

Crop Classification with RapidEye and Radar Data

U. Schulthess, M. Kunze and H. Weichelt DGPF Hannover - 2010/11/18

<www.rapideye.de>

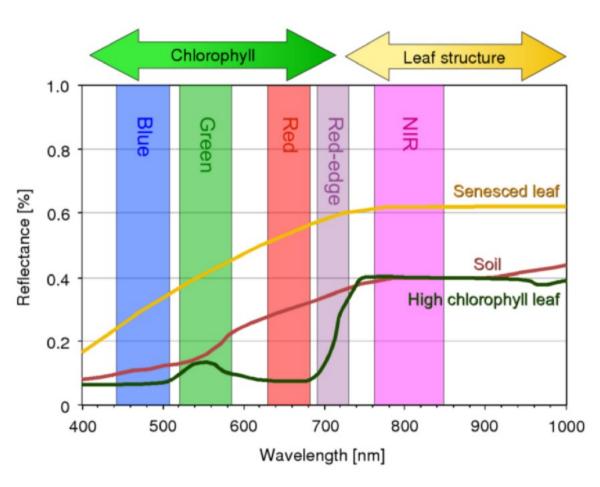
Big Brother or Useful Stuff?

Source: The Economist, Nov 5, 2009 http://www.economist.com/sciencetechnology/displaystory.cfm?story_id=14793411

Overview

- > 5 bands examples of various band combinations to visualize specific crops
- Crop classification with C5.0 Data Mining tool
 - > Procedure
 - > Examples

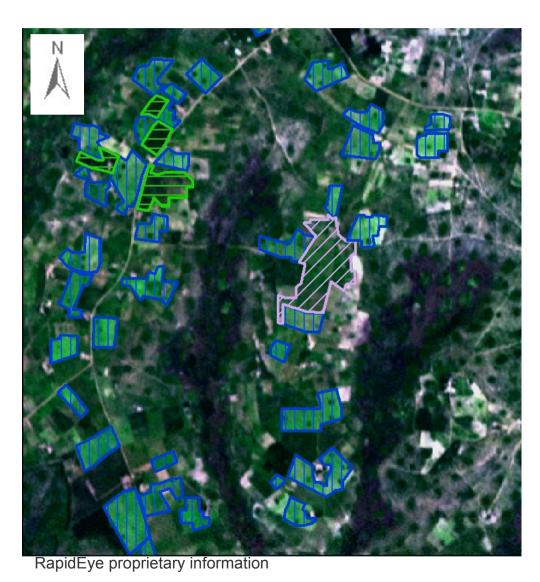
Cameras on board of the satellites use 5 bands to measure light reflected from the surface of the earth



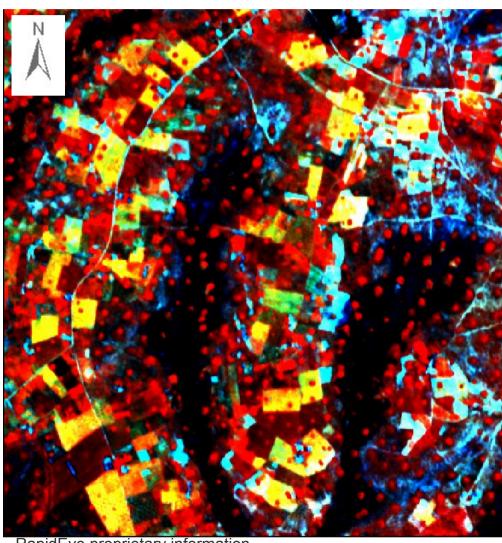
Tobacco identification in Malawi (RGB)

RapidEye proprietary information

Tobacco identification in Malawi (RGB)

