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Summary: In this paper, an approach is proposed
to integrate hyperspectral image data, object and
height information into a new region-based binary
encoding algorithm for automatically deriving land
cover information. After georeferencing the differ-
ent data sets and deriving a normalized digital sur-
face model (nDSM), connected regions are extract-
ed from the hyperspectral data by applying an
edge-based segmentation algorithm. The mean
spectrum per region is considered representative
for the region. Five parameters are defined to de-
scribe the size and shape of the region, namely area,
asymmetry, rectangular fit, ratio of length to width,
and compactness. Together with the spectral infor-
mation these parameters and the corresponding
height values per region from the nDSM are con-
verted into a binary code. This code is then matched
to that of a training data set for classification.

In order to evaluate the suggested approach we
applied it to a test area in Oberpfaffenhofen, Ger-
many. A manually generated classification served
as reference. We also compare our result with the
well known support vector machine (SVM) classi-
fier. Based on our test data, we could show that the
inclusion of size, shape, and height improves the
classification accuracy of binary encoding. We
could also show that the new method obtained more
accurate and more efficient results when compared
to the SVM classification.

Zusammenfassung: Ein neuer Bindrcodierungs-
algorithmus zur gemeinsamen regionenbasierten
Klassifikation von Hyperspektraldaten und Digita-
len Oberflichenmodellen. In diesem Artikel schla-
gen wir einen neuen Ansatz zur automatischen
Klassifikation der Landbedeckung durch Integrati-
on hyperspektraler Bilddaten mit Héheninformati-
on vor. Der Ansatz setzt auf einer Segmentierung
der Bilder auf und beruht auf der Binarkodierung.
Nach der Georeferenzierung der verschiedenen Da-
tensdtze und der Ableitung eines normalisierten
Digitalen Oberflaichenmodels (nDOM) werden die
Hyperspektraldaten mit Hilfe eines kantenbasier-
ten Verfahrens segmentiert. Das mittlere Spektrum
wird jeweils als reprasentativ fiir das gesamte Seg-
ment betrachtet. Fiinf Parameter beschreiben die
GroBe und Form jedes Segments: Fliache, Asym-
metrie, Rechteckigkeit, Verhiltnis von Lédnge zu
Breite und Kompaktheit. Diese Parameter werden
zusammen mit der spektralen Information und der
Hohe aus dem nDOM in einen Binércode transfor-
miert, der dann dem entsprechenden Bindrcode von
Trainingsgebieten zugeordnet wird. Zur Evaluie-
rung des neuen Ansatzes wurden Tests mit einem
Datensatz aus Oberpfaffenhofen durchgefiihrt, eine
per Hand erstellte Klassifikation diente dabei als
Referenz. Wir haben unsere Ergebnisse auch mit
denen einer Support Vector Machine (SVM) vergli-
chen. Fiir unser Testgebiet konnten wir zeigen, dass
die Beriicksichtigung von Grofle, Form und Hohe
die Ergebnisse im Vergleich zur standardméBigen
Binarklassifikation verbessert, dabei hat die neue
Methode auch im Vergleich zu dem SVM Ansatz
genauere Ergebnisse geliefert und war dariiber hin-
aus deutlich schneller.
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1 Introduction

Hyperspectral imaging, also known as imag-
ing spectroscopy, is a relatively new technique
in remote sensing that generates hundreds of
images by spectral filtering and binning of the
received radiance into narrow bands (also
called channels) of different center wavelength
for the same area on the surface of the earth
(CuaNG 2003). In principle, standard classifi-
cation algorithms designed for multispectral
imagery can be directly applied to hyperspec-
tral data, because no theoretical limitations on
the number of bands exist, provided that
enough training samples are available. Other-
wise, the Hughes phenomenon is likely to be
encountered, see HuGHEs (1968). However, in
practice algorithms such as Maximum-Likeli-
hood (ML), even with improvements (BoLSTAD
& LiLLesanp 1991, Lee & LANDGREBE 1991),
tend to perform poorly when applied to hyper-
spectral imagery. Furthermore, in case of ML
the class mean vectors and the covariance ma-
trices have to be estimated from the training
data assuming a Gaussian distribution. There-
fore, a number of alternative classification
tools have been developed tailored to the
processing of hyperspectral imagery. Their
structure is not only driven by a need for effi-
ciency, but also by different types of pattern
recognition approaches, e.g., object-based
analysis, made possible by the high-resolution
spectral data.

