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Summary: Transformations of Cartesian coordi-
nate systems are considered in order to use them
for geodetic tyings of dynamic objects. A defini-
tion of geodetic monitoring of dynamic objects
is given. The main attention is devoted to conti-
nuous rotations and instantaneous turns. Direct
and inverse algorithms of transformations from
local to Greenwich and inertial systems are con-
sidered.

Zusammenfassung: Transformation dynamischer
Systeme zur Beschreibung dynamischer Objekte.
Betrachtungen zur Transformation Cartesischer
Koordinatensysteme fiir die Berechnung geodaiti-
scher Objekte. Eine Definition zur geoditischen
Erfassung dynamischer Objekte wird dargestellt.
Schwerpunkte der Betrachtungen sind die konti-
nuierliche Rotation und momentane Drehungen.
Betrachtet werden direkte und inverse Algorith-
men zur Transformation von lokalen Systemen
ins Greenwich-System und inertiale Systeme.

1 Definition and statement
of problems

Dynamic systems will be considered as rect-
angular (Cartesian) coordinate systems exe-
cuting translational and rotary motions.
The objects situated in these systems may
themselves have translational and rotary
motions.

Definition: Geodetic monitoring will be
considered to consist in periodic observa-
tions of dynamic systems and objects, that
ensure a preset accuracy o, within an inter-
val [#,, 7] in the definition of the equations
of motions of systems and objects.

In the present paper we will consider
translational motions that are linear

AF = AFy + AFy(t — 1) )
or nonlinear

AF = AFy+ AFy(t— 1) + % (t—1o)’,

(A7, = 0) &)

Notice that transformations of Cartesian,
rectangular systems are, in case of transla-
tional motions, carried out by trivial parallel
translation. As for the dynamics of the ob-
jects to be considered, the objects are gen-
erally to be represented by material points
and hence, only a translational motion will
be taken into account. Parallel translation
and rotation of the system are carried out
by means of the well-known equation [1]:

F=AF+pu-I1-R 3)

where 7 and R are radius vectors locating
the objects in the new and old systems, Ar
is the radius vector of parallel translation
of the old system to the new one, coefficient
1 1s a scale factor, IT is a matrix of order 3
that consists of direction cosines, which may
be constant or have a weak or strong de-
pendence on time 7. On the assumption that
the scale factors of the old and new systems
equal, u = 1.
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Let us consider three cases:

1. In the old system R is motionless, and
matrix IT(7) and Ar(¢) are functions of
time ¢;

2. In the old system, with objects R(f) mov-
ing, matrix IT is independent of time ¢,
and we will suppose that A7 = 0;

3. In the old system, with objects R(¢) mov-
ing, the origin and orientation of the sys-
tem are variables, i. e. R(f), I1(¢) and A7 (%)
are functions of time ¢.

In all cases, in addition to the transforma-
tions of the systems and objects, we have to
transform their velocities and accelerations.

2 The First Case of Transformation

‘We take the first and second derivations with
respect to ¢ using equation (3) and taking
into account the first case and equation (2):

= Aiy+ AFy(t — 1) + TR,

o “4)
r=Ar,+1IR,
where we suppose that changes of acceler-
ation of the origin of system R are absent.
Taking into account that matrix IT can al-
ways be presented in exponential form [4],
i.e. IT = e, where C is a skew-symmetric
matrix of the direction cosines of the axis
of rotation in system R [1], we have

F = Afy+ ARy (1 — 1)) + C- (F— AF), Q)

F=Ary+ (C+ CY - (F— AP,

from which we substituted the expression
e“R using the first equation in (5).
Matrix C has the next form:

0 —c¢ o
C=| ¢ 0 —c (6)
- q 0
where ¢ — N3y — Ny _ N3y — Ny
! 2sind 2sind
Ny — Ny
and == = 7
me ST T ne @

Let us coin the following terms:

C? = (13, — ny)/2, c(z) = (ny —ny3)/2,
Cg = (ny —ny)/2, (3

where n; are non-diagonal elements of
matrix IT.

