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Zusammenfassung: Detektion von Fahrzeugen und
Fahrzeugkolonnen in hoch aufgelosten Luftbildern.
Dieser Artikel beschreibt einen neuen Ansatz zur
automatischen Detektion von Fahrzeugen in
hoch aufgelosten monokularen Luftbildern. Die
Detektion stiitzt sich alleine auf die Auswertung
der Bilder und auf Meta-Daten, die Giblicherweise
im Zuge der Bildaufnahme aufgezeichnet werden.
Das Verfahren benétigt weder externe Daten wie
digitale Karten oder Geoinformationssysteme,
noch ist es auf sehr eingeschrinkte Doménen wie
Autobahnszenen limitiert. Im Gegensatz zu den
meisten existierenden Arbeiten stiitzt sich die Ex-
traktion sowohl auf lokale als auch auf globale
Merkmale von Fahrzeugen. Auf lokaler Ebene
wird ein Fahrzeug durch eine Drahtgitterrepra-
sentation modelliert, die iber die rein geometri-
sche Beschreibung hinaus auch radiometrische
Merkmale und die Schattenregion beinhaltet.
Eine Besonderheit des Modells ist die Abstim-
mung auf verschiedene Helligkeiten der Fahrzeu-
ge. Wihrend der Extraktion wird die Helligkeit
eines Fahrzeuges geschitzt, dementsprechend das
Modell angepasst und erst anschlieBend die Qua-
litatsmaBe fiir eine Fahrzeughypothese berechnet.
Die lokalen Fahrzeugmerkmale werden er-
ginzt durch globale Merkmale, die sich von der
verkehrstypischen Kolonnenbildung ableiten.
Solche Merkmale sind geometrische und radio-
metrische RegelméBigkeiten, die sich durch auf-
fillige Fahrzeugsymmetrien und &dhnliche Ab-
stinde zwischen Fahrzeugen innerhalb einer Ko-
lonne ergeben. Das Ergebnis der Kolonnenex-
traktion wird anschlieBend mit den zuvor detek-
tierten Fahrzeugen fusioniert. Auf Basis des Fu-
sionsergebnisses lassen sich dann weitere Fahr-
zeuge finden, was zu einer wesentlich hoheren
Vollstindigkeit des Gesamtergebnisses fiihrt.
Die Funktionsweise des Verfahrens wird an-
hand von Beispielen illustriert und diskutiert.
Eine Evaluierung der Ergebnisse zeigt die Starken
des Ansatzes, aber auch seine Schwichen, wo-
durch eindeutige Richtungen fiir zukiinftige For-
schungsarbeiten aufgezeigt werden.

Summary: This paper introduces a new approach
to automatic vehicle detection in monocular high
resolution aerial images. The presented approach
neither relies on external information like digital
maps or site models, nor it is limited to very con-
strained environments as, e.g., highway scenes.
In contrast to most of the related approaches, the
extraction relies upon both local and global fea-
tures of vehicles. To model a vehicle on local level,
a 3D-wireframe representation is used that de-
scribes the prominent geometric and radiometric
features of cars including their shadow region.
The radiometric part of the model is adaptive be-
cause, during extraction, the expected saliencies
of various edge features are automatically adjust-
ed depending on viewing angle, vehicle color, and
current illumination direction. The extraction is
carried out by matching this model “top-down”
to the image and evaluating the support found
in the image. On global level, the detailed local
description is extended by more generic knowl-
edge about vehicles as they are often part of ve-
hicle queues. Such groupings of vehicles are
modeled by ribbons that exhibit the typical sym-
metries and spacings of vehicles over a larger dis-
tance. By fusing vehicles found using the local
and the global model, missing extractions can be
recovered, and henceforth the overall extraction
gets more complete. Various examples of complex
urban traffic scenes illustrate the applicability of
this approach. However, they also show the de-
ficiencies which clearly define the next steps of
our future work.