The huge amount of information in hyper-
spectral imaging has always been a great chal-
lenge for scientific understanding and data
exploration. Recently research focused on the
retrieval of land surface variables (VERHOEF &
Bach 2007, DARvISHZADEH et al. 2008, MARTIN
et al. 2008), image classification and feature
extraction (Bazi & MEeLGant 2006, BarL &
Bruce 2007, HemeN et al. 2007, Hsu 2007,
DUARTE-CARVAJALINO et al. 2008, Prasap &
Bruce 2008, Rajan et al. 2008), and pre-
processing methods for classification, e.g.,
band selection and data reduction (MARTINEZ
et al. 2006, MArTINEZ-Uso et al. 2007, RoGGE
et al. 2007, Serprico & Moser 2007, DEmMIR &
Erturk 2008). Since the first hyperspectral
sensor became available in 1983 (Cniou 1984)
a number of studies (e. g., BRuce & L1 2001,
NasciMento & Dias 2005) were also con-

cerned with reducing computational cost and
improving algorithmic efficiency and such
studies continue until today. These investiga-
tions mainly focused on the spectral informa-
tion contained in the data and achieved great
successes in their research fields.

The advent of advanced processing tech-
niques and high speed computers have led to
the possibility of supplementing hyperspectral
image data with information about different
kinds of objects during classification, for ex-
ample, size and shape. Other data sources,
e. g., digital surface models, provide height in-
formation and can also be integrated into the
classification. Instead of focusing exclusively
on the spectral information, several studies
began to focus on methods for the representa-
tion of spatial information in hyperspectral
data (Huang et al. 2007), the spectral-spatial
classification methods (ZHaNG et al. 2006,
Camps-VALLS et al. 2006, MARCONCINI et al.
2009, Jia & RicHarDs 2008), and the use of
multisource data for hyperspectral classifica-
tion (HEPNER et al. 1998, GamBAa & HousHMAND
2000, GREIWE & EHLERS 2005, FEINGERSH et al.
2010). These studies show that additional in-
formation (e. g., spatial characteristics) can be
very helpful during the application of hyper-
spectral data, however some are computation-
ally rather expensive.

Our research considers hyperspectral im-
age analysis from a broader perspective than
the individual methods listed above. We focus
on the simultaneous analysis of spectrum,
size, shape and height from hyperspectral im-
ages and data from digital surface models
(DSM). The current paper integrates a region-
based classification approach with a tradition-
al hyperspectral processing method (binary
spectral encoding) to enhance the information
extraction from remote sensing data. Binary
spectral encoding is well known as a simple,
effective hyperspectral analysis method with
very small computational load in classifica-
tion, search of similar spectra and identifica-
tion of mineral components (MAazgr et al.
1988). In the proposed method the information
present in the input data after segmentation,
1. e., spectrum, size, shape, and height per re-
gion, is translated into binary codes. Based on
training data land cover classes of interest to
the user are transformed into binary codes,
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too. Subsequently, an algorithm to evaluate
the similarity between the binary codes of re-
gions and land cover classes is applied. The
suggested procedure can be considered a use-
ful pre-processing method for further image
analysis, as it has proven to be an efficient
classifier in our experiments.

Following this introduction, we describe
the employed binary encoding method in Sec-
tion 2. Especially the representation and cod-
ing of the different kinds of features and the
computation of the signature distance are ex-
plained. Practical tests obtained using a test
area in Oberpfaffenhofen, Germany, illustrat-
ing the proposed methods are presented in
Section 3, and finally some conclusions are
drawn.

2 Methods
2.1 Overview

Fig. 1 shows the overall flowchart of the sug-
gested method. Several pre-processing steps

HyMap
image

v ' '

for the hyperspectral images (we use HyMap
data in our work, see Cocks et al. 1998 for a
description of this sensor) and the DSM data
are performed, e. g., the geometric, radiomet-
ric and atmospheric correction of the HyMap
images and the generation of the normalized
DSM (nDSM) from the given height data by
first generating and then subtracting a digital
terrain model (DTM) from the DSM (note that
a DSM represents height including objects
such as buildings and vegetation, whereas a
DTM does not and a nDSM only contains
these objects). Afterwards, image regions are
extracted from the HyMap image using an
edge-based segmentation algorithm. Then, the
mean spectrum per image region is computed,
as it is considered as a representative spectral
description of the region. Subsequently, five
descriptors, defined to represent object size
and shape, are calculated for each region:
Area, asymmetry, compactness, rectangular
fit, and ratio of length to width. While it can be
argued that size and shape descriptors may be
less suitable in the presence of segmentation
deficiencies — e. g., area may not be an appro-
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Fig. 1: Project flow chart.
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priate descriptor in case of over- or under-seg-
mentation — such descriptors have been suc-
cessfully used in image classification in the
past (MEHTRE et al. 1997, MoHaNTY et al.
2005), and the descriptors selected here were
carefully evaluated and have shown to be use-
ful for our purposes.

