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Summary: Analysis of traffic data plays an impor-
tant role in urban and spatial planning. Thermal
Infrared (TIR) video cameras have capabilities to
operate at day and night and to acquire the scene
sampled with video frame rate. In this paper a strat-
egy for the estimation of vehicle motion and the as-
sessment of traffic activity from airborne TIR video
is presented. In contrast to other approaches we
handle detecting and tracking vehicles in the video
separately, because moving as well as stationary
vehicles are intended to be detected. Firstly, vehi-
cles are detected in single frames of the video. Ad-
ditionally, tie points are detected for co-registration
and compensation the sensor movement. After-
wards, a stepwise grouping of image points consid-
ering temporal consistence and geometric relation
is carried out to determine the vehicle trajectories
and classify them into stationary, moving and un-
certain dynamical categories. The vehicles are then
integrated into the classes “moving,” “stationary”
and “uncertain” categories. Additionally, in consid-
eration of matching vehicle-related image patches
for moving vehicles, the topology of the trajectories
are investigated and optimized in order to eliminate
disturbances and estimate velocities. The algo-
rithms were tested with video sequence of urban
areas in nadir-view and oblique-view. The correct-
ness of the results is achieved higher than 75% for
both views.

Zusammenfassung: Automatische Schätzung der
Vehikel Aktivität aus luftgetragenen thermalen inf-
raroten Videos urbaner Bereiche durch Trajektori-
enklassifikation. Die Analyse von Verkehrsdaten
spielt eine wichtige Rolle bei der Stadt- und Raum-
planung. Thermal Infrarot (TIR)-Kameras bieten
die Möglichkeit Szenen bei Tag und Nacht im Vi-
deotakt zu erfassen. In diesem Beitrag werden eine
automatische Strategie zur Schätzungen von Fahr-
zeugbewegung und die Bewertung der Verkehrsak-
tivität aus flugzeuggetragenen IR-Videodaten prä-
sentiert. Bei diesem Ansatz werden im Gegensatz
zu herkömmlichen Verfahren Detektion und Ver-
folgung von Fahrzeug in den Videodaten getrennt
behandelt, da auch stehende Fahrzeuge gefunden
werden sollen. Zunächst werden Fahrzeuge in den
Einzelbildern der Videosequenz detektiert. Zusätz-
lich werden Verknüpfungspunkte detektiert, um
eine Koregistrierung der Bilder durchzuführen und
die Sensorbewegung zu kompensieren. Anschlie-
ßend wird unter Berücksichtigung zeitlicher Kon-
sistenz und geometrischer Zusammenhänge eine
schrittweise Gruppierung von Bildpunkten durch-
geführt, um den dynamische Status des Fahrzeuges
zu detektieren. Die Fahrzeuge werden dann in die
Klassen „bewegt“, „unbewegt“ und „unsicher“ ein-
geteilt. Zusätzlich auch mit Berücksichtigung von
Matching der fahrzeugbezogenen Bildmatrizen
werden für die bewegten Fahrzeuge die Topologie
der Trajektorien untersucht und optimiert, um Stö-
rungen zu beseitigen und Geschwindigkeiten zu
schätzen. Die Algorithmen wurden mit Bildse-
quenzen in Nadirsicht und in Schrägsicht von in-
nerstädtischen Gebieten getestet. Die Korrektheit
der Ergebnisse erreicht für beide Sichten Werte hö-
her 75%.
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1 Introduction

Traffic-monitoring systems rely on sensors to
acquire traffic information. In the last decade
many ground-based sensors, e. g., loop detec-
tors, bridge sensors and stationary cameras
have been widely used and extensively studied
(Hu et al. 2004). Airborne-video data acquisi-
tion for traffic-parameter estimation has been
explored as an alternative to conventional da-
ta-collection methods (Ernst et al. 2005;
rosEnbaum et al. 2008), because it may enable
covering a relatively broad area and potential-
ly derive additional parameters such as travel
time, relative velocity, vehicle trajectory, etc
(sHastry & scHowEngErdt 2005; coHEn &
mEdioni 1998; rEinartz et al. 2006). Thermal
IR cameras provide the night vision capability
and are able to capture the traffic situation at
day and night. Generally, temperature meas-
urement gives an important cue for the activity
of cars, even though vehicles are in use but do
not move due to a traffic jam or waiting in
front of a red traffic light. Stationary vehicles
often appear as cold spots (dark) on the warm-
er road surface (bright). But warm parts (e. g.,
exhaust) of active vehicles appear as hot spots
(bright) (stilla et al. 2004; Ernst et al. 2005).

