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serline or two-dimensional projector and one
or two cameras, b) time-of-light approaches

for laser scanning devices or time-of-light

cameras. While the time-of-light methods di-
rectly measure the depth values respectively
distances between the object and the sensor by
time measurements, the structured light ap-

1 Introduction

The three-dimensional reconstruction of
static scenes has been a very important re-
search area over the last three decades. For
industrial applications mainly two methods
are in use today: a) Structured light with la-

Summary: This article describes the dense stereo-

scopic 3D reconstruction of surfaces which offer

only low texture by employing a global matching

algorithm with smoothness-based priors in an en-

ergy minimization framework. The envisaged ap-

plication areas are high speed image sequences of

dynamic processes where the projection of struc-

tured light is not applicable. The lack of depth cues

on the measured object normally leads to very

sparse and often false reconstructions if common

local matching algorithms like cross correlation or

least squares matching are employed. Within this

AiF funded project an operational photogrammet-

ric stereo measurement system has been developed

consisting of a stereo rig with high speed cameras

and a global matching algorithm. This system al-

lows for the irst time a dense reconstruction of sur-

faces with low texture in high speed image se-

quences. Quantitative and qualitative results for

two test data sets demonstrate that the determina-

tion of a dense point cloud of low texture objects

without employing structured light is possible.

Zusammenfassung: Dichte 3D-Rekonstruktion

von Oberlächen mit geringer Textur unter Anwen-

dung eines Energieminimierungsverfahrens mit

Glattheitsannahmen. Dieser Artikel beschreibt die

dichte stereoskopische 3D-Rekonstruktion von

Oberlächen mit geringer Textur unter Anwendung

eines globalen Zuordnungsverfahrens mit Glatt-

heitsannahmen in einem Energieminimierungsver-

fahren. Der angestrebte Einsatzbereich sind High-

speed-Bildsequenzen dynamischer Vorgänge, bei

denen die Projektion von strukturiertem Licht nicht

möglich ist. Der Mangel an geeigneten Merkmalen

am Messobjekt führt bei der Verwendung von übli-

chen lokalen Zuordnungsverfahren wie Kreuzkor-

relation oder Kleinste-Quadrate-Bildzuordnung

normalerweise zu einer dünn besetzten und oft fal-

schen Rekonstruktion. Im Rahmen dieses von der

AiF geförderten Projektes wurde ein operationell

einsetzbares photogrammetrisches Stereomesssys-

tem bestehend aus einem Stereorack mit High-

speed-Kameras und einem globalen Zuordnungsal-

gorithmus entwickelt. Dieses System ermöglicht

erstmals eine dichte Rekonstruktion von Oberlä-

chen mit geringer Textur in Highspeed-Bildse-

quenzen. Quantitative und qualitative Ergebnisse

für zwei Testdatensätze demonstrieren, dass die

Bestimmung einer dichten Punktwolke von Objek-

ten mit geringer Textur möglich ist, ohne struktu-

riertes Licht zu verwenden.
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speed image sequences. There are no high ac-
curacy requirements as the focus is on a dense
and complete reconstruction of the surface of
dynamic objects for the analysis of their defor-
mation and motion behaviour. Additionally,
for operational reasons the algorithm should
be relatively fast which means the user should
obtain the results within a few seconds. Also,
it should be able to handle image sizes in full
HD resolution (1920× 1080 pixels). The de-
scribed work was supported by AiF Arbeits-
gemeinschaft industrieller Forschungsverei-
nigungen “Otto von Guericke” e.V. and thus
focuses on technology transfer of innovative
solutions.
An overview of local and global match-

ing algorithms is given in section 2. A global
matching algorithm using smoothness-based
priors in an energy minimization framework,
which allows a dense reconstruction of surfac-
es with low texture and which was developed
to solve the given task, is presented in section
3. Quantitative and qualitative results for the
reconstruction of two test data sets are shown
in section 4. Finally, in section 5 conclusions
are drawn and an outlook for future develop-
ments is given.