After intersecting the nDSM and the region
borders, for each region the average heights
from the nDSM are grouped into three classes;
all the information is finally converted into a
binary code. This code is then matched to the
target codes derived from training data for
classification.

2.2 Segmentation

A segmentation algorithm is used with the ex-
pectation that it will divide the image into se-
mantically significant regions useful for fur-
ther processing. Several segmentation ap-
proaches have been proposed in the literature,
e. g., LE MoIGNE & TiLtoN (1995), KARTIKEYAN
et al. (1998), AcHaryya et al. (2003), DUARTE-
CarvajaLINO et al. (2008), and comparisons
were carried out to evaluate the quality of seg-
mentation (Trias-Sanz et al. 2008). Since seg-
mentation is only considered a pre-processing
step in our research, we selected a simple
edge-based segmentation and merging algo-
rithm (RoBinsoN et al. 2002), which according
to visual inspection performed well on our test
data. After subdividing the image into a large
number of small segments based on the Mum-
ford-Shah functional (MumrorD & SHAH
1985), the algorithm iteratively merges adja-
cent segments by combining spectral and spa-
tial information. Merging proceeds if the algo-
rithm finds a pair of adjacent regions, i and j,
such that the merging cost 7, ,is less than a pre-
defined threshold A:
lo,|+|o
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where O, and O, represent the two considered
segments i and J, |01.| and 10| describe the area
of 0, and O, u, and u, are the vectors of pixel
mean grey values (mean spectra) of O, and O,

|| u;uj" is the Euclidean distance between the
mean  spectra, and length(6(0,0)) is the
length of the common boundary of O, and O..

2.3 Binary Encoding for Image
Regions

Binary encoding is a standard technique in
classifying hyperspectral images (e. g., Jia &
RicHARrDs 1993). The basic idea is to reduce
the large amount of data while preserving as
much information as possible. Standard bina-
ry encoding reduces the information of a pixel
(often represented as 8 bit per channel) into
one or two bits per channel only. In our re-
search we consider regions rather than indi-
vidual pixels, and our code for an image re-
gion is 2/+28 bits long, where L is the number
of spectral channels of the hyperspectral im-
age. The code consists of four parts, i. e., spec-
trum, size, shape, and height. The spectral
amplitude and slope are represented by 2L
bits, the size and shape of the segment is coded
by 25 bits, and the relative height of a segment
is represented by 3 bits (as will become clear
below, size and shape as well as relative height
could have been coded with less bits, but in
this paper we are not concerned with mini-
mum bit encoding; we have thus chosen a
somewhat redundant but simple coding
scheme).

2.31  Spectrum

According to Mazer et al. (1988), spectral
mean values (mean grey values over all avail-
able channels) are calculated from the indi-
vidual channel grey values in standard spec-
tral binary encoding. A single spatial resolu-
tion element of the image (pixel) is denoted by
an L-dimensional vector, where the indices
(4, ) refer to the spatial location of the pixel
within a given scene and X(!) describes the
grey value of channel /. Defining the scalar
quantity v, as the spectral mean of pixel (i, ),

v 5B @

an L-bit binary code vector F can be con-
structed from
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0, X.(l)-v, |<0
sz{ [”() ’J 1=12,....L 3)

[‘j bl
L[X,(1)-v,]=0

The constructed vector is a binary represen-

tation of spectral amplitude; however, consid-

erable information is contained also in the lo-
cal slope at each measured channel. Therefore,

an additional L-bit code vector ¥;" 1is con-
structed from
— [0, [X.(I+D-X.(I-D]<0
= [X, (T 1) =X, (=] 1=1,2,...,L
v I, [X;(+D)-X,;(-D]=0
@

Here X,(0) = X,(L),X,(L+1) = X (1), these
two code vectors Y and Y;* are then con-
catenated to form a single, 2L-bit code vector
7,/ , which is taken to be the binary code word
representing the spectrum of pixel (i, ).

In our region-based approach we use the av-
erage grey values per region for each channel
in equations (2)—(4) rather than the grey val-
ues of the individual pixels, and then proceed
in the way described above.