Since the videos are taken from a moving
platform, the simple optical flow estimation
cannot directly be used to detect object mo-
tion, we have to distinguish the sensor move-
ment from true object movement in the scene
in order to characterize traffic activity. A
number of approaches have recently been pro-
posed. However, they are either only con-
strained to automatically detect vehicles or
vehicle queues in the IR images of dense city
areas or only focused on tracking moving ve-
hicles and estimating their movement from
airborne IR video. For example, stilla & mi-
cHaElsEn (2002) have developed a method of
detecting single vehicle in the airborne IR im-
ages of urban areas based on spot-filtering. In
(Hinz & stilla 2006) a detector for extracting
single vehicles and vehicle queues combing
global and local context is introduced, we can
hardly get information about time from the
single image. Concerning TIR video, KircH-
Hof & stilla (2006) have applied planar hom-
ograph as geometric tool to co-register the
video data and attempted to detect and track

moving objects by analyzing the motion chan-
nel. Both micHaElsEn & stilla (2004) and
yilmaz et al. (2003) have analyzed and ac-
cessed different methods for pose estimation
from oblique airborne videos in order to opti-
mize processing chain for specific scene re-
construction and tracking moving objects. An
up-to-date trial on multiple moving object de-
tection is presented in (yao et al. 2008a, 2008b
and lEitloff et al. 2007), but most of them are
limited to dealing with datasets aquaired in
nadir-view mode.

All previous works mentioned above can be
regarded as the foundations or components of
traffic monitoring system from airborne TIR
platforms, which only addressed individual
parts of the issue. In this work we will give an
integrated contemplation on the vehicle detec-
tion and the determination of their dynamical
status, an off-line strategy of accessing traffic
scene by airborne TIR video is proposed to
locate all vehicles at first and then derive their
dynamical statuses based on the trajectory
construction and classification. The process-
ing chain is implemented in the context of
treating detection and tracking of vehicles
separately, which will be presented and dis-
cussed in following sections.

2 Detection of Vehicles in Every
Frame

In order to detect vehicles in single images an
automatic approach (stilla & micHaElsEn

2002) is used. Because of low contrast and
noisy characteristic of TIR imagery, several
parking cars along two margins of the road
have failed to be detected. The detection rate
was improved by fusing the map data which is
usually available for urban areas. The algo-
rithm of single vehicle detection used here is
based on following two assumptions: (i) the
image is searched for cold-spots (black) which
represent the vehicles themselves; (ii) for a
moving vehicle, a hot-spot presenting the
warmed engine bonnet must exist around a
cold-spot (cf. Fig. 1).
Since we want to estimate traffic parame-

ters in this work, the detection of moving vehi-
cles is brought into focus. While applying this
algorithm for vehicle detection, some imagin-
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able problems emerge instantly, e. g., a car had
started just recently, the engine bonnet has not
warmed up yet; the hot spot of vehicle is miss-
ing. Therefore it is at first not possible to dis-

tinguish stationary vehicles from moving ve-
hicles. It is only about the detection of vehicles
in this step. Vehicle detection results from one
single TIR frame are shown in Fig. 2. All of

(a) (b)

Fig. 1: Cutouts of thermal IR-image related to vehicle (34 × 34 pixels), a) stationary vehicle b) mov-
ing vehicle.

Fig. 2: Result of vehicle detector on single TIR image (494 × 686 pixels). Red-blue crosses mark
the positions of detected vehicles.
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test images have been processed successively
to obtain the (row, col) coordinates of vehi-
cles.

3 Processing of Image Sequence

The approach of processing airborne thermal
infrared video consists of two major steps.
The first step is video stabilization, compris-
ing the co-registration of certain image pairs
in the video. In the second step all detected
vehicles in each frame of video will be trans-
formed into a unified coordinate frame, e. g.,
the domain of the last frame of the video. The
result is an image mosaic of the video se-
quence. The processing chain is depicted in
Fig. 3. After it is initialized with necessary pa-
rameters, an operation loop is carried out to
transform the vehicle points until the last
frame of the TIR video data is reached. The
details of the sub-steps are to be discussed as
follows.