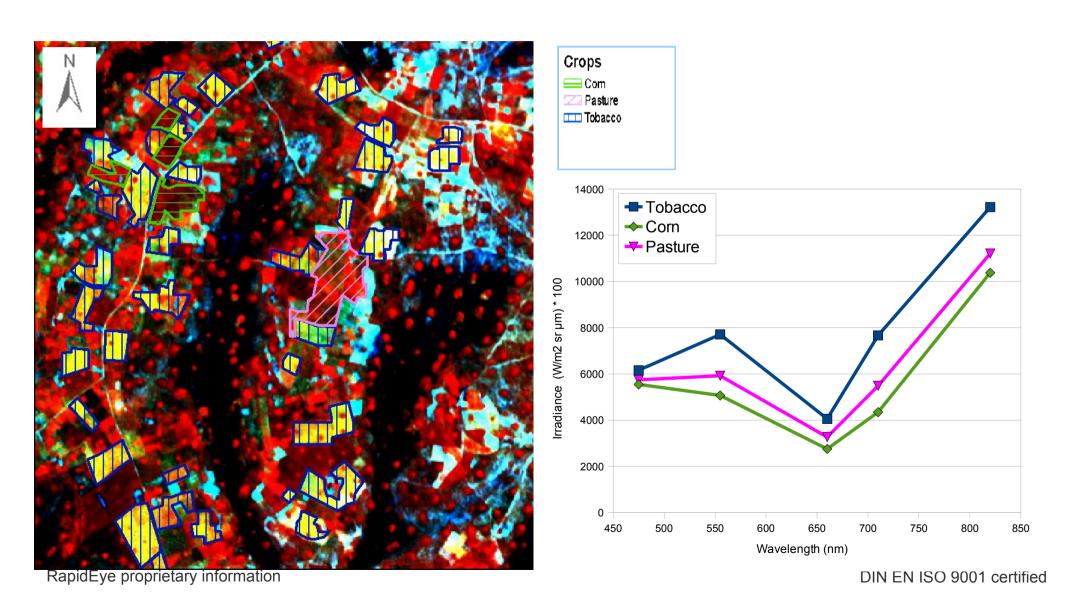


Tobacco identification in Malawi with RapidEye band combination NIR-green-blue

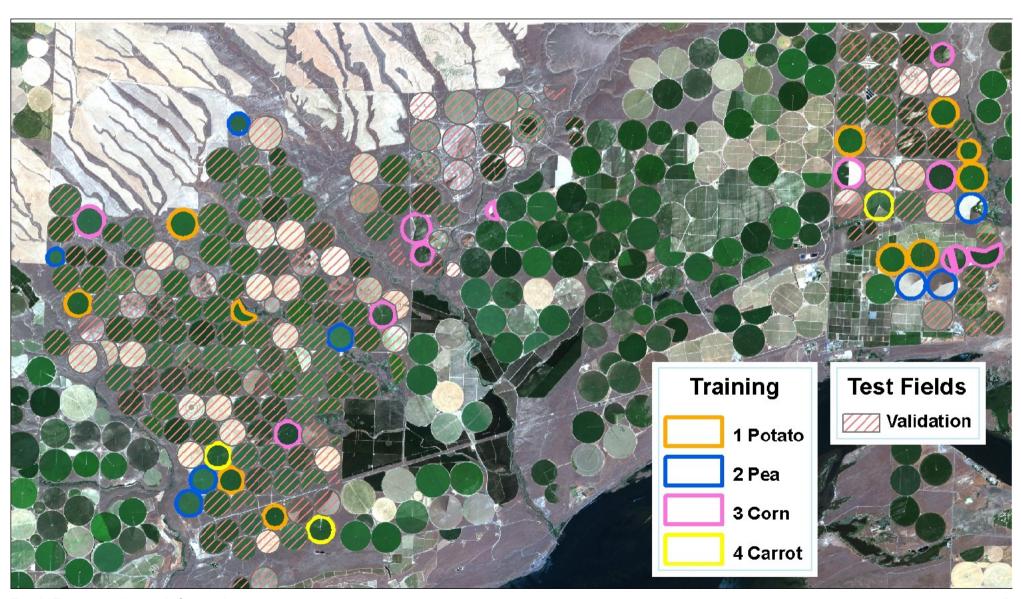


RapidEye proprietary information

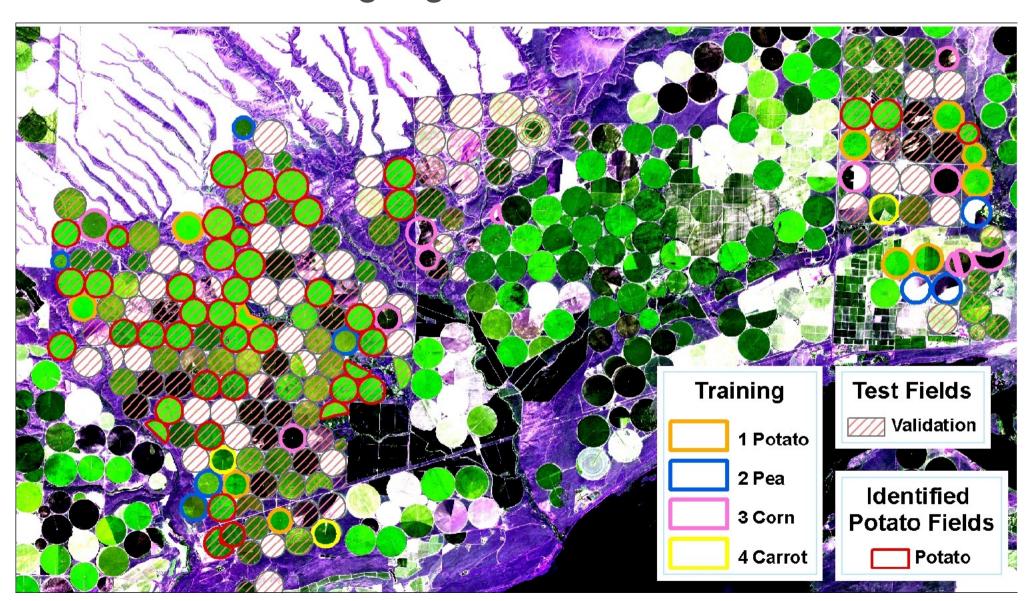
Tobacco identification in Malawi with ____RapidEye band combination NIR-green-blue



Potato Identification (RGB)



Potato Identification with band combination red-edge, green, blue



Crop Identification Tool

- Use of data mining tool C5.0 (RuleQuest)
 - Supervised learning algorithm
 - Decision Tree
 - > Rule Set
 - Recursively partitions a data set of records until all data belong to a particular class
 - > Advantages:
 - Prior knowledge of the class labels of data records makes feature/attribute selection easy (as opposed to unsupervised classification)
 - Non-normal distribution of data is not a problem (important for field crops, where dates of sowing can vary greatly)
 - > Handles missing data

Example of Decision Tree


```
I1B4i <= 0.12324 (0.125065):
\dotsI2B1i >= 0.0564 (0.053405): 3 (601.9/7.3)