Now, let us return to skew-symmetric
matrix C, which will be to get the next form
bering in mind (6)—(8):

0 -4 & 1
C= Cg 0 —C? . —5 = CO/Sin§
TR 0 sin

)

Taking the derivative of expression (9) with
respect to #, we have

C = (C%sind — C-cosd - d)/sind (10)
The first summand of the expression (10) de-
termines the axis of rotation, changing its
position in space. A turn around this axis
is carried out by means of an instanteneous
turn, i. e. angle ¢ in the first summand does
not depends on time 7. From (7) and (8) it
is easy to see that motion and fixation of
the axis of rotation provides non-diagonal
elements of matrix IT.

But as the instantaneous turn of angle ¢
will look like this [2]

Ny + Ny +ny; — 1

0 = arccos
2

(11)

the value of the angle of turn ¢ is defined
by means of diagonal elements of matrix IT.
Note that the second summand in (10) car-
ries out the turn through an infinitesimal
angle dJ, so we can interpret these express-
ions as projections of the instantaneous rate
of rotation, and if parameter 7 is time, the
second summand in (10) given above are
projections of the angular rate of rotation,
i.e.

c,ctgd-do =w, (12)
and c,ctgd - doJ are projections of the angu-
lar rate @ on axes Ox, Oy and Oz [3].
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Therefore let us rewrite the second sum-
mand (9) as [2]

0 —w, Oy
C,=| o, 0 —wy (13)
—wy Oy 0

The second derivative from expession (10)

with respect to ¢ will look like this

.oood oL .

C=—(C"%in*d — C,) (14)
dt

Differentiated with respect to time t of (14)

we can get in explicit form the expression
for C.

3 The Second Case of
Transformation

This case describes the transformation of
fixed systems in which objects are in motion.
Let us address some specific problems. Let
an object M be in motion relative to the Car-
tesian system of coordinates called “local”
[3]. The local system is given in the following
manner: The origin of system is located at
point P, which is motionless in relation to
the terrestrial surface. Axis PZ is directed
at the nadir point, axis PX is directed to-
wards the North Pole as a tangent to the
meridian, and axis PY is directed to a point
complementing the right-handed system. In
the local system described above, let us give
the object M mentioned above a radius vec-
tor R/(X,, Y,, Z), a_velocity R(X,, ¥,, Z)
and an acceleration R,(X,, ¥,, Z)). The orien-
tation of the local system at the basic point
Pis fixed in relation to the Greenwich system
of coordinates.

Therefore, the coordinates, velocities and
accelerations will be transformed to the
Greenwich system by the same matrix IT,,

(15)

A notation for the generalized column vec-
tor of order 9 is coined by

Q=(X,Y,Z,X,Y,Z‘,Y,Y,Z)T (16)

with the appropriate indices (E) or (/) for
the Greenwich and local systems. Above the
generalized matrix I1, we have

M, 0 0
Ey=|0 I, 0 17
0 o0 I,

where Z;, is a hypermatrix, and the Os are
zero matrices of order 3 x 3; the content of
a matrix I, will be considered below. For
the transformation from the local to the
Greenwich system we obtain the following
expression

QE = EE['Q[ (18)

which will simultaneously transform coordi-
nates, velocities and accelerations.

In Fig. 1, X;OY,Z,is the Greenwich sys-
tem of coordinates with the origin at the
centre of the mass of the Earth.

X,PY,Z, is a local Cartesian coordinate
system. The orientation of this system is de-
termined above.

Let object M be given in the polar coor-
dinate system:

p is the polar distance,
A is the azimuth of a direction PM,

z is the zenith distance (or height
h =90 —z) of a direction PM

M

XE

Fig.1: Greenwich and local coordinate systems.
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The dependence between the Cartesian and
polar coordinates has the form:

X, c0s(360 — A4)sin(180 — z
R =[7Y,|=p|sin(360 — A)sin(180 — z)
Z, cos(180 — z)
(19)

There remains to be defined the expression
for a matrix IT,. Taking Euler’s angles,
which are standard in space geodesy and ce-
lestial mechanics, we have Q =180 — 4,
i=90+ ¢, and w =0, where ¢ and A4 are
the astronomical coordinates of point P. In
this case, matrix IT will have the following
form

I, =, (1804 2) - I,y (90 +¢) - T, (0)

