 summarizes the total size, 
the extent of the state forests, the topography, 
and the main tree species proportions at each 
site. In the Spessart area, European beech 
(Fagus sylvatica L.) is the dominant tree spe-
cies on mesic sites, while dryer sites contain a 
higher proportion of sessile oak (Quercus pet-
raea (Mattuschka) Liebl.). In the Frankenwald 
test site, the forests are mainly dominated by 
Norway spruce (Picea abies (L.) H. Karst).

2.2 Forest Inventory Data

Field measurements from regularly conducted 
forest management inventories of the BaySF 
served as training data for the modelling. 
neuFanger (2011) provides a concise outline 
of how forest management inventories in the 
state forests of Bavaria are planned and con-
ducted. These inventories make use of three 
concentric sampling circles, as described in 
detail in Straub et al. (2013) and Stepper et 
al. (2015). A general introduction to the use 
of concentric sample plots for forest invento-
ries can be found in Van Laar & aKça (2007). 

Tab. 1: Summary of the topography and main tree species at the Spessart and Frankenwald test 
sites; tree species proportions were calculated based on the respective basal areas at the forest 
inventory plots.

Test site Spessart Frankenwald

Total size (ha) 20824 15139
State forest area (ha) 8440 3821
Elevation range (m a.s.l.) 230 – 587 367 – 723
Elevation average (m a.s.l.) 418 580
Forest type beech-dominated spruce-dominated
Tree species:

Norway spruce (%) 9 78
Scots pine (%) 1 0
other conifers (%) 8 4
European beech (%) 56 14
Sessile oak (%) 24 0
other broadleaves (%) 2 4
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Here, the trees are recorded in dependency 
of their diameter at breast height (measured 
1.3 m above ground) and their distance to the 
plot centre. Whilst in the innermost circle 
with a radius of 2.82 m (25 m2) all trees are 
measured, the minimum diameter for inclu-
sion is 30 cm in the largest circle with a radius 
of 12.62 m (500 m2). This 500 m2 circle repre-
sents the reference area for the analysis of the 
remote sensing data in this study.

Permanent field plots were distributed sys-
tematically across the state forests in both test 
sites based on a regular 200 m × 200 m grid. 
In the Spessart test site, the terrestrial meas-
urements used in this analysis were carried 
out from May to September 2011; while in the 
Frankenwald test site, sampling took place 
between April and September 2014. The plot 
centres were located using a Trimble GeoEx-
plorer XT GPS device (maximum deviations 
of ±3–5 m; H. grünVogeL, personal commu-
nication, 4 August 2014). Within each circular 
plot, several characteristics such as species, 
diameter at breast height d, and tree height h 
were recorded for individual trees. For our ex-
amination, we considered only trees with d ≥ 
7 cm, i.e., those trees that exceed the threshold 
for merchantable timber. Due to the concen-
tric sampling method used, a different weight 
wi is applied to each measured value for each 
tree when computing per-hectare inventory at-
tributes, which is related to the size of the con-
centric circle with radius r (m) in which the 
tree was measured: wi = 10000/(π r 2).

The following attributes were computed for 
each of the field plots (where m is the number 
of trees measured at the respective plot):

 ●  Stem density N: Number of trees per hectare;
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This set of forest inventory attributes was 
computed for a total of 2010 field plots in the 
Spessart test site and 801 plots in the Franken-
wald test site. Tab. 2 lists descriptive statis-
tics for each of these attributes for the two test 
sites. In addition, statistics of the mean age, as 
derived from overstorey trees, i.e., those trees 
forming the upper canopy layer, are shown in 
Tab. 2.