Size and Shape Parameters

The size and shape of a segment are represent-
ed by five descriptors: Area, asymmetry, com-
pactness, rectangular fit, and ratio of length to
width; they are explained in detail below; see
also Benz et al. (2004). Although these de-
scriptors are somewhat correlated as they en-
code similar information (e.g., asymmetry
and length/width ratio) we have opted to use
all five descriptors for our study based on the
experimental results. Each descriptor has been
encoded using 5 bits.

Area

The area of a region is measured as the number
of pixels covering it.

Asymmetry

The lengthier a region, the more asymmetric it
is. As we can see in Fig.2, an ellipse is ap-
proximated to each region and the asymmetry
is expressed as 1 minus the ratio of the length
of minor axis # and the length of major axis m
of this ellipse:

Asymmetry =1— n )
m

Fig.2: The bounding box and ellipse of an im-
age object (see also length/width ratio below).

The feature value increases with the asym-
metry of the region, and the asymmetry value
for a segment ranges from zero to one.

Compactness

Compactness is defined in our research as the
ratio of the area 4, of a polygon representing
the image region to the area of a circle with the
same perimeter. The computation of polygons
are obtained from the borders of each region
and then generalized by means of the Doug-
las-Peucker algorithm (DoucLas & PEUCKER
1973). The following formula is used to calcu-
late the compactness of the selected polygon:

4n A
» (6)

Compactness = ————
P Perimeter’

Perimeter is the sum of the lengths of all
edges which form the polygon. The compact-
ness of a polygon ranges from zero to one and
a circle has the highest compactness value.

Rectangular fit

A first step in the calculation of the rectangu-
lar fit is the creation of a rectangle with the
same area as the considered region. In the cre-
ation of the rectangle the proportion of length
and width of the bounding box of the region
(see Fig.2) is taken into account. Then, the
area of the rectangle not covered by the image
object 4, is compared with the area 4 covered
by the image object. The better the fit the larg-
er is the value, 1 stands for a perfect fit.

RectangularFit =1— % 7
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Length to width ratio

The length to width ratio is approximated us-
ing the bounding box (see Fig.2 and Russ
2006):

y :% ®)

Parameters a and b are length and width of
the region’s bounding box, respectively, f is
the degree of filling, which is the area 4 cov-
ered by the region divided by the total area a *
b of the bounding box. The minimum value of
the length/width is 1.

Encoding Size, Shape and Height

Encoding for the size and shape descriptors
follows a similar way as for the spectra. The
values of each descriptor are grouped into five
bins. After constructing a histogram, bounda-
ries are set at 20 %, 40 %, 60 % and 80 % of
the total number of pixels (see Fig. 3 for an ex-
ample of rectangular fit). In this example the
peaks in the histogram are caused by different
objects: The peaks around 0.1 mainly by con-
nected roads, the peaks around 0.4 represent
the majority of the image object, the peak
around 0.55 is caused by regular cropland,
while the peaks around 0.6 are mainly caused
by buildings, and parking lots. The number
and position of the bin boundaries was select-
ed based on prior tests. Note that instead of
using fixed boundaries, thresholds could have
also been derived from the histogram minima.
However, such an approach would have result-
ed in a more unstable procedure (consider
various side minima in a local neighborhood)
and a variable length code. Therefore, we have
opted to work with fixed thresholds. Finally, a
five digit code is constructed for each descrip-
tor of a region: “1” is set for the bin the de-
scriptor belongs to, “0” is used elsewhere. For
example, 00100 means the descriptor lies in
bin 3 of the histogram, i. e., between 40 % and
60 %.

The codes for the heights are determined
from the average nDSM heights per image re-
gion. Heights are classified into three bins
(again, this number was selected based on
prior tests): Height less than 1.5 meters, height
between 1.5 and 5 meters, and height larger

than 5 meters. The codes are then generated in
the same way as for size and shape, e. g., “001”
means that the relative height of the consid-
ered region is larger than 5 meters.

The codes for the features size, shape, and
height are concatenated in a vector of 28 bit
length,

Z,=[Z.().Z,2).....Z,(28) ©)

The elements Z(1) to Z(25) encode size and
shape in 5-digit codes each, Z(26) to Z(28)
encode height.

2.4 Encoding the Land Cover
Classes

The target land cover classes (or targets) need
to be coded in a similar way as the input data.
While in principle all necessary values could
be learnt from training data, in our research
we use a combination of empirical values de-
rived from training data (e. g., for the spectra)
and of general knowledge about the land cover
classes under consideration (for size, shape,
and height). The latter capture general state-
ments such as ‘buildings have a height of at
least 3 meters’ or ‘forests are more likely to
have lower compactness than grassland in a
city’. While these statements are assumed to
be valid for more than one test scene, adjust-
ments may obviously be necessary if data
showing different landscapes etc. are to be
processed.
As an example consider the class ‘Industrial
buildings’:
® The area of industrial buildings is not very
large (compared to that of other classes); the
buildings are likely to have different sizes;
® Industrial buildings have regular shapes;
the compactness and rectangular fit are
comparatively high;
® Industrial buildings are often higher than 5
meters.