                                                          3 \rightarrow Class; 601.9 \rightarrow # of cases; 7.3 \rightarrow # of cases mapped incorrectly
: I2B1i <= 0.04981 (0.053405):
 :...RD20B1i <= 0.07048 (0.08438499): 2 (8)
    RD20B1i >= 0.09829 (0.08438499):
    :...RD30B9i <= -0.6019 (-0.53972): 1 (5)
       RD30B9i >= -0.47754 (-0.53972): 6 (3)
I1B4i >= 0.12536 (0.125065):
:...RD25B8i >= 0.087432 (0.0818705):
  :...RD28B9i >= -0.60599 (-0.61268):
  : :...I2B4bysB1235 <= 0.23126 (0.243475): 7 (61.2/0.1)
    : I2B4bysB1235 >= 0.2683 (0.243475): 9 (4.4/0.4)
    RD28B9i <= -0.64981 (-0.61268):
   :...RA29B3i <= 0.02161 (0.02405): 6 (9.2/1.2)
       RA29B3i >= 0.0252 (0.02405):
       \dotsRA26B9i >= -0.54376 (-0.58566): 7 (4.4/0.4)
         RA26B9i <= -0.59557 (-0.58566):
         :...I2B4bysB1235 <= 0.17295 (0.187775): 6 (4)
            12B4bysB1235 \ge 0.20167 (0.187775): 9 (419.2/4.1)
  RD25B8i <= 0.07929093 (0.0818705):
  :...RD22B2i >= 0.0455 (0.04481):
     :...I2B2bysB1345 >= 0.14971 (0.13222):
     : :...RA34B3i >= 0.12778 (0.104845): 19 (6)
```