2.3 Remote Sensing Data

All remote sensing data used in this study 
were acquired as a part of regular programs 
conducted by the Bavarian Administration 
for Surveying. Currently, aerial photographs 
are updated every three years in Bavaria. The 
general specifications for these official aerial 
photographs are provided in LDBV (2015b). 
An UltraCamXp camera was used in both 
test sites to acquire the stereo photography 
used in this analysis. The aerial survey cov-
ering the Spessart test site was conducted on 
6 August 2011, while the aerial photographs 
for the Frankenwald test site were acquired in 
two separate flights – on 21 May and 8 June 
2014. The forward and side overlaps of the 
images were 75% and 25% for the Spessart 
area and 75% and 40% for the Frankenwald 
area, resulting in a total of 122 and 210 stereo 
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images, respectively. We used the panchro-
matic (PAN) images, with 12 bit radiometric 
resolution and a ground sampling distance of 
0.20 m. The interior and exterior orientation 
parameters were provided by the vendor.

Moreover, we used the most recent ALS-
based terrain models available – 1 m spatial 
resolution DTMs derived from topographic 
mapping surveys conducted by the Bavarian 
Administration for Surveying. These surveys 
were carried out in 2007 (last return point 
density: 2.83 m-2) in the Spessart area and in 
2009 (1.81 m-2) in the Frankenwald area.

3 Methods

The main processing steps of our analysis de-
scribed in the section that follows are:

 ●  Computation of canopy height models (CHMs)
 ●  Calculation of predictor variables based on 
the CHMs calculated in step one.

 ●  Area-based modelling of forest inventory at-
tributes using random forest with built-in re-
cursive feature elimination.

3.1 Computation of Canopy Height 
Models

For dense image matching of the PAN-im-
ages, we used the SGM approach, as im-
plemented in the Remote Sensing Software 
Package Graz (RSG, v. 7.46; Joanneum re-
SearCH 2014). Within SGM, the dissimilarity 
between corresponding pixels in two epipo-
lar images – the base and match image – is 
measured by matching costs, i.e., the aggre-
gation of the costs calculated along each 45° 
1D search path from the respective base im-
age pixel (HirSCHmüLLer 2008). For each base 
image pixel, the disparity that corresponds to 
the minimum aggregated costs is selected, and 
a disparity map for the stereo pair is comput-
ed. In RSG, disparities are computed twice for 
each stereo pair, by switching the role of base 
and match image. Using a threshold for maxi-
mum disparity differences, consistency of the 
matching can be checked and mismatches can 
be eliminated (geHrKe et al. 2010). According 
to the recommendations of the software de-
velopers of RSG with regard to the imagery 
available, we set the parameters for both test 
sites as follows: the maximum back-matching 
threshold was defined as 1.5 pixels, the num-
ber of image pyramid levels was set to 4, and 

Tab. 2: Descriptive statistics for the forest inventory attributes (stem density N, basal area G, 
quadratic mean diameter QMD, volume V, and Lorey’s mean height HL) derived from field plot 
observations (n = number of field plots with trees exceeding the minimum threshold d ≥ 7 cm). In 
addition, statistics of the mean age of overstorey trees are shown.

Forest
attribute

Min. 1st
quartile

Median 3rd
quartile

Max. Mean SD

Spessart
beech-
dominated
(n = 2010)

N (trees ha-1) 19 182 385 906 4313 687 759
G (m2 ha-1) 1 20 27 35 91 28 11
QMD (cm) 8 20 31 42 94 32 15
V (m3 ha-1) 2 196 288 393 1228 304 158

HL (m) 4 22 28 32 45 27 7
Age (years) 12 52 106 150 378 108 59

Franken-
wald
spruce-
dominated
(n = 801)

N (trees ha-1) 20 225 404 765 2997 587 550
G (m2 ha-1) 2 18 30 39 86 29 15
QMD (cm) 8 21 31 40 68 31 12
V (m3 ha-1) 1 147 296 409 846 288 174

HL (m) 3 21 27 30 41 24 8
Age (years) 8 49 63 81 157 65 26
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2002) and caret (KuHn 2015). Random for-
est was used as modelling approach, since it 
was successfully applied in several other stud-
ies dealing with the estimation of forest attri-
butes using remotely sensed data (e.g. pitt 
et al. 2014, WHite et al. 2015, immitzer et al. 
2016). The main characteristics of random for-
est, as developed by breiman (2001), are:

 ●  Multiple base learners – the decision trees – 
are trained based on bootstrap-sampled ver-
sions of the training data. Generating boot-
straps, i.e., random subsets of the entire set 
of training data, introduces a first random 
component in the tree-building process 
(KuHn & JoHnSon 2013). To obtain the pre-
diction for new samples, the predictions of 
the individual decision trees are averaged.