Translated to binary codes and considering
the existence of a considerable number of ir-
regularly shaped buildings, we assume the
area of industrial buildings to fall into bins 1
or 2, compactness to be mapped into bins 3, 4,
or 5, rectangular fit to fall into bins 3, 4, or 5,
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Fig. 3: The encoding rule for rectangular fit.

Tab. 1: Codes for the land cover classes used in our research.

Bin(s) of histogram
Size and shape Height

Number of > > Q b jun

.. =3 ] ] @ (2]

Land cover class training e < = ] &

samples g B 0% 3

& g =] £

< 2 g &

17} = =
Stockyard or parking lot 4 1-2 1 4-5 4-5 1-2 1
Surface sealed with concrete 6 1-2 1-4 2-5 1-5 1-3 1
Street 8 1-2 4-5 1-2 1-3 5 1
Runway 3 4 5 1 1 5 1
Tennis ground 3 1 1-2 5 3-5 1-2 1

Farmhouse 8 1 1-4 2-5 1-5 1-3 1-3
Mixed trees™* 6 1-4 1-4 1-5 1-5 1-5 1
Industrial buildings 14 12 1-5 3-5 3-5 1-5 2-3

Industrial area 9 1-3 1-5 1-5 1-5 1-5 1
Cropland 28 2-4 1-5 1-5 1-5 1-5 1
Grass 31 2-4 1-5 1-5 1-5 1-5 1

* trees were not captured as part of the DSM, therefore, the corresponding regions are assumed to
feature a low height value (see Section 3.1 for more information).
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and height to fall into bins 2 or 3. For the
asymmetry and length/width ratio, we assume
that all bins (bin 1 to bin 5) are possible.

In a similar way codes were constructed for
all relevant land cover classes (see Tab. 1). Re-
ferring to the land use and land cover catego-
ries put forward by USGS (ANDERsoN et al.
1976) and taking into account our test area
(see Section 3), 11 classes were chosen: Stock-
yard or parking lot, Surface sealed with con-
crete, Street, Runway, Tennis ground, Farm-
house, Mixed trees, Industrial buildings, In-
dustrial area, Cropland, and Grass. From the
table it can be seen that while for some classes
the additional size, shape, and height informa-
tion should be of considerable value (e. g., for
streets and runways), other classes will not be
significantly improved by integrating the ad-
ditional information (e.g., industrial area,
cropland, grassland). This fact reflects the
variable size and especially shape of these
classes and should not been seen as a counter-
argument to region-based approaches as such.

2.5 Code Matching

The dissimilarity measure we use to deter-
mine spectral signature matches is the Ham-
ming distance (Hamming 1950, ViTeErBl &
OMURA 1979):

D.(T.7) =3 T(NXOR)Y, (1) (10)

which is seen to be just a 2L sum of bit-wise
exclusive-OR operations. Indices i and m refer
to the considered region and the target under
consideration, respectively. In the actual im-
plementation of this algorithm, the Hamming
distances D and D% for the two components
of the vectors ¥, and Y, being compared (see
equations (3) and (4)) are computed separately.
This gives the user some additional flexibility
in choosing weights for amplitude and slope
information. This distance measures the dis-
similarity between the two binary vectors. If
the distance equals zero, then these two vec-
tors are identical.

Different from the spectral data, the opera-
tor used in the similarity evaluation of size,

shape, and height descriptors is the bit-wise
AND operation, which is computed from

D,Z.7,) =6~ Z, (X AND)Z, (I

=1

1

The AND operation is more like a mask op-
eration. For one descriptor (5 codes for shape,
3 codes for height), only 1 (matched) or 0 (un-
matched) can result from the calculation. As a
total of six descriptors (five size and shape de-
scriptors, and one height descriptor, represent-
ed by 28 bits altogether) are used in our re-
search, D, equals zero if all descriptors are
matched, while D, equals 6 if all descriptors
are unmatched. Thus, D, measures dissimilar-
ity, as does the Hamming distance. In the ac-
tual implementation of our algorithm, the
separate distances D and Dj are computed for
for height and for size and shape.