2 Matching

2.1 Local Matching Algorithms

Traditional stereo matching methods identify
corresponding image points by analyzing the
similarity of image patches. Typically, a ref-
erence window around the pixel of interest
is compared to a search window over a cer-
tain search space. In a calibrated setup with
two cameras the search space can be reduced
to searching along epipolar lines which com-
ply with corresponding image lines in recti-
ied epipolar images. The search space can be

further reduced with respect to the expected
depth range so that it is not necessary to search
along the entire line. One of the simplest simi-
larity measures is the sum of absolute differ-
ences (SAD):

SAD I x y I x y
r l

x y WS

= −
∈

∑ ( , ) ( , )
( , )

(1)

proaches obtain depth information from tri-
angulation. Using time-coded light patterns
like grey code or time-varying patterns like
light stripes an unambiguous correspondence
for each image pixel is strived for (Battle et
al. 1998, Pagès et al. 2003). These approaches
operate in the time domain as several subse-
quent measurements are necessary for a com-
plete and highly accurate reconstruction of the
object or scene. Therefore, these methods are
not applicable for dynamic scenes where the
object changes its shape and/or position fast
in relation to the time that is necessary for
recording. Generally, only two dimensional
sensors have the potential to capture 3D de-
formation and motion of a 3D object. An ap-
proach operating in the space domain is the
conventional photogrammetric setup applying
at least two cameras. Often artiicial patterns

are projected onto the scene to support unam-
biguous matching even in weakly textured im-
age regions (Kang et al. 1995) which can also
be applied to dynamic scenes by reconstruct-
ing each frame pair independently. In Davis et
al. (2005) and Zhang et al. (2003) a spacetime
stereo approach is presented which incorpo-
rates the time and space methods into a unify-
ing framework.
In this paper we present an operational pho-

togrammetric stereo measurement system
consisting of a stereo rig with high speed cam-
eras and a global matching algorithm which
is able to produce a dense point cloud of ob-
jects which exhibit low texture. Dense is relat-
ed here to the aim of determining a disparity
value for every pixel of the image. The envis-
aged application areas are high speed image
sequences of dynamic processes. In particu-
lar, the surface of an airbag during deploy-
ment within a crash test (impact test) should
be reconstructed. To our best knowledge no
operational projector is available on the mar-
ket which is able to project a pattern to sup-
port correlation because very strong illumi-
nation and very high frame rates are needed
during the crash tests. Thus, structured light
approaches are not applicable. Also especially
prepared airbags with imprinted patterns are
not feasible since airbags from mass produc-
tion are used during the tests. Our developed
system allows for the irst time a dense recon-
struction of surfaces with low texture in high
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window has to be as small as possible to re-
duce the probability of including discontinu-
ities in depth or depth change. On the other
hand, small windows may contain too little in-
formation for unambiguous matching and are
sensitive to noise so that in the matching strat-
egy there is always a tradeoff in choosing an
appropriate window size.
In Fig. 1 the inluence of different window

sizes is shown using the example of a scene
depicting the inner side of a car door with-
out interior paneling. The reference result in
Fig. 1d was produced by projecting different
noise patterns on the door to support corre-
spondence and employing a spacetime match-
ing algorithm like in Davis et al. (2005). A
1× 1 space window, i. e. the single pixels and
no spatial aggregation window were used with
12 time windows, i. e. 12 different noise pat-
terns. Without the projected texture the aggre-
gation window has to be very large (45× 45

where I
r
are the intensity values of the right

image, I
l
the intensity values of the left im-

age and W
s
is the spatial aggregation win-

dow around the pixel of interest. Numerous
other similarity measures have been devel-
oped which mainly aim at accounting for ra-
diometric differences between the two images
(hirschmüller & scharstein 2009). The i-
nal corresponding pixel is selected by simply
choosing the pixel in the second image with
the lowest SAD which is commonly referred
to as “winner-take-all strategy”. The calcu-
lated pixel offset is called disparity or paral-
lax. However, these local matching approach-
es impose an implicit smoothness assumption
upon the scene which means that no depth
discontinuity is allowed to lie within the ag-
gregation window. The reason is that depth
discontinuities lead to an unequal object ap-
pearance in the images when viewed from dif-
ferent perspectives. Therefore, the matching

a) Image of the car door b) Image with projected texture

c) Disparity map of the car door image using d) Reference disparity map using a
a 45×45 pixels window 1×1×12 pixels spacetime window

Fig. 1: Inluence of different aggregation window sizes.
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where q is a vertical or horizontal direct
neighbour to pixel position p = (x,y) and N
is the set of all neighbouring pixel pairs. The
smoothness term is the product of a function
V of disparity difference and optional spatially
varying weights w

p,q
for each pixel pair. The

weights can for instance be computed by an
edge detector because disparity discontinui-
ties often coincide with intensity edges. Dis-
parity differences between neighbouring pix-
els (irst derivative) are penalized by this en-
ergy function where bigger differences lead
to higher penalties. Second order smoothness
terms which penalize the curvature of the dis-
parity function require triple cliques rather
than pairs, i. e. three consecutive neighbouring
pixels (WooDforD et al. 2009). Unfortunately,
this algorithm only works for very small im-
ages and is computationally very demanding.
The energy can be viewed as an objective

function of a Markov random ield (MRF)