 ●  During the decision tree construction pro-
cess, at each split, a random subset of predic-
tor variables to choose from is selected. This 
second term of randomness helps decorre-
late the individual decision trees, thus im-
proving the overall performance of the esti-
mator (HaStie et al. 2009).
As suggested by KuHn & JoHnSon (2013), we 

set the parameter ntree = 1000, i.e., an ensemble 
of 1000 trees was used to build the respective 
forests. The number of variables randomly se-
lected at each split was set to one-third of the 
number of available predictors (mtry = p/3), as 
recommended by breiman (2001). Besides the 
coefficient of determination (R2), we comput-
ed the root-mean-squared error (RMSE) and 
the bias as quantitative measures for model 
performance. In order to achieve reliable esti-
mates for these measures, we applied a 10-fold 
cross-validation repeated five times (KuHn & 
JoHnSon 2013). Thus, 50 different held-out sets 
(from here on referred to as folds, f   ) were used 
to assess the model outcomes for each of the 
five forest inventory attributes at each of the 
two test sites. For each fold, we computed the 
RMSEf and biasf, (6) and (7). As per Stepper et 
al. (2015), these RMSEf and biasf values were 
averaged over the 50 folds to generate overall 
measures for RMSE and bias, (8) and (9). In 
the same way, overall R2 measures were de-
rived as the average of the R2

f  values from the 
50 folds (10), where each R2

f   value correspond-
ed to the squared Pearson’s correlation coeffi-
cient between the preditcted and observed val-
ues in the respective fold f.

the matching step-size at the final pyramid 
level was set to 1 pixel. All stereo pairs from 
the along-track overlap (min. 60%) were used; 
across-track stereo pairs were not considered 
due to the small area of across-track overlap 
between the aerial images acquired. Based 
on the resulting point clouds, DSMs (1 m spa-
tial resolution) were derived using the point 
triangulation method as implemented in the 
las2dem tool from LAStools (v. 141218; ra-
pidLaSSo gmbH 2015). Finally, to derive can-
opy heights above ground, the surface heights 
were normalized by subtracting the height val-
ues from the existing ALS-based DTMs de-
scribed above from the heights of the DSMs.

3.2 Calculation of Predictor Variables 
based on the CHMs

To derive predictor variables from the CHMs, 
we developed a routine based on the machine 
vision software HALCON (v. 12.0.1; mVteC 
SoFtWare gmbH 2015). Following the recom-
mendations of WHite et al. (2013b) for ALS 
data, we calculated the following 14 predic-
tors related to forest height, canopy cover and 
variability in height for each 500 m2 inventory 
plot region:

 ●  Six height metrics: minimum hmin, first quar-
tile h25, mean hm, median h50, third quartile 
h75, and maximum hmax.

 ●  Six canopy cover (cc) metrics as indica-
tors for vegetation density: cc0, cc1, … , cc6. 
Crown regions cr were extracted based on six 
different height thresholds (2 m, 5 m, 10 m, 
15 m, 20 m, and 25 m) and related to the total 
plot area: cc (%) = area(cr)/area(plot) × 100.

 ●  Two canopy height variability metrics: stand-
ard deviation hsd and coefficient of variation 
hcv.