* A preliminary version of this article has been
presented at the ISPRS Photogrammetric Image
Analysis Conference (PIA’03), Munich, 17—
19. Sept. 2003.
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1 Introduction

1.1 Motivation

This paper deals with automatic detection
and counting of cars in high resolution aerial
imagery. Research on this topicis motivated
from different fields of application: Traffic-
related data play an important role in urban
and spatial planning, e. g., for road planning
and for estimation or simulation of air and
noise pollution. In recent years, attempts ha-
ve been made to derive traffic data also from
aerial images, because such images belong
to the fundamental data sources in many
fields of urban planning. Therefore, an al-
gorithm that automatically detects and
counts vehicles in aerial images would effec-
tively support traffic-related analyses in ur-
ban planning. Furthermore, because of the
growing amount of traffic, research on car
detection is also motivated from the strong
need to automate the management of traffic
flow by intelligent traffic control and traffic
guidance systems. Other fields of applica-
tion are found in the context of military re-
connaissance and extraction of geographi-
cal data for Geo-Information Systems
(GIS), e.g., for site model generation and
up-date.

This article is organized as follows: In the
remainder of this section related work on
automatic vehicle detection is discussed and
a brief overview of our approach is given.
Then, Section 2 describes the extraction of
(single) vehicles using local features repre-
sented by a detailed parametric vehicle
model. Section 3 continues with explaining
the algorithm for vehicle queue detection,
before the fusion of both extractions is out-
lined in Section 4. Finally, Section 5 dis-
cusses results achievable with our approach.

1.2 Related Work

Related work on vehicle detection can be
distinguished based on the underlying type
of modeling used: Several authors propose
the use of an appearance-based, implicit
model (RUSKONE et al. 1996, RAJAGOPALAN
et al. 1999, SCHNEIDERMAN & KANADE 2000,

PAPAGEORGIOU & PoGG1o 2000). The model
is created by example images of cars and
typically consists of grayvalue or texture
features and their statistics assembled in vec-
tors. Detection is then performed by com-
puting the feature vectors from image re-
gions and testing them against the statistics
of the model features. The other group of
approaches incorporates an explicit model
that describes a vehicle in 2D or 3D, e. g.,
by a filter or wire-frame representation
(BURLINA et al. 1995, Tan et al. 1998, HAAG
& NAGEL 1999, Liu et al. 1999, Liu 2000,
MICHAELSEN & STIiLLA 2000, ZHAO &
NEVATIA 2001, HINZ & BAUMGARTNER 2001,
Moon et al. 2002). In this case, detection
relies on either matching the model ‘“‘top-
down” to the image or grouping extracted
image features ‘“‘bottom-up” to construct
structures similar to the model. If there is
sufficient support of the model in the image,
a vehicle is assumed to be detected.

Only a few authors model vehicles as part
of queues. BURLINA et al. (1997) extract re-
petitive, regular object configurations based
on their spectral signature. In their ap-
proach, the search space is limited to roads
and parking lots using GIS-information.
This seems necessary since the spectrum will
be heavily distorted if adjacent objects gain
much in influence — even if the spectrum is
computed for quite small images patches.
In RUSKONE et al. (1996) and MICHAELSEN
& StiLLA (2001) vehicle hypotheses extract-
ed by a neural network classifier and a “‘spot
detector”, respectively, are collinearly
grouped into queues while isolated vehicle
hypotheses are rejected. Since the queues are
not further used to search for missed ve-
hicles, this strategy implies that the vehicle
detector delivers an highly oversegmented
result, so that grouping is able to separate
correct and wrong hypotheses. To the best
of our knowledge an approach making use
of global and local vehicle features in a
synergetic fashion for detecting vehicles on
downtown streets has not been presented so
far.
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1.3 Overview of the Approach

On one hand, our approach to vehicle de-
tection relies on a detailed parametric ve-
hicle model that captures the local features
of a vehicle as their 3D-geometry, radio-
metry, and shadow region. On the other
hand, we also incorporate a generic queue
model, which comprises global features of
vehicles as they are often part of longer
queues. Such queues are described by fea-
tures like symmetries across the queue direc-
tion and regular spacings of vehicles over a
larger distance. By fusing vehicles found us-
ing the local and the global model, missing
extractions can be recovered, which results
in an extraction being more complete.