Using proper weights (see Section 3 for a
discussion on how to select them), we now
combine the different dissimilarity measures
into the final measure D, which represents the
dissimilarity between the image object and the
target:

D =D +D; +wD; +w,D; (12)

3 Resulis

In order to evaluate the proposed method, we
tested it using data from an area in Ober-
pfaffenhofen, Germany. The area was mapped
manually by an experienced human operator
using the composite true color image (Bands
18, 8 and 1 of the HyMap image for red, green
and blue channels, the center wavelengths of
these bands are 735 nm, 570 nm, and 465 nm)
to create reference data. This result was then
compared to different versions of the new
method and also to the results of a number of
established classification algorithms. This sec-
tion contains the results of these tests.

3.1 Study Area and Data

The study area Oberpfaffenhofen is located in
the south of Germany. The available digital
surface model of this region has a resolution of
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Fig.4: The aerial photo of 1994 and the manual reference interpretation of the HyMap data of

2004.

0.5 meters and was generated by manual ster-
eo measurements from a true color stereo pair
of June 1994 at a scale of 1:13.000. While
buildings were captured as part of the DSM,
trees were not. HyMap data of this area was
captured at 1:00 pm, June 7, 2004 (thus, 10
years later) at a flying altitude of 2580 m above
sea level (corresponding to approximately
2000 m above the ground), and a flying direc-
tion from south to north (3.6°). These data
have a ground resolution of 4 meters and 126
channels. The digital surface model (DSM)
and the HyMap image are both available for an
area of approximately 4.6 km?. Technical de-
tails of the HyMap sensor can be found in
Cocks et al. (1998). Fig.4 shows the aerial
photo of 1994 of the test area on the left and
the manual reference interpretation of the Hy-
Map data of 2004 on the right. As can be seen,
the classes cover a significantly different
amount of terrain, which somewhat reduces
the value of the reference map, but conclusions
as to the classification accuracy can still be
drawn. Also, there have been some changes
especially in the construction of new build-
ings within the 10 year difference of both data
sets, part of the changes are marked by red re-
gions on the aerial photo of 1994.

3.2 Experimental Results

Results of the New Method

We first tested the proposed new method in
our test area with a number of training sam-
ples (and optimum weights, see Tab. 1 and be-
low). In the segmentation step, a value of 88
was used for A (see eq. (1)) based on a few
tests, resulting in an average region size about
200 pixels. Note that the areas which changed
during the time difference of 10 years between
the two image acquisitions (depicted red in
Fig. 4, left) are masked out and have no effect
on the results.

Fig.5 shows the HyMap RGB composite
image and the classification result using the
proposed method. Comparing the result to the
reference classification (see Fig.4, right) the
first qualitative impression seems to be rather
convincing.

The corresponding error matrix is shown in
Tab. 2. From the table we can see that despite
the good visual impression of the results the
overall classification accuracy is actually not
very high, i.e., 76.0 % with a kappa index of
0.677. Since about 2/3 of the pixels belong to
either cropland or grass, we also report the
overall accuracy for the remaining classes, it
amounts to 69.9%. Incorrect classifications
can be found for Street, Farmhouse and Indus-
trial area, these are the main reasons affecting
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Fig.5: The HyMap RGB composite image and the classification results derived using the pro-

posed new method.

the overall accuracy. The ground resolution of
only 4 meters of the HyMap image is seen as
the main reason for the relatively low classifi-
cation accuracy of Street and Farmhouse, the
resolution is not sufficient to extract these rel-
atively small objects. The low accuracy of In-
dustrial area is probably due to the variability
of this land cover class, which may contain in-
dustrial buildings, streets, small grass areas
etc. Another potential reason for the relatively
low classification accuracy is the time differ-
ence between image and height data: Several
buildings present in the HyMap image do not
exist in the DSM.

Setting the Weights

As was mentioned in Section 2.5, the spectral
and the additional information (size, shape,
and height) need to be properly weighted with
respect to each other to obtain good results.
Ideally, different weights should be chosen for
each land cover class, e. g., based on the vari-
ability of the codes (see Tab. 1).

In order to investigate the impact of the
weights w_for size and shape and w, for height
on the classification performance, we system-
atically tested different set-ups. The results
are shown in Fig. 6, the upper half shows the
overall accuracy computed based on the train-
ing data to check the plausibility, while the
lower half shows the overall accuracy with re-
spect to data not used during the training

phase. In Fig. 6, the case of w =0 and w, =0
shows the classification result only using the
spectral information. With the help of size,
shape, and height the classification accuracy
of the training data increases moderately from
93 % to 94 %, while for the test data the accu-
racy increases more significantly, namely
from 69.0 % to 76.0 % (see Tab. 3). As can be
seen, best results for the overall accuracy are
reached for w, =2 and w, = 4, these values are
used in the remainder of this paper (they have
also been used for the results presented in
Fig. 5 and Tab. 2).