3.3 Area based Forest Attribute 
Modelling

We used the open-source statistical software 
R (v. 3.2.2; R Core team 2015) for the deve-
lopment of the modelling procedure. The pre-
diction models were implemented using the 
R packages randomForest (LiaW & Wiener 
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erated individual random forest models sepa-
rately for each of the two test sites – Spessart 
and Frankenwald. The RFE implemented in 
the caret package selected different numbers 
of predictors for the individual random forest 
models ranging from 5 to 14. For eight of the 
developed models the RFE selected a com-
bination of height, canopy cover and canopy 
height variability metrics. For all models, a 
height metric achieved the highest importance 
score. In both test sites, h50 was ranked as the 
most important predictor for V. Moreover, hmax 
was ranked as the most influential predictor 
for N, QMD and HL in both sites.

The cross-validated estimates for R2, RMSE 
and bias are summarized in Tab. 3. As is com-
mon practice, the absolute RMSE and bias 
values were ’normalized’ by dividing by the 
mean of the observations, hereafter referred to 
as RMSEmean (%) and biasmean (%). Moreover, 
we used the median for ‘normalization’ (see 
Tab. 2), referred to as RMSEmedian (%) and bi-
asmedian (%).

Overall, the R2 values of the models for the 
different forest attributes in both test sites var-
ied in the range from 0.26 to 0.84. For the at-
tributes G, QMD, V, and HL, higher R2 val-
ues were obtained for the spruce-dominated 
Frankenwald, whereas for N the model for the 
beech-dominated Spessart resulted in a high-
er R2. As expected, highest R2 values were 
achieved for HL in both test sites. The G mod-
el developed for the beech-dominated forest 
yielded the lowest R2.

For all models, the resulting RMSEs were 
consistently smaller than the corresponding 
standard deviations of the observations (Tab. 
2). For HL, the RMSEmean (%) values for the 
spruce- and the beech-dominated test sites 
were identical, and the RMSEmedian (%) values 
were very close. Furthermore, with respect to 
the RMSEmean (%), the predictions were sim-
ilar for N and G in the two test sites. For V 
and QMD, lower RMSEs were obtained for the 
spruce-dominated forest, with more evident 
differences for the QMD.

Within the test sites, both options for nor-
malization (i.e., RMSEmean (%) and RMSEmedian 
(%)) resulted in similar relative RMSEs for the 
attributes G, QMD, V and HL, whereas major 
differences occurred for N. Due to the heavi-
ly right-skewed distributions of the observed 
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In (6) to (10), yi refers to the observed value, 
ŷi is the predicted value of the i th of n sampled 
observations in one of the k folds f.

Predictors derived from image-based 
CHMs can be highly prone to multi-colline-
arity (WHite et al. 2015). Despite the ability of 
random forest to handle high-dimensional and 
highly correlated predictor datasets, immitzer 
et al. (2016) demonstrated that an additional 
step implementing feature selection resulted 
in improved model performance when esti-
mating timber volume based on WorldView-2 
stereo satellite data. Accordingly, we applied 
recursive feature elimination (RFE) as imple-
mented in the caret package. This search algo-
rithm utilizes the feature importance of ran-
dom forest – as computed for the full model 
including all 14 predictors – to sequentially re-
move each predictor based on its importance. 
For each new predictor subset created by re-
moving the next sequential predictor, new 
models are trained and the respective RMSEs 
are stored. Finally, the best performing subset 
is determined by the lowest RMSE. Compre-
hensive explanations regarding RFE and its 
implementation in caret are provided in KuHn 
& JoHnSon (2013) and KuHn (2015).

4 Results

For each of the forest inventory attributes con-
sidered here (N, G, QMD, V, and HL), we gen-
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 ●  For QMD, the distribution of the residu-
als widens with increasing age in both test 
sites. Moreover, the models obviously over-
predicted QMDs at inventory plots with age 
class I. Furthermore, the QMD model for the 
Spessart test site showed a tendency to un-
derpredict QMDs in older age classes (espe-
cially in the classes IX, X and >X).

 ●  For HL, the models overpredicted the ob-
served values in age class I in both test sites. 
In addition, the boxplots for the Spessart test 
site indicate that HL was obviously underpre-
dicted in the oldest age class >X.