3.1 Video Stabilization

For establishing the geometric relation be-
tween every two TIR video frames, image sta-
bilization has been chosen to perform this
task. Image stabilization consists of register-
ing the two images and computing the geo-
metric transformation T that warps the image
I1 such that it aligns with the reference image
I0. The warping of images can be based on,
e. g., (i) planar homography or (ii) affine trans-
formation.

There are also two ways to implement the
co-registration within the video frames – se-
quential and direct orders. We compared dif-
ferent results generated by various combina-
tions of geometric tools and transformations
and selected the best one – sequentially affine
transformation. Being independent of geomet-
ric tools, the co-registration procedure can be
divided into two main processes:

(1) Initial relative orientation
a) Pre-processing steps namely initialize
some empirical parameters for operators
(e. g., offset of the search window, thresh-
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Fig. 3: Workflow of image sequences processing using affine transformation model.
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Feature points of both input images are read in
to serve as candidates of corresponding points
based on gray-value matching. Once the initial
matching is complete, RANSAC is used to de-
termine the affine transformation matrix.
Matched input points filling the condition of
RANSAC are output as corresponding points
for affine relation (cf. Fig. 4).

(2) Refinement of the orientation
After initial relative orientation, the esti-

mated parameters should be refined. The least
squares bundle adjustment is the classical
method and usually delivers the best results.
Depending on the scene characteristics also
some simple transformations, e. g., affine
transformation, yield similar results, especial-
ly when the baseline between the images is
small.

old for gray value matching etc.) and read
the coordinates of vehicles. Since these ini-
tial parameters have a great influence over
the quality of co-registration, they should
be selected carefully.
b) Feature points are extracted with the op-
eration introduced by förstnEr & gülcH

(1987).
The image domain can be reduced upon
road region, so that it can better fit the pre-
requisite of planar homograph, but at the
expense of the quantity of robust feature
points. Therefore, this restriction is ignored
in the case of directly transformation order
due to low overlapping rate.
c) Compute an affine transformation matrix
between two images based on a randomized
search algorithm (RANSAC).

Fig. 4: Point correspondence found by RANSAC relative orientation plotted on the two overlap-
ping frames. Green points are from 10th frame; yellow points are from 30th frame.
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4 Automatic Characterization of
Vehicle Movement

In this step, the objective is to automate the
analysis process of interpreting and inferring
the vehicle movement by means of informa-
tion acquired by airborne TIR camera. The
stabilized map of vehicle detection is generat-
ed by last two steps; where the vehicles de-
tected from single frames are projected into
the coordinate system of the reference frame
and depicted as blue cross. Multiple instances
of one vehicle entity, corresponding to differ-
ent discrete time tags of frame recording, tend
to build and describe the temporal behavior of
the vehicle trajectory. In order to characterize
and analyze the traffic activity, it is required to
reconstruct the trajectory of vehicles in this
map, and to label them as moving or station-
ary ones. Our strategy to perform this task
features a stepwise operational concept incor-
porating split-and-merge of trajectory based
on temporal consistence and geometric rela-

3.2 Transformation of Vehicle Points

After two subsequent images are co-regis-
tered, we have to sequentially project vehicle
coordinates into reference image domain us-
ing affine transformation matrices derived
above.

Finally, all of the vehicles points detected
from different images sampled temporally
have been transformed into the coordinate
frame of the last image which serves as the
reference frame in our experiments, and also
been plotted on the mosaicked image which
leads to a map. In this map, the moving vehi-
cles are supposed to build their trajectory dis-
tributed in curvilinear form, whereas the sta-
tionary vehicles ought to accumulate nearly in
the same place as compact cluster and slightly
shift. Then, we can analyze and measure vehi-
cle trajectories on the basis of this map. In this
map we have plotted the position of each trans-
formed vehicle in blue color (cf. Fig. 5).

Fig. 5: Stabilized map of detected vehicles plotted overlaid upon mosaicked TIR video by sequen-
tial affine transformation.
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tial regions are to undergo the classification
process according to density feature measure
describing the physical compactness of vehi-
cle clusters. This feature measure FM is de-
fined as follows:

FM
L

N Ind Ind
maj axis

vp max min

= ∗
−

_ 10
(1)

where Lmaj_axis is the length of major axis of
region; Nvp is the number of vehicle points in-
cluded in a vehicle region; IndMax and IndMin
are the maximum/minimum index within a
region, respectively.