—cos/  sind 0
=| —sinA —cosi 0
0 0 1
—singp 0 —cosg

0 1 0 (20)
cosp 0 —sing

The final expression for matrix IT, will be
given below, but we suppose that express-
ions (20) are suitable for use, as in any en-
vironment (Mathcad, Mathematika, Mat-
Lab, Maple etc.) it is easier to write down
the expression in this form, and multiplica-
tion of matrixes is performed automatically.
Nevertheless, we have

sinpcosA  sindA  cosgcosi
Il; = singsinA —cosd cosgsini
cosp 0 —sing

@n

The transformations on the basis of astro-
nomical coordinates will result in low accu-
racy, but such tying is independent. Where
a high accuracy of tying is essential, then
the coordinates of point P should be known
in the national reference frame system (CK-
42 etc.) or in one determined in the satellite
Greenwich system (WGS-84 or T13-90 etc.).
The connection between different reference
systems is given by means of known equa-
tions of rotation and parallel translation of

coordinate systems and the scale factor. The
main value of such an equation (for example
(3)) is represented by the values of numerical
constants that are included in this equation.
Transition from the local geodetic into the
Greenwich system of coordinates, velocities
and accelerations will be executed on the
basis of eq. (18), but it is necessary to for-
mally replace astronomical coordinates ¢
and 4 by the geodetic ones B and L in a
matrix I, with expressions (20) or (21).

4 The Third Case of Transformation

Let us consider the third case, in which the
coordinates of the points and the origin of
alocal system are variable. Suppose they are
changed continuously or instantaneously.
We take the first and second derivatives with
respect to ¢ of equation (3), taking (2) into
account:

F = AFy+ AFy(t — 1) + TIR+ IR

e e Cx (22)
r=Ary+1IR+2IIR+IIR
As shown in [3], the equations for instan-
taneous and continuous rotations are in-
variable. Below we will consider the more
general case of continuous rotations. By
equation (16) above we have introduced a
generalized column vector of order 9-Q,
consisting of coordinates, velocities and ac-
celerations. As for the generalized matrix of
transformation, it has the same order (9 on

9), but Hy, differs from a matrix Z,, by its

contents.
The hypermatrix IT of this case will look
like this:

m, 0 0
HE/ = l:[E/ HEI 0 (23)
Iy 20 Iy

where I1,, has the form of (20) or (21), and
there are zero matrices of order 3 on 3. As
to the derivative with respect to ¢ from a
matrix II;, we shall designate the rotation
around an axis OZ by means of an index 3,
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and around an axis OY by means of an index
2. We have

T = I1, 1T, + TL,I1,,

. - .. (24)
I = 1,10, + 2 11,11, + I1, 11,

in which, based on (20), we obtain the de-
rivatives by means of the differentiation with
respect to t of the trigonometrical functions
of sine and cosine. For example, the express-
ion for IT can be written as

sinl  cosi 0
IT=| —cosZ sini 0] II,- 14T,
0 0 0
—cosp 0  sing
0 0 0 ) (25)
—singp 0 —cosg

where IT,(p) and II;(A) are given by equa-
tion (20) in an obvious form. Similarly for
IT we have an expression of the form

cosA  —sind 0
IMT={sin2 cosi 0] I,-1+2TLII,
0 0 0
sinp 0 cosg
S+ Ty 0 0 0 |-¢(Q20)
—cosp 0 sing

where IT,(1) and IT,(¢) are available from
equation (25) in an obvious form.

As to the expressions for A, ¢, Lug, it is
necessary to know the dependence of Aug
on time 7. The linear dependence (according

to (2))

(6)=()+ ()

yields the expressions A = a,u¢p = e, and
4 =0ug=0.

For a nonlinear dependence, the equation
will be similar to expressions in (2). Final
transformations will look like this:

QE = AQE+ HEIQI

where Q is represented by expression (16),
H,, is represented by matrix (23), and H is

@7

represented by the equations (20), (21) and
(24)-(26), i.e.

AFy AP, AR 1
AQ, = AF, AF, 0 || (t—1,) (28)
Ay 00 )y
2!

where the first matrix in (28) has the order
(3 0on9).

Thus, equations (18)—(28) solve, by clas-
sical methods of geodesy and astronomy,
the problem of the geodetic tyings of mobile
and motionless objects that are situated
either on a terrestrial surface or in the at-
mosphere or in the near space, as well as
that of transforming such objects to a ter-
restrial geodetic system of coordinates by
means of the universal algorithm. The in-
verse transformation is carried out by means
of the transposed matrices IT,,, I, and I1,,
of matrix H, (23), and we can replace the
old coordinates with new ones.