To make use of the supplementary prop-
erties of local as well as global features, fol-
lowing processing scheme has been imple-
mented: First, the algorithms for vehicle de-
tection (Sect. 2) and vehicle queue detection
(Sect. 3) are running independently. Then,
the results of both are fused and queues with
enough support from the detailed vehicle de-
tection are selected and further analyzed to
recover vehicles missed during vehicle detec-
tion (Sect. 4). Other detected vehicles, yet
not being part of a queue, are kept without
deeper analysis.

2 Vehicles

2.1 Vehicle Model

Because of the apparent proximity of differ-
ent objects in urban areas, objects impose
strong influence on each other, e.g., trees
may occlude cars partially, buildings cast
shadows, materials like glasses or varnish
may cause reflections or specularities on
cars, etc. Since such influences mostly ap-
pear in form of local radiometric disturban-
ces, a model emphasizing a structural de-
scription of a vehicle — as an explicit model
— seems much more robust than one relying
mainly on radiometry as the implicit model
does (similar comments are also given in
SUETENS et al. 1992). Another disadvantage
of the implicit approach is, that the perform-
ance is completely dependent on the training
data, while it cannot be assured that the
training data capture changes in illumina-
tion, viewpoint, and possible influences
caused by neighboring objects correctly. In
contrast, explicit modeling better allows to
focus on the fundamental and robust fea-
tures of cars and, furthermore, it better
allows to employ a hierarchy of levels of de-
tail. However, because of the small size of
vehicles, it is clear that a very detailed model

Fig.1: Image of car (left) and example of model (right).
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is necessary in order to avoid misdetections
of objects that are fairly similar to vehicles.

In our approach, we use an explicit model
that consists mainly of geometric features
and also some radiometric properties. Geo-
metrically, a car is modeled as 3D object by
a wire-frame representation. Hence, an ac-
curate computation of the car’s shadow pro-
jection derived from date, daytime, and im-
age orientation parameters is possible and
added to the model. The model further con-
tains substructures like windshield, roof,
and hood (see Fig.1). As radiometric fea-
ture, color constancy between hood color
and roof color is included. Please note, that

color constancy is a relative measure and
therefore independent of uniform illumina-
tion changes. The only absolute radiometric
feature used is the darkness of the shadow
region. The main difference of our vehicle
model compared to many other approaches,
however, is that the model is adaptive re-
garding the expected saliency of edge fea-
tures. Consider, for example, the edge be-
tween a car’s hood and windshield. In case
of a bright car we expect a strong grayvalue
edge since a windshield is usually very dark,
while in case of a dark car the grayvalue
edge may disappear completely. Also the
viewing angles relative to the respective ve-

) Bright car (left),

) Dark car (left),

Fig. 2: Intensity-adaptive model for bright car (a) and dark car (b):

expected saliency, gray = low, thin = no.

), gradient magnitude image (middle), model adapted to bright car (right)

B

), gradient magnitude image (middle), model adapted to dark car (right)

Bold model edges = high
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Fig. 3: Model hierarchy: Detailed models at lower levels can be derived from more generic models

at higher levels.

hicle orientation affect the significance of
certain edges (see also Fig. 2). To accommo-
date this, we model the expected saliency of
a particular feature depending on vehicle
color, vehicle orientation, view point (posi-
tion in the image), and sun direction. View
point and sun direction are derived from the
internal and external image orientation par-
ameters, and vehicle orientation and color
are measured from the image. A disadvan-
tage of the detailed description is, that a
large number of models is needed to cover
all types of vehicles. To overcome this prob-
lem a tree-like model hierarchy is helpful
having a simple 3D-box model at its root
from which all models of higher level of de-
tail can be derived subsequently (see Fig. 3).