If FM >=1 and Real_area > 1, classified as
candidates for moving vehicle; If FM <1 and
Real_area > 1, classified as candidates for sta-
tionary vehicle; If Real_area = 1, classified as
single vehicle class. A joint consideration with
compatibility of temporal index within single
vehicle regions is necessary. Because vehicle
instances from two vehicles in reality may
merge into one initial vehicle region (hybrid

tion. The correspondence relation between de-
tected single vehicles of each frame is to be
re-established here. We do not use image dif-
ferencing and matching to characterize the
moving object just as normal methods, but
rather perform detection and tracking of vehi-
cle separately.

4.1 Preliminary Classification

The first step of our strategy is to classify the
vehicle region into four different classes by
means of clustering analysis assisted by tem-
poral consistence criterion. The vehicle region
map is generated by labeling connected com-
ponents in the stabilized map of vehicle detec-
tion, which can be viewed here as binary im-
age when using an image of single intensity as
background. Afterwards initial vehicle re-
gions for trajectory delineation and classifica-
tion are created; they can serve as trajectory
candidates for single vehicle entity. These ini-

Fig. 6: Vehicle region map after preliminary classification, green: stationary vehicle; blue: single
vehicle; red: moving vehicle; black: hybrid vehicle.
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4.3 Grouping and Extracting Vehicle
Trajectory

Based on results generated by the last step, the
green regions that are supposed to be the sta-
tionary vehicle class are relatively stable and
then we focus on the red vehicle region, at-
tempting to group the fragmented regions into
reasonable trajectory of a moving vehicle.

The grouping algorithm is implemented by
sequential searching based on the joint analy-
sis of the geometric relation and temporal con-
sistence. It starts from an arbitrary red vehicle
region and guides the search direction towards
the major axis of vehicle region. The criterion
for testing the compatibility between temporal
index and geometry is formulated as below:

Ti ∩ Tj = {O} and min {Ti} – max {Tj} or min
{Tj} – max {Ti} must be consistent with the
distance between border points of each region:
dij = |Ri,min – Rj,max| or |Rj,min – Ri,max|, i.e,

ThreshV t d T T ThreshV tij i j− ≤ − ≤ +∆ ∆/ ( ),min ,max

(2)

where Ti and Tj are the temporal index sets of
two vehicle regions i and j; Ri,min, Rj,max are the
border points of each region; dij is the distance
between border points (usually max or min
temporal index) of each region; ThreshV is the
threshold related to the assumed vehicle veloc-
ity; ∆t is the allowable deviation affected by
the detection and co-registration accuracy,
(Ti,min – Tj,max) can be replaced by (Tj,min –
Ti,max).

After examining the assumed accordance
of temporal consistence with geometric dis-

class) displayed here, so it has to be delivered
to the split process further. The resulting map
after this step is showed in Fig. 6.

4.2 Refinement of Classification
Result

Due to unavoidable existence of co-registra-
tion and detection errors, vehicle points be-
longing to the stationary category usually do
not accumulate in connected cluster. In this
intermediate step we merge the green category
of vehicle region map generated from last step,
and analyze the white points to split them into
independent vehicle regions. For the analysis
of the stationary category, we take these re-
gions as seed point, and then do a search in a
close surrounding area, in which red, blue and
green vehicles to be analyzed concerning tem-
poral and geometric accordance with the seed
region. In order to generate hypotheses for sta-
tionary vehicles, we have to verify them via
image matching; then, those regions con-
firmed by two operations above will be ac-
cepted as stationary vehicle and aggregated
with the seed region to build new green class
labeled as one region.

One usually has to restrict the amount or ec-
centricity of green regions, after or while
merging green region with another stationary
class, so as to exclude some ones being lack-
ing of temporal completeness of trajectory or
ones of inordinate trajectory elongation. The
advantage of this step is that the problem do-
main and complexity can be rather reduced
that we can focus on individual vehicle cate-
gories by stepwise operation.

Fig. 7: Zoom into the local section of vehicle region map marked by dotted box in Fig. 6, before (a)
and after (b) trajectory grouping.
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where, Cij is the cross-correlation between ve-
hicle image regions i and j, and θi,θij represent
the orientation angles of major axis vector of
region i and connection vector from region i
to j.