(geman & geman 1984) where a minimum
of the energy corresponds to a maximum a
posteriori (MAP) estimate. Finding the best
result (global minimum) requires an exhaus-
tive search over all candidate solutions which
is not applicable here because the problem is
NP-hard (BoyKov et al. 2001), i. e. the com-
putational complexity of the problem takes
non-deterministic polynomial-time to solve.
Therefore, algorithms look for a good ap-
proximate solution, i. e. a local minimum. On
the other hand, the global minimum may not
be the best result anyway because the energy
function might not model the real world cor-
rectly. Early algorithms for energy minimi-
zation like iterated conditional modes (ICM)
(Besag 1986) or simulated annealing (Bar-
narD 1989) were comparatively ineffective.
Besides having a very slow convergence be-
haviour these algorithms only ind a good so-
lution if a single dominant global minimum
exists which is usually not the case with the
energy functions employed for stereo match-
ing. During the last years signiicant prog-
ress has been made in developing power-
ful algorithms like graph cuts (BoyKov et
al. 2001) or message passing algorithms like
belief propagation (sun et al. 2003). These
global matching strategies produce excellent
disparity maps and mark the state-of-the-art
(scharstein & sZelisKi 2007).

pixels in this case) to gather enough grey
value variation to allow a reliable correspon-
dence search (Fig. 1c). The determined dispar-
ities are encoded as grey values and stretched
to the range 0–255 so that the shown dispar-
ity maps are obtained. It can be observed that
the large aggregation window oversmoothes
small features. Especially at the edges of holes
– which mark disparity jumps – it can be ob-
served that the locations of the edges are dis-
placed. This phenomenon is usually referred
to as “foreground fattening” (scharstein &
sZelisKi 2002) where pixels from the far sur-
face are wrongly assigned the same disparity
as pixels on the near surface.

2.2 Global Matching Algorithms

To avoid the problems of the local matching
techniques global strategies have been devel-
oped which calculate the disparity map for the
entire image by formulating the problem as an
energy minimization framework (terZoPou-
los 1986):

E d E d E d
data smooth

( ) ( ) ( )= + λ (2)

The data term E
data
(d) measures the pix-

elwise similarity, which means how well the
disparity function d is consistent with the in-
put images:

E d C x y d x y
data

x y

( ) ( , , ( , ))
( , )

= ∑ (3)

Pixelwise similarity means that no aggrega-
tion window like in eq. 1 is necessary to com-
pute the matching cost C though in principle
this is also possible. The term E

smooth
(d) in

eq. 2 explicitly encodes smoothness assump-
tions about the disparity function which is
weighted by factor λ. These smoothness priors
support the generation of reasonable disparity
values over noisy and low texture areas. The
smoothness term can e. g. be the sum of spa-
tially varying smoothness costs for all 4-con-
nected direct neighbours:

E d w V d d
smooth p q p q

p q N

( ) (| |)
,
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= ⋅ −
∈
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mined by calculating the Hamming distance
(hamming 1950) between the bit strings of the
left and the right image. The Hamming dis-
tance is simply the number of positions where
the corresponding bits are different. The com-
putation involves a “bitwise exclusive or” step
and the counting of the nonzero bits which
can be implemented very eficiently on mod-
ern CPUs.
For the smoothness term E

smooth
(d) several

different forms are possible. A truncated ver-
sion of the smoothness penalty V is used here
which ensures that the penalty cannot be high-
er than V

max
:

V d d d d V
p q p q

k(| |) min(| | , )
max

− = − (5)

A truncated term is discontinuity-preserv-
ing and does not favour depth discontinuities
with large disparity differences over smaller
differences because neither is assumed to be
more probable than the other. We use the L