2.2 Vehicle Detection

Vehicle detection is carried out by a top-
down matching algorithm. A comparison
with the grouping scheme of Hinz & BAUM-
GARTNER (2001) that groups image features
such as edges and homogeneous regions into
car-like structures has shown that matching
the complete geometric model top-down to
the image is more robust. A reason for this

is that, in general, bottom-up grouping
needs reliable features as seed hypotheses
which are hardly given in the case of such
small objects like cars (cf. SUETENS et al.
1992). Another disadvantage of grouping
refers to the fact that we must constrain our
detection algorithm to monocular images,
since vehicles may move within the time of
two exposures. Reconstructing a 3D-object
from monocular images by grouping in-
volves much more ambiguities than match-
ing a model of the object to the image.

The steps of detection can be summarized
as listed below:

— Extract edge pixels and compute gradient
direction using Deriche’s filter.

— Project the geometric model including
shadow region to edge pixel and align the
model’s reference point and direction
with the gradient direction. The projec-
tion matrices are derived from the image
orientation parameters.

— Measure reference color/intensity at roof
region.

— Adapt the expected saliency of the edge
features depending on position, orienta-
tion, color, and sun direction.
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— Measure features from the image: edge
magnitude support of each model edge,
edge direction support of each model
edge, color constancy, darkness of
shadow.

— Compute a matching score (a likelihood)
by comparing measured values with ex-
pected values.

— Based on the likelihood, decide whether
the car hypothesis is accepted or not. In
the following, the evaluation measures in-
volved are explained more in detail.

1! _'_‘l-

a1 -0

(a) Image Part

(c) Gradient magnitude image

Fig. 4 illustrates the individual steps of
matching.

The match of an edge of the wire-frame
model with the underlying image is cal-
culated by comparing directional and posi-
tional features. Let Aa be the orientation dif-
ference between the gradient VI, at a certain
pixel i and the normal vector of the model
edge and, furthermore, let d; be the distance
between this pixel and the model edge, then
the score S, [0; 1] for the match of a model
edge e with n pixels involved is computed by

(b) Edge pixels with high gradient magnitude

13 -'ll-

(d) Detected cars. White wireframe indicates

car declared as ‘‘dark vehicle’” and vice versa.

Fig. 4: Intermediate steps during matching: Image part (a), selected positions for matching (b),
gradient magnitudes for computing matching score (c), results (d).
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and with E, [0; 1] being the expected saliency
of the model edge, r being the maximum buf-
fer radius around the model edge, and ¢,
being a constant to normalize the gradient
magnitude | VZ,|| into the range [0; 1]. Final-
ly, the quality of the geometric match of the
complete model is calculated as the length-
weighted mean of all matching scores S,.
Furthermore, darkness and homogeneity
M, of a shadow region s are evaluated by

- ()

with g, and o, being mean and standard de-
viation of an image region and c,, ¢, being
normalization constants.

To speed up runtime of matching, a
number of enhancements and pruning steps
have been employed. The most important
ones are:

A =

i

— To avoid redundant computations for
projecting models into image space, a
database containing all principal (project-
ed) 2D models is created beforehand
which is accessed via indices during detec-
tion. Since image scale and sun direction
are approximately constant for a given
scene, the only free parameters are model
orientation and x, y position in the image.
A reasonable discretization for these vari-
ables is derived automatically from image
scale and average vehicle size.

— The model is projected only to those po-
sitions where edge magnitude has passed
a local non-maximum and noise sup-
pression (Fig.4b). Though, for calculat-
ing the matching score, all pixels are taken
into account (Fig. 4c).

— The calculation of features is ordered in
such a way, that implausible hypotheses
appear yet after a few computations, thus
allowing to abort matching immediately.

Fig. 4d shows the final result of vehicle de-
tection using the local model.