Generally, the trajectory of moving vehicles
is assumed to be resolved by adequate tempo-
ral resolution, which means it should consist
of enough vehicle instances detected from at
least 40 % of the total frames; otherwise these
trajectories have to be assigned to the vehicle
object of uncertain status (behavior). Finally,
all of vehicle points are grouped to vehicle en-
tities that are classified into three categories
regarding the movement status.

5 Results

We used two datasets of TIR video captured
over dense build-up areas, including two main
roads with moving and parking vehicles upon
them, to test our algorithm proposed above.
The only difference between them lies in the
view angle. The first dataset was acquired un-
der normal nadir-view, while the other dataset
was recorded in forward-looking mode. Fig. 9
illustrates the vehicle classification results
concerning movement of three categories: red:
moving vehicle; green: stationary vehicle;
blue: uncertain. For both test data, it can be
seen that most of the parking vehicles along
road sides located in the centre area covered
by the TIR video are detected and classified
into the stationary class, and a proportion of
the stationary class vehicles are represented
by the parking vehicles, which is reasonable
for both test scenes. Due to similar appearance
to vehicle, some vehicles of green class are
falsely detected among the building roofs,
which correspond to chimneys or small dor-
mers in reality. For first dataset, only five mov-
ing vehicles with distinct moving trajectory
have been found, while four moving ones for
second test data are extracted. Although the
number of extracted moving vehicles is much
fewer compared to the stationary ones, it has
represented essential dynamical information
for regional traffic. The uncertain class con-
tains either vehicle anomaly generated in the
detection step or vehicle entities whose trajec-
tory cannot be resolved by available temporal

tance, we extend and link the adjacent vehicle
regions to create the complete trajectory of ve-
hicle entities by taking into account the topo-
logical property of them. It is required to
achieve an optimized distribution for the tra-
jectory of each moving vehicle. The graph de-
scription (cf. Fig. 8) of vehicle regions (cf.
Fig. 7) can be established to support this task.
The edge of the graph is constructed to con-
nect each two vehicle regions the instances
from which guarantee a good image match.
Then, the extraction of vehicle trajectory
amounts to find an optimal path along each
connected nodes in the graph. Defining a cri-
terion to characterize an optimal path requires
allocating a cost value to each edge. We also
have to consider the relation between each
node evaluated above, since the nodes describ-
ing the same vehicle entity are likely to dem-
onstrate the best accordance of temporal con-
sistencewith geometric configurations. There-
fore we assign for each edge connecting region
i to j following cost:

W
C

d T T ThreshVij
ij

ij i j i ji

=
+ − − + −1 2 2( / ( ) ) ( ),min ,max θ θ

(3)

Fig. 8: Graph representation and analysis of
vehicle regions in Fig. 7, pink lines denote the
optimal path within the vehicle region graph
starting from the seed node (pink).
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(a)

(b)

Fig. 9: Vehicle classification result in respect of movement: a) nadir view dataset, b) oblique-view
dataset.
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Details of the numerical evaluation of the
test video are summarized in Tab. 1 and 2. The
velocity of moving vehicles derived by ana-
lyzing the trajectories is also not able to be
verified strictly. However, for first TIR dataset
the values lie within the velocity interval al-
lowed in the city area, and so are plausible. For
second dataset, since the oblique-view geom-
etry of the TIR camera has further deteriorat-
ed the data quality, a lower completeness of
vehicle detection particularly for moving class
is shown. The detected moving vehicles trav-
elled obviously slower than normal ones in the
city, as they were approaching the road cross-
ing when traffic light was red; second moving
vehicle exhibits a bit higher velocity than first
one, as the first one travelled behind a heavy
truck that is not detected and had to brake
early and strongly in order to avoid potential
dangerous situations; the third one has a low
averaged velocity due to tree occlusion even
worsen by the oblique-view mode; the fourth
moving vehicle became nearly stagnant, it is
supposed that it was then slowing down to
stop waiting for left-turn.