1

distance with k = 1 but in principle a quadratic
version with k = 2 or the Potts model (V

max
= 1)

is possible, too. The energy function can also
be extended with an additional term for han-
dling occlusions (Kolmogorov & ZaBih 2001)
but as occlusions did not pose a problem in our
experiments we did not employ such a term.
For energy minimization we use an opti-

mized version of the tree-reweighted message
passing (TRW) (WainWright et al. 2005) algo-
rithm called sequential TRW (TRW-S) (Kol-
mogorov 2006). While the original TRW was
motivated by maximizing a lower bound of
the energy it is not guaranteed that this bound
be increased over the iterations. The algo-
rithm also may not converge, a problem which
can be observed with belief propagation, too.
TRW-S guarantees not to decrease the lower
bound, it always converges and it has been
shown that it often achieves superior results
compared to graph cuts or belief propagation
(sZelisKi et al. 2008). Another advantage of
practical importance is that it only consumes
half as much memory as traditional message
passing algorithms. A detailed description
of the message passing scheme is outside the
scope of this paper; it can be found in the rel-
evant literature (Pearl 1988, WainWright et
al. 2005, Kolmogorov 2006).

An interesting alternative is semiglobal
matching (hirschmüller 2008) which ap-
proximates the global 2D smoothness con-
straints of the MRF by combining several 1D
optimization paths. Thus, a signiicant reduc-
tion of the computational time is achieved.
Another principle of incorporating smooth-
ness constraints provide variational methods
which also minimize an energy function with
a data and a smoothness term (Poggio et al.
1985).

3 Selected Matching Algorithm

In this section we present our global match-
ing algorithm with smoothness-based priors
which support the propagation of reasonable
disparity values over low texture areas. Initial
tests with semiglobal matching and a varia-
tional approach using the energy functional of
slesareva et al. (2005) with a multigrid meth-
od for energy minimization did not achieve
satisfactory results on our special data sets.
Therefore, we focus on the MRF formulation.
At irst the similarity measure for the data

term E
data
(d) is chosen. Absolute differences

(AD) are one of the simplest matching costs
which penalize dissimilarity. However, they
presume photo consistency which means that
corresponding points should have the same
grey value in the stereo image pair. In our ex-
periments we found that AD gave poor results
because of the violation of this assumption due
to different viewing directions of the cameras
resulting in unequal illumination conditions
and relectance behaviour. Therefore, we use

the census transform as matching cost (ZaBih
& WooDfill 1994) which has been shown to
have the best performance in the presence of
local brightness differences (hirschmüller &
scharstein 2009). The census transform is a
non-parametric matching cost which is based
on the local order of the grey values. A bit
string is generated where each bit corresponds
to one of the neighbourhood pixels around the
current pixel of interest. If the neighbourhood
pixel has a lower grey value than the centre
pixel the bit is set. In our implementation the
bit strings are calculated over a 9 × 7 local
window and are stored in a 64 bit integer vari-
able. The inal matching cost value is deter-
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tion for this project – still images were used.
For the second data set a white styrofoam head
was used which also hardly exhibits any tex-
ture but in contrast to the irst data set con-
tains small features like eyes, nose and mouth
(Fig. 4). In order to generate a high quality ref-
erence data set the head was captured by em-
ploying a spacetime stereo approach (Davis et
al. 2005) using a 3× 3 space window and 12
different speckle patterns.

4.2 Results

To assess the quality of the stereo reconstruc-
tion, irst a visual inspection of the resulting

disparity map was made. The result for the
airbag obtained without using projected tex-
ture is displayed in Fig. 5a and from the stereo
pair with projected speckle pattern in Fig. 5b.
The search range in the rectiied epipolar im-
ages amounts to about 100 pixels. The black
area in the left part of the disparity map stems
from a constant parallax offset. The parameter
λ was set to 20 and V

max
to 7. Because there are

no disparity discontinuities that coincide with
intensity edges on the smooth surface of the
airbag the inluence of the weights w

p,q
were

set to 0. These parameters were determined in
an iterative procedure by visually inspecting
the result. The TRW-S algorithm has been it-
erated only ive times. In principle a stop cri-
terion for energy minimization could be de-
ined, but we found that typically after ive it-
erations the change is negligible. Remarkably,
we were able to reconstruct the whole surface
of the airbag without any gaps, holes or other
gross errors. The shape of the airbag is clearly