3 Vehicle Queues

3.1 Vehicle Queue Model

Due to the high geometric variability of ve-
hicles, it can be hardly assured that the de-
tailed model described above covers all types
of vehicles. In some cases, also for a human
observer, local features are insufficient to
identify a vehicle without doubt (see, e. g.
Fig. 2b). Only provided the contextual infor-
mationthatsucha vehiclestandsonaroad or
ispart of aqueue makesit clearly distinguish-
able from similar structures. For these rea-
sons our queue model incorporates more
generic and more global knowledge. Con-
straints of the detailed local model are re-
laxed and, in compensation for this, the glo-
bal consistency of features is emphasized.
Morespecifically, typicallocal geometricand
radiometric symmetries of vehicles are ex-
ploited and, in combination with rough di-
mensions and spacings of vehicles, they are
constrained toform anelongated structure of
sufficient length and smoothness (see Fig. 5).
In summary following features are used:

— Geometric and radiometric symmetry
across queue direction.

— Short, orthogonally intersecting struc-
tures characterizing the typical “ladder-
like”” shape of a vehicle queue.

— Approximately constant width.

Sufficient length.

3.2 Vehicle Queue Detection

According to the model developed in the
previous section, vehicle queue detection is
based on searching for one-vehicle wide rib-
bons that are characterized by:

— Significant directional symmetries of
grayvalue edges with symmetry maxima
defining the queue’s center line.
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Fig. 5: Queue model: Image of typical queue (left), sketch of queue features used (right).

— Frequent intersections of short and per-
pendicularly oriented edges with homo-
geneous distribution along the center line.

— High parallel edge support at both sides
of the center line.

— Sufficient length.

At first, a ““directional symmetry map” is
created. The directional symmetry S,, (i, ) of
a pixel at position i,j is calculated using a
rotating window with a local co-ordinate
system u,, v, of dimensions 2m + 1 (vehicle
length) and 2 n + 1 (vehicle width). For each
orientation ¢ of the window, the average
symmetry of 2m+ 1 cross sections of the
gradient magnitude image is computed and,
thereafter, the orientation ¢’ yielding maxi-
mum symmetry is selected, i.e:

1
C@m+D)Qn+1)e,,

S, (i,j) = max {1
p=0...7

with ¢, being a constant to normalize S, into
the range [0; 1]. Furthermore, n can be de-
rived from the approximate vehicle width
and m is related to the expected minimum
length of a straight vehicle queue. Linking
adjacent pixels of high symmetry and similar
direction into contours yields candidates for

queue center lines. These candidates are fur-
ther evaluated and selected by checking their
length and straightness as well as the fre-
quency and distribution of short and or-
thogonally intersecting edges, i. e., an arbit-
rary one-vehicle large section of the queue
center line must contain at least two inter-
section points with these edges. The final cri-
terion for selection refers to the edge support
found in the gradient magnitude image on
each side of the center line at a distance of
roughly +n. Fig. 6 illustrates the individual
steps of queue extraction. Please note that
the symmetry map shown in Fig. 6a captures
only one slice of the i, j, p-space of all sym-
metries.

Z Z (Iua,,vw - Iuw,vw)z}
m v, =1

4 Recovering Missing Extractions

4.1 Fusion

The results of the two independently run al-
gorithms are now fused to make further use
of the supplementary properties of the ve-
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(a) Symmetry map for a certain orientation
(vertical, i.e. ¢ = 90°), the brighter the higher
the local symmetry

(c) Selected SL (according to distribution of IE)

(b) Symmetry lines (SL, black) and intersecting
edges (/E, white)

o g

(d) Final queues selected based on parallel
edge support (see b); detection using local
model is overlayed (white, cf. Sect. 2.2); regular
box indicates iexample shown in Fig.5

Fig. 6: Intermediate steps of queue detection: (a) Calculation of symmetries, (b) linking symmetry
lines (SL) and extraction of short, orthogonally intersecting edges (IE), (c) selection of SL based
on distribution of IE, (d) final selection based on gradients along SL, extraction with local model

is overlayed.

hicle and vehicle queue model. To this end,
the results of vehicle detection and queue
detection are checked for mutual overlap
first (see also Fig. 6d). In case of a successful
test, the detected vehicle and the corres-
ponding overlapping part of the queue‘s me-

dial axis are further investigated for col-
linearity. A queue is declared as verified if
at least one part of it is covered by vehicles
that pass both tests successfully. Unverified
queues are eliminated from the result.
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4.2 Detection of Missed Vehicles