5 Transformation of a Terrestrial
System into an Inertial One

Finally, we will consider the following case.
Let us suppose that GPS or GLONASS re-
ceivers are installed on the object M consi-
dered above, and that there is the possibility
to receive coordinates of object M in a
geodetic system (WGS-84 or I13-90). The
measurements will be considered in a dy-
namic mode, and in this mode we carry out
a precise registration of time ¢.

In this case we can determine coordinates,
velocities and accelerations of object M, i. e.

XME? YME’ ZME’ XME’ YME> ZME’

XME’ YME’ ZME

In this case there is no need to use the al-
gorithms described above, as the coordi-
nates of object M are received directly in
the Greenwich geodetic system of coordi-
nates. It is necessary, though, to consider a
problem of transformation from the Green-
wich geodetic system to an inertial system
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of coordinates (ICRS). For object M, this
connection for will look like this [4]:

Py = (P'S'N'H)iE'RME, (29)

where P is the matrix of transition from in-
stantaneous coordinates to average coordi-
nates (accounting for the movement of poles
in case of a terrestrial surface), S is the
matrix which takes into account the rotation
of the Earth (a matrix of sidereal time), N
is the matrix of nutation, and IT is the matrix
of precession. An obvious form of the ma-
trices listed is present in [5] or in any text-
book on space geodesy, spherical astronomy
or astrometry. Let us introduce a designa-
tion

Hyy=(P-S N-M); (30)

Then, for expression (29) and accounting for
(30), we take the first and second derivatives
and thus obtain the following equations:
iy = HfEREMs .

Foy = Hig Ry + HiERE[‘l/[’ B
FIM = HiEREM + 2 HiMREM + HfEREM'

(31

In view of the above generalizations, trans-
formations from the Greenwich system to
an inertial system can be presented as
Gin = EiEQEMv (32)
where G,y = (x y z X p 2 X j £), Op) looks
like (16), and the matrix E;, looks like
matrix (23), i.e.

H 0 0
= H H 0 (33)
H 2H H .

where Z,;; is the hypermatrix. Each element
of this matrix in turn represents matrices of
order 3 by 3.

Let us consider the structure of a matrix
H;:. All matrices (except S) included as com-
ponents of (30) depend only weakly on cur-
rent time t. In fact, these changes do not
exceed

1" arcs per year for a matrix P,
10" arcs per year for a matrix N,
1" arcs per year for a matrix M.

In geodetic and astronomical practice, these
changes take into account intervals of time
that considerably exceed one year; besides,
they are also taken into account as instan-
taneous. As for matrix S, although it carries
out a continuous rotation, it is taken into
account as an instantaneous turn through
a value of sidereal time s, in order to unify
the transformation. It concerns the transfor-
mation of coordinates, i.e. the first row of
hypermatrix Z,.

As to the transformation of velocities and
accelerations we are compelled to carry out
a continuous rotation, since the angular vel-
ocity of the rotation of the Earth enters the
matrices of transformation in an obvious
form. Supposing that only matrix S depends
from time ¢, we have

H; = (PSNM),, = (PSNMSS™),,

= (HQ),p, (34)
where the matrix Q is a matrix of the Earth’s
angular velocity @. As the axis of rotation
of the Earth, both in inertial and Greenwich
systems, actually coincides with axes oz and
oZ, matrix Q looks like this:

0 —w, 0
Q,~lw. 0 0
0 0 0
or
0 —w,; Awy,
Qr=| w, 0 —Awy (35)
—Awy Aoy 0

Similarly, for acceleration transformation
we have

HiE = HiEQiE (36)
Accounting for (34) and (36), the hypermat-
rix B, in expression (33) can be represented
as

I 0 O
2, =HeQ T 0 (37)
Q 2Q T .

where I denote identity matrices of dimen-
sion 3 on 3, and matrices H;;, Qu€Q are of
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the kind given above. Thus, transformation
(32) in which the matrix Z,, looks like (37),
together with the equations (31)—(36),
solves the problem of transformation of
coordinates, velocities and accelerations
from the Greenwich system into an inertial
system.

If the equations of the inverse algorithm
are used, it is enough to transpose separately
each of the matrices making up the hyper-
matrix =

It is of importance and of interest to ob-
tain an estimation of the accuracy of the
equations developed here.
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