Example of Rule Set


```
Rule 0/1: (127, lift 5.3)

RD22B2i <= 0.0448

RA29B3i > 0.03577

RD46B3i > 0.03379

RA47B2i <= 0.04854

I2B4bysB1235 > 0.20167

-> class 9 [0.992]
```

Rule 0/2: (419/3, lift 5.3) RD25B8i > 0.08185098 RA26B9i <= -0.58566 RD28B9i <= -0.61301 RA29B3i > 0.02396 I2B4bysB1235 > 0.18735 -> class 9 [0.990]

Rule 0/3: (377/7, lift 5.2) RD25B8i > 0.08185098 I1B4i > 0.12477 I2B4bysB1235 > 0.2434 -> class 9 [0.979]

Rule 0/4: (198, lift 9.8) RD30B8i <= 0.1235097 RA47B2i > 0.04854 I1B6i <= 22.23273 -> class 5 [0.995] 127 \rightarrow # of cases; lift 5.3 \rightarrow f(accuracy & frequency)

 $[0.992] \rightarrow level of confidence$

C5.0 Features

- > Boosting: use of several classifiers rather than just one. When a new case is classified, each classifier votes for its predicted class and the votes are counted to determine the final class
- > Winnowing attributes: picking and choosing among the predictors
- > Pruning: Removing of parts that are predicted to have a relatively high error rate

Classification Process

- 1. Data preparation (Geo-referencing, cloud/shadow masking)
- 2. Segmentation (eCognition)
- 3. Training
- 4. Extract data
- 5. Classification
- 6. Import classification results
- 7. Quality control

Image Segmentation

Image Segmentation

Data Extraction

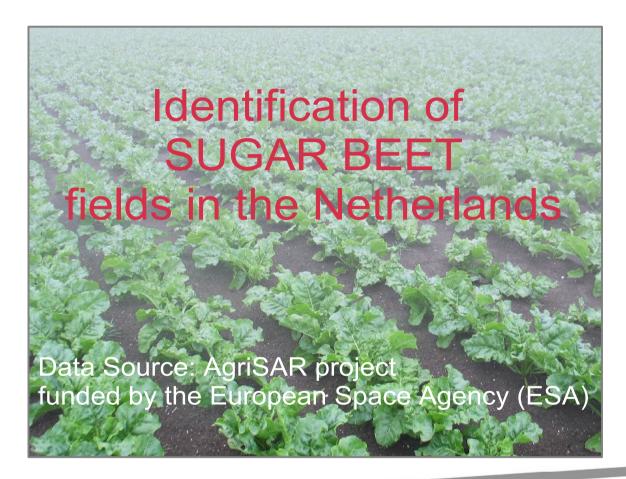
- > Extract statistics for each segment
 - > DN average
 - > Texture