4 Experiments

4.1 Hardware Setup

The application area is the processing of high
speed image sequences recorded by high per-
formance cameras like pco.dimax (www.
pco.de/). A stereo rig shown in Fig. 2a al-
lows capturing high speed stereoscopic im-
age sequences at up to 1,300 fps with full
2000× 2000 pixels resolution with 12bit dy-
namic. The SOLVing3D.titan system uses
only one camera and a beamsplitter (s3d.cam-
splitter) (Fig. 2b) which provides a cost ef-
fective alternative and avoids the problem of
synchronization but image size is reduced by
half. Higher image rates of up to 150,000 fps
are achievable at the cost of a reduced image
size, e. g. in a typical beamsplitter setup two
500× 500 pixels images at 9,000 fps are ac-
quired.
For the evaluation of the algorithm de-

scribed above two test data sets have been cre-
ated. The irst data set consists of a stereo pair

of an inlated airbag. As can be seen in Fig. 3a,

the images show only very little grey value
variations. For technical reasons only one ste-
reo pair could be recorded rather than a com-
plete sequence. Additionally, another stereo
pair of the same scene with a projected speck-
le pattern was recorded which was used to ob-
tain a reference disparity map as ground truth
(Fig. 3b). This disparity map was generated us-
ing a local matching algorithm with a window
size of 5× 5 pixels. Because of the technical
limitations to project structured light in order
to capture ground truth data with high speed
image sequences – in fact this was the motiva-

Fig. 2: a) pco.dimax in a stereo rig setup, b) With mounted beamsplitter.
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form given in eq. 5 enforces a bias towards
fronto-parallel surfaces over which the dispar-
ity is constant. The costs for the reconstruc-
tion of fronto-parallel planes are always lower

visible. On the other hand the disparity map
does not display a surface as smooth as the
reference but exhibits small stepwise dispar-
ity jumps. The reason is that the prior of the

Fig. 3: a) Airbag test image, b) Airbag test image with projected speckle pattern.

Fig. 4: a) Styrofoam head test image, b) Styrofoam head test image with projected speckle pat-
tern, twelve different patterns were used for spacetime stereo.

Fig. 5: a) Disparity map airbag test image, b) Reference disparity.
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like eyes, nose and mouth are clearly visible.
Owing to the edge preserving property of the
smoothness term of the energy function such
small details could also be reconstructed.
Generally, the parameters had to be tweaked
carefully to our class of textureless data sets
to achieve good results. Nevertheless, once set
only small adaptations of λ and V

max
are neces-

sary in order to achieve optimal results. The
processing took about 15 to 25 seconds on a
current CPU which is an acceptable time in
our use case.
In order to obtain a quantitative measure

of the quality of the resulting disparity map a
difference image was calculated between the
computed and the reference disparity values.
The resulting error map shows the absolute
differences >1 of the disparity values (Fig. 7).

than for slanted surfaces with several small
disparity jumps. Therefore, there is a tenden-
cy that slanted surfaces are reconstructed as a
sequence of several small fronto-parallel sur-
face patches.
The result for the styrofoam head is dis-

played in Fig. 6. The search range amounts to
about 50 pixels because the background has
not been incorporated into the range. This fact
results in a noisy pattern but in our applica-
tion the background is not of interest. The in-
luence of the smoothing term was reduced a

little bit by setting λ to 10 in order to preserve
more details; V

max
was set to 20. The computed

disparity map is also not as smooth as the ref-
erence which is again an effect of the smooth-
ness term’s tendency to favour fronto-parallel
surfaces. Nevertheless, the details of the face

Fig. 6: a) Disparity map styrofoam head test image, b) Reference disparity.

a) Airbag error map b) Styrofoam head error map

Fig. 7: Error maps displaying the absolute differences to ground truth >1.
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for the head data set are slightly worse with
a RMSE of 2.85 and an error percentage of
8.7%. The RMSE values seem to be quite high
but in consideration of the fact that we recon-
structed two nearly textureless objects we did
not expect to reach subpixel accuracy. Com-
pared to the Middlebury evaluation ranking
(scharstein & sZelisKi 2009) our error per-
centage did not achieve a top score but again
in consideration of our nearly textureless ob-
jects the values are very good.
In addition to the overall error, in Fig. 8 his-

tograms show the distribution of the amount
of the absolute differences to ground truth. As
can be seen, the average error amounts to 1
disparity step with a few pixels having a dif-
ference of two steps. A negligible amount of
pixels exhibit outliers which mostly can be
found at the edges of the object or at the er-
roneously reconstructed small area on the air-
bag. However, experience with the results of
the Middlebury evaluation ranking show that
without projecting structured light or a speck-
le pattern it is hardly possible to avoid such
effects.
Overall, it can be stated that both test ob-