5 Discussion

The R2 values for G, QMD, V and HL achieved 
for the spruce-dominated Frankenwald re-
vealed a better model fit (R2: 0.54, 0.61, 0.70, 
0.84) compared to those for the beech-dom-
inated Spessart (R2: 0.26, 0.52, 0.47, 0.79). 
Moreover, with respect to the RMSEmean (%) 
values, a slightly higher level of accuracy 
was observed for the prediction of QMD for 
the spruce-dominated forest type. According 
to niKLaS (1994) and pretzSCH et al. (2013) 
this observation might be partially attribut-
ed to the allometric difference in the height-
diameter-relationships of conifers and broad-
leaved tree species. Moreover, it has to be  

field data for N (see Tab. 2), using the medi-
an for normalization resulted in much higher 
numbers compared to the normalization by 
the mean.

Bias was small for all random forest models 
generated. Minor systematic overpredictions 
were only observed for the models describing 
stem density N.

The scatter of predicted vs. observed values 
for all attributes is shown by hexagonal bin-
ning plots in Fig. 1. Additionally, the distri-
butions of model residuals, i.e., differences of 
observed minus predicted values, were com-
puted for distinct age classes which are com-
monly used in forest management practice in 
Germany (I = 1–20 years, II = 21–40, III = 41–
60, … , X = 181–200; Kramer & aKça 2008). 
The residual distributions are displayed in Fig. 
2 and the following main observations can be 
made:

 ●  For N, a large scatter of residuals is visible 
for the younger age classes (especially for the 
classes I to III), which is similar for both test 
sites. Nonetheless, the medians are close to 
zero.

 ●  For G and V, the boxplots indicate a slight 
overprediction for the youngest age class I, 
whereas the models tended to underpredict 
in the oldest class, i.e., >X for Spessart and 
>VI for Frankenwald.

Tab. 3: Cross-validated measures of model performance (R 2, RMSE, bias) of the random forest 
models for stem density N, basal area G, quadratic mean diameter QMD, volume V, and Lorey’s 
mean height HL, calculated separately for the two test sites/forest types Spessart and Franken-
wald; the absolute RMSE and bias values were ‘normalized’ with the mean and the median of the 
observations.

Forest
attribute

R2 RMSE RMSEmean 
(%)

RMSEmedian 
(%)

bias biasmean 
(%)

biasmedian 
(%)

Spessart, 
beech-
dominated
(n = 2010)

N (trees ha-1) 0.60 483 70.3 125.4 -4 -0.6 -1.1

G (m2 ha-1) 0.26 9.9 36.0 36.7 -0.1 -0.2 -0.2

QMD (cm) 0.52 10.4 32.3 33.7 -0.2 -0.5 -0.5

V (m3 ha-1) 0.47 114.9 37.8 39.9 -0.9 -0.3 -0.3

HL (m) 0.79 3.3 12.4 11.9 0.0 -0.1 -0.1
Franken-
wald, 
spruce-
dominated
(n = 801)

N (trees ha-1) 0.37 440 74.9 108.8 -8 -1.3 -1.9

G (m2 ha-1) 0.54 10.3 35.2 34.4 0.0 0.0 0.0

QMD (cm) 0.61 7.6 24.9 24.3 0.0 -0.1 -0.1

V (m3 ha-1) 0.70 96.1 33.3 32.5 -0.3 -0.1 -0.1

HL (m) 0.84 3.0 12.4 11.3 0.0 0.1 0.1
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Fig. 2: Distributions of residuals (observed mi-
nus predicted values) for the prediction of stem 
density N, basal area G, quadratic mean dia-
meter QMD, volume V, and Lorey’s mean 
height HL, separately for 20-year age classes.