>

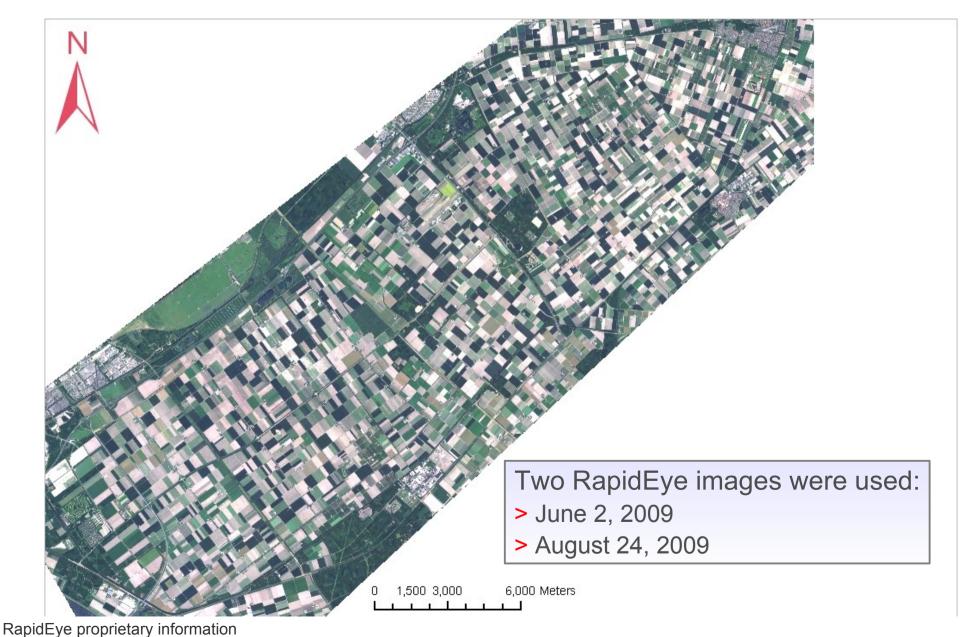
- > Calculation of indices on the fly (within C5.0)
 - > NDVI
 - > Ground cover
 - >

Training

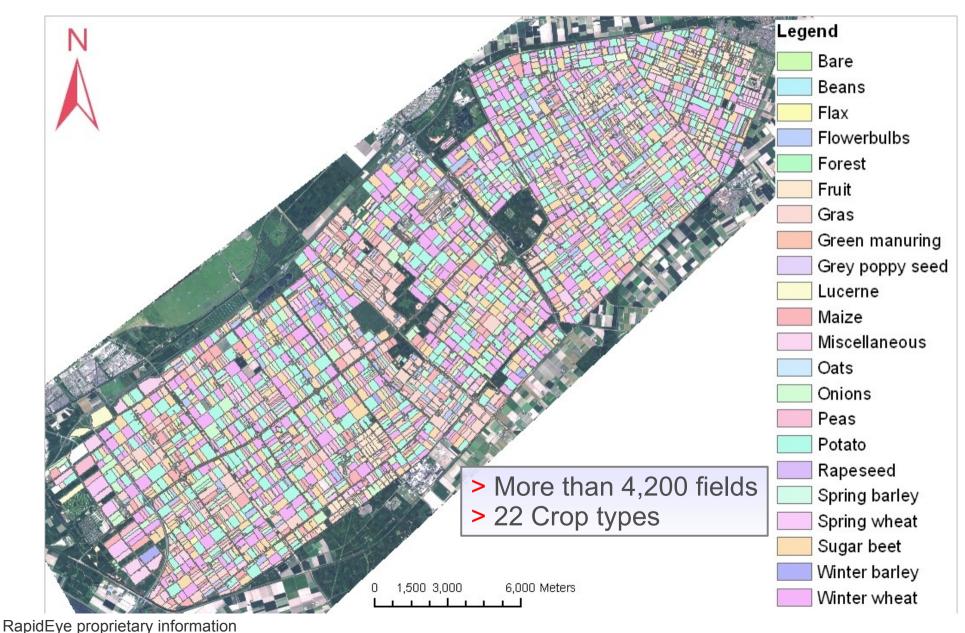
- > Large training data sets are preferred (> 50 cases)
- > Check for consistency
- > No clouds!
- ...garbage in, garbage out....