It should be noted that the relatively large
difference between the results for the training
and the reference data points to a potential
over-fitting problem. This issue can be further
investigated only by employing more and dif-
ferent data sets, which we do not have at hand.
As a consequence, we are not able to fully as-
sess the merits of the new method. However,
we believe that our results can still be used to
investigate its potential and to compare it with
more traditional classification schemes.

Comparison with Standard Methods

In order to put the obtained results into con-
text, we compared them to pixel- and region-
based standard binary encoding and to a clas-
sification based on support vector machines
(pixel- and region-based as well as including
size, shape, and height features).
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Fig. 6: The classification accuracy using different weights (see text for details).

The support vector machine (SVM) is a
universal learning machine for solving classi-
fication or regression problems (SmoLa & ScH-
OELKOPF 1998, VaprNik 1998). In remote sensing
applications the Gaussian radial basis function
kernel K(x,x,) = exp(—y|x-xi|’) proved to be ef-
fective with reasonable processing times, it’s
adopted in this paper to compare the results of
the new method to those obtained with a
standard classification scheme. In SVM the
user needs to select two parameters: The pa-
rameter y that defines the width of the Gaus-
sian kernel function and a regularization pa-
rameter controlling the trade-off between the
maximization of the margin between the train-
ing data vectors and the decision boundary
plus the penalization of training errors (BURG-
Es 1998). In order to obtain suitable parameters
for the SVM classification, a grid search (RABE
et al. 2009) is advisable, as default settings
normally yield poor results.

SVM and binary encoded were both tested
in three different versions: Pixel-based, region
based using spectral information only, and re-
gion-based using spectral and spatial (size,
shape, height) information. Of course, the last
binary encoding run corresponds to the new
improved method. In the SVM classifier we
chose the radial basis function (RBF) kernel

and all 126 channels. In all cases identical
training areas were used, again the areas
which had changed between image acquisiton
were masked out, and all region-based meth-
ods are based on the same segmentation, as
described in Section 2.2. All experiments
were performed on a PC with a 2,53 GHz Intel
Core 2 Duo CPU and 4 GB RAM.

The obtained results are visualized in Fig. 7.
and Tab. 3, containing the user’s and the pro-
ducer’s accuracy for each class, the overall ac-
curacy, the kappa index, and the computing
times for the different steps.

From Tab. 3, we can find that among all ap-
proaches, the proposed method has the highest
overall classification accuracy and kappa in-
dex, 76.0 % and 0.667, respectively, while the
pixel based binary encoding classification has
the lowest overall accuracy and kappa index,
50.7% and 0.348, respectively. The region-
based approach significantly improves the bi-
nary encoding classification accuracy by
18.3 %, note however, the wrongly classified
road depicted in red in the lower part of Fig. 7
(d). With the help of the additional features
shape and height, the classification accuracy
can be improved by a further 7.0 %. The same
type of improvement cannot be reached using
SVM. On the other hand, the pixel-based SVM
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(a) (b)

(d) (e)

©

®

Fig.7: Results of the classification using different approaches: (a) pixel-based SVM, (b) standard
pixel-based binary encoding, (c) region based SVM using spectral information only, (d) region-
based binary encoding using spectral information only, (e) region-based SVM using spectral and

spatial information. (f) proposed new method.

classification already performed quite well,
and shows almost the same classification ac-
curacy (73.1 %) as the region-based SVM clas-
sification (73.2 %). The SVM classifier associ-
ated with shape and height information
reached virtually the same classification accu-
racy (72.0 %). Similar trends can be observed
for the results of the built-up areas, i.e., not
considering the 2/3 of the area covered by cro-
pland and grass. It should be noted that for all
methods the accuracy figures as such are not
extremely high, which could be a consequence
of the Hughes phenomenon (HuGHEs 1968, see
also Hsu 2007). Improvements are possible ei-
ther by increasing the number of training sam-
ples or by reducing the number of employed
channels.

With the exception of pixel-based binary
encoding the reported accuracy figures are
relatively similar, however, the computing
times are not. The reason is the grid search to
find suitable parameters for the SVM training
(see Tab. 3). The grid search accounts for 70 to
90 % of the whole computing time and thus
significantly slows down SVM classifiction.
From the performance point of view, the newly
developed binary encoding method thus has
clear advantages.