After fusion the remaining queues are ana-
lyzed for missing extractions. This analysis
is only carried out for those portions of
queues that are large enough to enclose a
complete vehicle (see Fig. 7). Since, in many
cases, such failures appear through vehicles
with weak contrast, an attempt is made to
recover these vehicles by extracting
homogenous blobs using a regiongrowing
algorithm. To get accepted as vehicle, such
a blob must almost completely fall into the
boundaries of the vehicle queue and the
shape parameters of its bounding rectangle
must roughly correspond to vehicle dimen-
sions. In case of adjacent blobs, which
would cause mutually overlapping vehicles,
only the larger one is taken into account.
Fig. 7b illustrates the result of this oper-
ation.

At a first glance, the “blob”” model seems
much weaker than the models incorporated
for vehicles and vehicle queues. However,
because a particular extracted blob must be
part of a queue, and the queue must in ad-
dition be confirmed by some vehicles detec-
ted using a very stringent parametric model,
the blob model implicitely incorporates

d

S & A e ¥ R, ot
(a) Queue sections possibly containing cars

(black); blobs detected within these sections
(white)

much more knowledge than the pure shape
of a blob.

In the last step of processing, all vehicles
detected using the parametric model but not
being part of a queue are also added to the
result without further verification. This
seems justified since — as a consequence of
the stringent local vehicle model employed
— the false alarm rate of these results is
usually very low.

5 Results and Evaluation

We tested our detection algorithm on a series
of high resolution aerial images (ca. 15cm
ground resolution) of complex downtown
areas. No pre-classification of regions of in-
terest has been carried out. Tab. 1 summar-
izes the results. It shows that the vehicle de-
tection achieves a high correctness of 87 %
but only a moderate completeness of 60 %.
This is a clear consequence of the stringent
parametric model. In contrast, the (indepen-
dently run) queue detection reaches a higher
completeness of 83 %, however, as can be
anticipated from the weaker generic queue
model, the correctness is below 50%. The
effect of fusion and recovering missed ex-

(b) Final result: vehicles detected using local
model (white) and vehicles recovered through
fusion with global model (black)

Fig.7: Fusion of vehicle detection and queue detection.
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Tab.1: Evaluation of intermediate and final re-
sults.

Correct-| Com-

ness plete-

ness

Vehicle detection (Sect. 2) 87 % 60 %
Queue detection (Sect. 3) 45% 83%
Fusion (Sect. 4) 85% 79%

tractions is depicted in the last row of Tab. 1.
Now the completeness jumps up from 60 %
to 79 % while the correctness is almost the
same as for the vehicle detection (85%).
Some results are illustrated in Figs. 7, 8,
and 9. They show that nearly all passenger
cars have been detected while the false alarm
rate is acceptably low. Also some larger ve-
hicles like vans or small trucks whose ge-
ometry deviates from the local model too
much have been recovered thanks to the in-
tegration of the global queue model. How-
ever, such vehicles have been missed
throughout all examples whenever they are
not part of a queue. This kind of problem
could for instance be solved when additional
contextual knowledge about roads is avail-

(a) Vehicle detection (white), queue, and blob
detection (black)

able a priori or simultaneously extracted
from the image. Failures occur also in re-
gions where the complete road is darkened
by building shadows. Similar to the previous
case, this could be overcome by pre-classify-
ing shadow regions, so that the vehicle
model can be adapted accordingly. Further
improvements, mainly regarding the vehicle
detection scheme, include the optional in-
corporation of true-color features and the
use of a model hierarchy and/or geomet-
rically flexible models similar to OLSON et
al. (1996) and DuBuissON-JOLLY et al.
(1996). The use of multi-view imagery to
separate moving from parking vehicles and
to estimate vehicle velocity would be an-
other avenue of research.
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