Overview of test region near Flevoland, NL

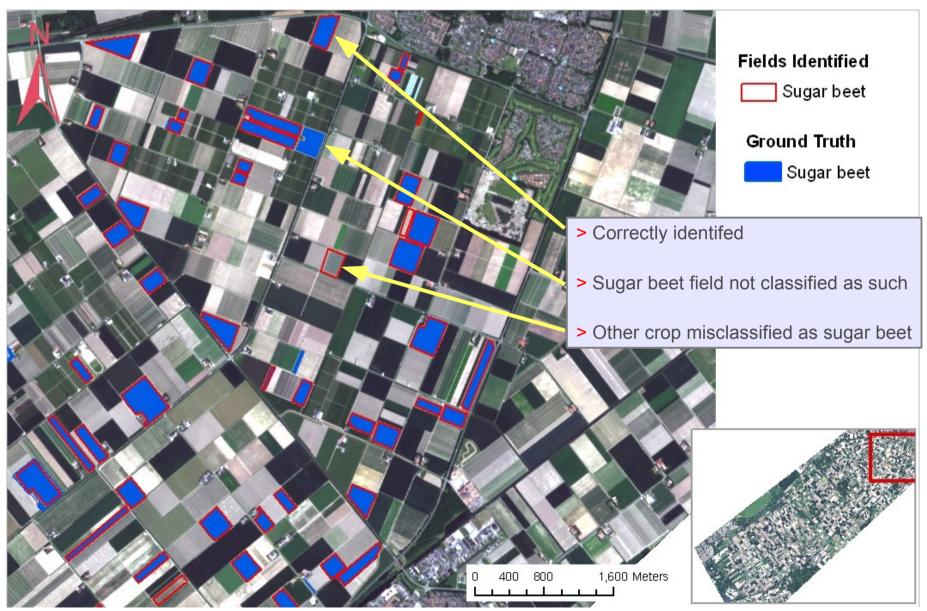


Overview of test region near Flevoland, NL

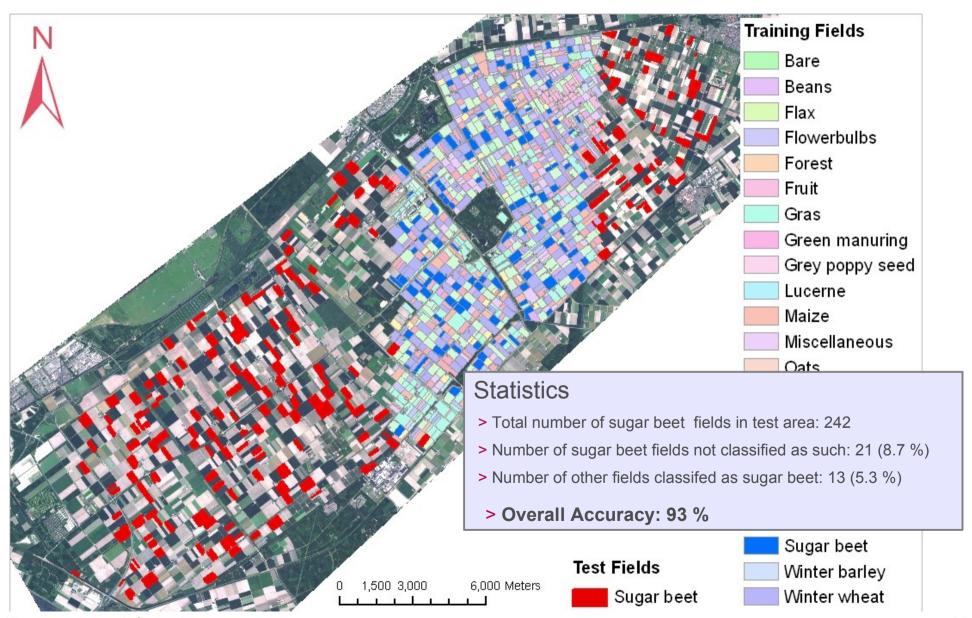


Fields used to train the algorithm

Detailed view of classification results and types of error



Result from applying the trained algorithm to the Test Fields



Discussion

- RuleSets or DecisionTrees are only applicable for images that were acquired on the same date as the training data
- > Accuracy of the input data for training
- Data extraction and import of classification into *.shp file (or raster) is required
- Use of segments allows for fast manual quality control and editing

Vielen Dank!!!

Contact info: schulthess@rapideye.de

<www.rapideye.de>