Fig. 1: Predicted (x-axis) vs. observed (y-axis) values for stem density N, basal area G, quadratic 
mean diameter QMD, volume V, and Lorey’s mean height HL, shown as hexagonal binning plots 
(xy-plane tessellated by a regular grid of hexagons; hexagons are coloured according to the num-
ber of points falling into each hexagon; Lewin-Koh 2011).
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considered that the CHMs from DAP mainly 
characterize the overstorey and do not include 
information about the understorey structure, 
which is not visible in the aerial photographs. 
Thus, it must be expected that reference trees 
growing in the understorey add some addi-
tional scatter to predictive models. We assume 
that this influence can vary for spruce- and 
beech-dominated forests, due to differences 
in stand structures. For assessing the under-
storey, ALS technology is advantageous as it 
penetrates through small gaps in the canopy 
and may provide additional returns from un-
derlying vegetation layers (WHite et al. 2013a).

The plot-level RMSEmean (%) values obtained 
for V and G in the present study were similar 
to those values reported by Straub et al. (2013) 
for a mixed managed forest in southern Bavar-
ia (37.9% for V and 35.3% for G). Frequently, 
better accuracies were reported for managed 
conifer-dominated boreal test sites which are 
most probably due to more homogeneous for-
est structures in contrast to the more diverse 
central European forest conditions. As an ex-
ample, nurminen et al. (2013) applied random 
forest for a test site in Finland and achieved 
normalized RMSEs of 6.8% for mean height, 
12.0% for mean diameter and 22.6% for vol-
ume based on UltraCamD images with a for-
ward overlap of 80%. Moreover, VaStaranta 
et al. (2013), who applied random forest with-
in a nearest neighbour search for a test site in 
Finland, reported RMSEs of 11.2% for mean 
height, 21.7% for mean diameter, 23.6% for ba-
sal area, and 24.5% for volume when using Ul-
traCamXp data with a forward overlap of 70%.

As in the study of WoodS et al. (2011), who 
used ALS data for an operational forest in-
ventory in boreal Ontario, we obtained poor-
est model accuracies, i.e., largest RMSEs, for 
N in comparison to the other tested attributes. 
As mentioned above, trees in the understo-
rey cannot be captured by DAP. Most likely, 
this fact contributed to the large RMSEs for 
N. Moreover, it was shown for N, with a heav-
ily skewed distribution of the observed values 
that the two variants for normalizing the ab-
solute RMSEs resulted in very different val-
ues in the two test sites. Thus, for this type of 
data, we suggest that the RMSEs normalized 
by the median give a more robust estimate of 
the relative RMSE.

For several attributes, e.g. for G and V in 
both test sites, the models overpredicted the 
ground measured values at inventory plots 
from the youngest age class, and vice-versa 
underpredicted in the oldest age classes. This 
may be partly explained by the fact that ran-
dom forest tends to overpredict low values and 
to underpredict high ones which was stated in 
several publications, e.g. baCCini et al. (2004), 
VanSeLoW & Samimi (2014), or immitzer et al. 
(2016). This is also reflected by the scatter-
plots shown in Fig. 1. Moreover, the underpre-
dictions in the oldest age classes seem plausi-
ble, since the functional relationship between 
canopy height and the actual stocking (G or 
V) will be weaker for older forest stands with 
a decreasing vertical growth. Additionally, as 
we observed for our data, the distribution of 
residuals is related to the variability of the ob-
servations within the respective age classes. 
For example, for both test sites, a larger scat-
tering of residuals was revealed for N in the 
young age classes, which is associated with 
the expected larger variability and range of 
stem densities for these classes compared to 
the lower variabilities in older classes.