Overall, the binary encoding result is con-
sistent with our expectations: Ground objects
with similar spectra do not always belong to
the same class. For example, if the classifica-
tion only considers the spectrum, a building
with a concrete roof would probably be classi-
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Tab. 3: Classification results.

Classification method SVM Binary SVM, Binary SVM, Proposed
encoding only enco- spectral new
spectral ding, and method
only spatial
spectral
Pixel based Region based
(see Fig. 7) a b c d e f
Accuracy (%) U | P> | U= | P> | U* | P> | U* | P | U* | P> | U* | P
SP 18 | 64 7114 |23 |60 | 36| 92|46 |8 | 50 | 92
SC 64 | 68 | 19 | 24 | 55 | 66 | 51 | 59 | 59 | 75 | 60 | 60
S 54 | 31 | 29 8 | 56 | 21 | 38 | 32 | 58 |33 |73 |25
73 | 74 | 59 | 74 | 66 | 94 | 73 | 94 | 87 | 94 | 76 | 94
TG 75 | 77 41710 |69 | 73| 78|79 | 75| 77T | 77T | 79
F 26 | 25 4 | 34| 38 50122 |28 |30 |24 | 24
T 87 | 73 | 32 | 77 | 81 | 78 | 74 | 79 | 84 | 75 | 74 | 719
B 86 | 67 | 79 | 27 | 61 | 55 | 69 | 60 | 83 | 67 | 76 | 68
I 25 | 32 | 24 | 8 | 33 | 27 |42 | 35| 42| 49 | 41 | 43
C 83 | 85 | 58 | 40 | 84 | 82 | 80 | 77 | 72 | 86 | 82 | 85
G 82 | 81 | 66 | 74 | 78 | 87 | 81 | 75 | 80 | 72 | 82 | 85
Accumulated | Overall [%)] 73.1 50.7 73.2 69.0 72.0 76.0
i;;‘g:cy kappa index 0.641 0.348 0.638 0.596 0.627 0.677
Overall® [%)], 67.0 36.1 68.2 67.5 70.7 69.9
built-up areas
Computing segmentation - - 0’58 0’58 0’58 0’58
tme grid search 18°12 - 718 - 724 -
[min]
classification 3’31 5’33 121 1’12 143 121
total 21°43 5’33 9’37 2’10 10°05 2’10

@ U: User’s accuracy

> P: Producer’s accuracy

¢ Accuracy in build-up areas: Refers to the classification accuracy except Cropland and Grass
SP: Stockyard or parking lot; SC: Surface sealed with concrete; S: Street; R: Runway; TG: Tennis ground;
F: Farmhouse; T: Mixed trees; B: Industrial buildings; I: Industrial area; C: Cropland; G: Grass

fied as Surface sealed with concrete, while a
building covered by green plants would prob-
ably be classified as Grass or Cropland. In our
method, with the help of height information,
this kind of mistakes can be minimized. Tak-
ing the class Street as another example, the
spectrum of road and the parking lot adjacent
to the road are often very similar. If we do not
consider the regular shape of the parking lot
and the length of a road, these two types may

readily be confused during -classification,
whereas shape information can help to im-
prove the results. Obviously, this general line
of argumentation should also hold for SVM
classification; however we did not observe any
related improvements in our experiments. At
this point the reason for this observation is not
clear, finding an answer will be part of our fu-
ture research.
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4 Conclusions

Based on the idea that integrating multi-source
remote sensing data may improve automati-
cally derived interpretation results, a new bi-
nary encoding classification method was pre-
sented. In this method regions rather than in-
dividual pixels are considered as basic units
and size, shape, and height information for
each segment are integrated into the classifi-
cation. The information itself is encoded into
a 280 bit code, which makes the method useful
for hyperspectral image data.

The results obtained from our study area
show that incorporating region-based infor-
mation and also spatial additions significantly
improve binary encoding, and that the new
method, while somewhat suffering from a lack
of representative training data, achieves high-
er accuracy and efficiency than the SVM clas-
sification. This is particularly interesting, as in
binary encoding a portion of the available ra-
diometric information is knowingly sacrificed
in the coding step, whereas the SVM makes
use of the full radiometric resolution of the
image data.

In future, more analysis on refining the se-
lection of shape descriptors and the similarity
evaluation algorithm is necessary, as well as
investigations into band selection and feature
reduction to better cope with the Hughes phe-
nomenon. We also plan a more comprehensive
comparative experiment in a larger study area,
and to introduce texture measures into our
new method.
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