For the vehicle detection, certain errors
could emerge: (i) Over-segmentation, which
means that a mapped vehicle is detected as
two or more segments. (ii) Dormer and house
corners are falsely extracted due to the similar
appearance and lack of exploiting context in-
formation. So we can use GIS-database infor-
mation to restrict the search of vehicles only to
roads and/or parking lots in order to further
increase the correctness of vehicle detection.
For the co-registration of video sequences,
planar homography were also tested to wrap
the images. However, it delivered worse re-
sults than the affine model in our cases. It can
be stated that two reasons could be lead to this
situation. The first one is that fewer freedom

resolution, e. g., vehicles located near the mar-
gin of panorama creating by mosaicking.
Afterwards, we tried to derive the velocity for
moving vehicles based on their trajectories.
Basic information about infrared video data-
set used here can be acquired in advance:

– Pixel size (GSD) of the TIR image,
1. Nadir-view dataset: 0.5 m,
2. Oblique-view dataset: ca. 0.37 m at the

main horizontal road area.
– Two test urban areas are covered by

(i) Nadir-view dataset: 51 images in all,
FPS = 25 frames/sec, so the duration of
flight Δt = 2.04 s.

(ii) Oblique-view dataset: 55 images in all,
FPS = 25 frames/sec, so the duration of
flight Δt = 2.2 s

The length of car’s trajectories is obtained
via sample pixel coordinates, which we have
selected and read out from Fig. 10 empirically,
here the all trajectory curves are approximated
with 5 sample points.

It yields the following averaged velocities of
vehicle:

Dataset I: V1 = 58 km/h; V2 = 51km/h; V3 =
42 km/h; V4 = 36km/h; V5 = 41 km/h,
Dataset II: V1 = 24.9 km/h; V2 = 28.6 km/h;
V3 = 20.5 km/h; V4 = 12.8 km/h.

The detection and classification of stationary
and moving vehicles for movement indication is
evaluated in terms of completeness and correct-
ness against reference data, respectively. Due to
the lack of the simultaneously captured ground
truth, the reference data used for this evaluation
has been manually acquired from the same data
set as used for extraction. Hence, one has to
keep in mind that the above mentioned values
refer to the capabilities of a human operator
working with such kind of imagery.

Tab. 1: Evaluation of vehicle movement indica-
tion for nadir-view dataset.

Evaluation criteria stationary
vehicle

moving
vehicle

Correct decisions 112 5
False alarms 15 0
Missing decisions 26 1
Completeness [%] 81.2% 83.3%
Correctness [%] 88.2% 100%

Tab. 2: Evaluation of vehicle movement indica-
tion for oblique-view dataset.

Evaluation criteria stationary
vehicle

moving
vehicle

Correct decisions 72 4
False alarms 19 0
Missing decisions 23 3
Completeness [%] 79.1% 57.1%
Correctness [%] 75.8% 100%
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Fig. 10: Zoom into the trajectories of moving cars and their approximated curves: a) nadir-view
dataset, b) and c) oblique-view dataset.
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degrees allowed by affine transformation put
stronger constraints on the scene structure;
the second one is that the precondition of pla-
narity for homography is not well fulfilled in
the test scenes.

6 Conclusions and Future Work

In this work we have addressed issues related
to the automatic analysis of airborne TIR vid-
eo for vehicle movement analysis. Vehicles are
automatically detected and distinguished with
respect to their motion status. The vehicle ve-
locity can be derived subsequently as an im-
portant parameter for traffic flow analysis.
The proposed algorithm is driven by a step-
wise operational concept. Following the com-
pensation of sensor movement, the stabilized
map of detected vehicles from different tem-
poral tags is examined and multiple vehicle
instances are grouped to construct each trajec-
tory of vehicle entities based on temporal con-
sistence and geometric relation. This process
is realized by analyzing the distribution prop-
erties of vehicle instances under uniform tem-
poral-spatial framework and by optimizing
the trajectory topology supplemented by im-
age matching. An implementation of the algo-
rithm on two datasets of different view-angles
has delivered us promising results, especially
in terms of the detection correctness of both
moving and stationary vehicles. The velocity
of detected moving vehicles lies within the
reasonable interval allowed in urban areas.
Future works can be put on improving vehicle
detector in view of the complex emissivity of
objects in infrared spectrum and on exploiting
physically calibrated thermal information to
directly extract the object motion. Addition-
ally, the co-registration within this strategy
puts unmerited weight on the reference frame
that is the last frame of the videos, it would be
much better to have the reference not attached
to one particular frame but to a geo-referenced
system fixed to the ground.
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