We applied random forest regression within 
R and our results confirmed the suitability of 
this modelling approach. In previous studies, 
penner et al. (2013) and Stepper et al. (2015) 
showed that random forest produced accura-
cies comparable to parametric models. Ran-
dom forest has several advantages for opera-
tional applications, e.g.: a priori assumptions 
about the relationship between response and 
predictor variables are not required, multicol-
linearity among predictors can be handled, 
and large numbers of predictors can be consid-
ered without overfitting (pitt et al. 2014, im-
mitzer et al. 2016). Still, disadvantages of the 
random forest regression, that are frequently 
considered, are the ‘black-box’ nature of the 
algorithm (WHite et al. 2013b) as well as the 
inability – common to all non-parametric ap-
proaches – to extrapolate beyond the range of 
the training data (Stepper et al. 2015). Thus, in 
order to train prediction models that are val-
id for the entire population, samples that cov-
er the complete range of existing values are 
necessary. Since many sample plots were dis-
tributed on a dense grid in both test sites of 
this study, we assume that a good coverage is 
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guaranteed. Besides the representativeness of 
the sample, the size and the georeferencing ac-
curacy of the field plots will have an influence 
on the predictive power of the models (WHite 
et al. 2013b). Thus, we attribute a part of the 
shown scatter between observed and predicted 
values to the reported 3 m – 5 m GPS offsets 
of the plot positions. As described in section 
2.2, each field plot consists of three concen-
tric sampling circles. This plot design is com-
monly used for the forest management inven-
tories in the state forests of Bavaria as well as 
in other federal states in Germany. Accord-
ing to LaWrenCe et al. (2010), the fundamen-
tal advantage of concentric circles is that the 
more frequent small trees are measured within 
small circles and the less frequent large trees 
are measured in large circles. This practice re-
duces the overall costs of the field survey with 
just little loss in precision. However, the use of 
concentric circles as training data might have 
some impact on the area-based modelling, if 
the sample for the small trees is not represent-
ative for the largest circle which is commonly 
used as the reference area to extract remote 
sensing features.

As mentioned in the introduction, ALS was 
already integrated successfully into opera-
tional forest management inventories in some 
countries using the area-based approach. In 
principle, area-based predictions enable the 
production of wall-to-wall maps displaying 
the estimated spatial distribution of forest in-
ventory attributes at a spatial resolution which 
relates to the size of the field plots used to train 
the model (WHite et al. 2013b), i.e., 500 m2 

for our data. Using height information gener-
ated from dense image matching for the spa-
tial prediction of forest attributes is the subject 
of ongoing research. Recently, we conducted 
a first pilot study together with forest inven-
tory experts of the BaySF to assess the benefit 
of CHMs from DAP and derived wall-to-wall 
timber volume maps to support forest man-
agement tasks. The inventory experts deter-
mined several applications for these remote 
sensing products as a supplement to the exist-
ing terrestrial data. For example, CHMs were 
found to be useful to support and validate the 
manual delineation of management units, i.e., 
forest stand regions. Moreover, the invento-
ry experts saw potential to derive aggregated 

volume estimates for stand regions based on 
the wall-to-wall timber volume maps, which 
currently cannot be deduced from the field 
data. This information might be useful to de-
termine the harvest volume more exactly. In 
future, additional studies and investigations 
have to be conducted together with the end-
users to further evaluate the potential and the 
limitations of DAP for practical forestry ap-
plications.

6 Conclusion

Following other studies, which have used 
DAP to model forest inventory attributes, we 
investigated the prediction of mean and total 
plot-level attributes. These predictions were 
compared for a beech- and a spruce-domi-
nated central European test site. With respect 
to relative RMSEs, i.e., divided by the obser-
vation means, most distinct differences were 
observed for the prediction of QMD with a 
slightly better accuracy for the spruce-domi-
nated forest, whereas similar outcomes were 
obtained for the other tested attributes. To bet-
ter understand the influence of tree species on 
model performances, future research may fo-
cus on the assessment of species-specific mo-
dels, e.g., to predict the plot-level volume of 
the main species for a selected test region us-
ing both height and spectral information from 
the aerial photographs.

We conclude that the proposed workflow 
can provide predictions for forest areas where 
terrestrial inventory data are available to train 
predictive models, such as the state forests 
of Bavaria. Conversely, for many small-par-
celled private forest properties in Bavaria, no 
such terrestrial inventories are conducted. To 
additionally provide information for the forest 
management in these estates, further research 
might investigate the transferability of predic-
tion models generated in state forests to other 
forest areas.
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