jects could be accurately reconstructed with-
out projecting structured light. Hence, for the
irst time it is possible to stereoscopically an-
alyze the deformation and motion behaviour
of objects in high speed image sequences. The
requirements of a short processing time and
the handling of images in HD size are ful-
illed. However, high precision measurements

with subpixel accuracy are not possible with

Only the errors at the object have been con-
sidered, the background was masked out. The
differences due to the fronto-parallel surface
patches cannot be observed in the airbag test
image because they lie in the subpixel range.
Larger errors can only be found at the border
of the object. Additionally, there is a small area
in the back near the border which shows larger
differences. The reason for this behaviour is
currently unclear. In principle, for the styro-
foam head test image the same observations
can be made: The surface is not as smooth as
the reference and shows errors at the border of
the object.
In order to obtain global quantitative qual-

ity measures root mean square error (RMSE)
and the percentage of erroneously matched
pixels are given (scharstein& sZelisKi 2002):

RMSE
N

d x y d x y
C R

x y

= −∑
1

2| ( , ) ( , ) |
( , )

(6)

B
N

d x y d x y
C R d

x y

= − >∑
1

(| ( , ) ( , ) | )
( , )

δ (7)

where d
C
(x,y) is the computed and d

R
(x,y) is the

reference disparity map. N is the number of
pixels in the image and δ

d
is the error thresh-

old which is set to 1 here. A differentiation
into textureless, occluded and depth discon-
tinuity regions like in scharstein & sZelisKi
(2002) was not performed because we main-
ly focus on textureless objects. For the air-
bag test data set we obtained a RMSE of 1.72
and an error percentage of 6.6%. The values

a) Airbag errors b) Styrofoam head errors

Fig. 8: Histogram displaying the absolute differences to ground truth.



60 Photogrammetrie • Fernerkundung • Geoinformation 1/2012

of the MRF from ground truth data sets (Pal
et al. 2011). However, like models with second
order smoothness constraints this method has
not reached an operational status yet.

Acknowledgments

The project was supported by Bundesministe-
rium für Wirtschaft und Technologie (BMWi)
within the scope of Zentrales Innovationspro-
gramm Mittelstand (ZIM) as a KF coopera-
tion (FuE-Kooperationsprojekt zwischen Un-
ternehmen und Forschungseinrichtungen) be-
tween the Institute of Photogrammetry and
GeoInformation of Leibniz Universität Han-
nover (No. KF2182801KM9) and SOLVing3D
GmbH (No. KF2182901KM9). This support is
greatly acknowledged. We also would like to
thank the anonymous reviewers who helped to
improve the manuscript.

References

BarnarD, s., 1989: Stochastic Stereo Matching

over Scale. – International Journal of Computer

Vision 3 (1): 17–32.

Battle, J., mouaDDiB, e. & salvi, J., 1998: Recent

Progress in Coded Structured Light as a Tech-

nique to Solve the Correspondence Problem: A

Survey. – Pattern Recognition 31 (7): 963–982.

Besag, J., 1986: On the Statistical Analysis of Dirty

Pictures. – Journal of the Royal Statistical Soci-

ety, Series B 48 (3): 259–302.

BoyKov, y., veKsler, o. & ZaBih, r., 2001: Fast

Approximate Energy Minimization via Graph

Cuts. – IEEE Transactions on Pattern Analysis

and Machine Intelligence 23 (11): 1222–1239.

Davis, J., nehaB, D., ramamoorthi, r. & rusinKie-

WicZ, s., 2005: Spacetime Stereo: A Unifying

Framework for Depth from Triangulation. –

IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 27 (2): 296–302.

geman, s. & geman, D., 1984: Stochastic Relax-

ation, Gibbs Distributions, and the Bayesian

Restoration of Images. – IEEE Transactions on

Pattern Analysis and Machine Intelligence 6 (6):

721–741.

hamming, r.W., 1950: Error Detecting and Error

Correcting Codes. – Bell System Technical

Journal 29 (2): 147–160.

hirschmüller, h., 2008: Stereo Processing by

Semiglobal Matching and Mutual Information.

this method but for the envisaged application
areas like the analysis of the inlation behav-
iour of an airbag the obtained accuracy is suf-
icient.

5 Conclusions and Outlook

We presented an operational photogrammet-
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Obviously, this circumstance does not always
model real objects or scenes correctly which
has been shown in our experiments. Neverthe-
less, for our application area the algorithm de-
livers useful results. The average deviation to
the two ground truth data sets is only about
one pixel. This does not constitute a high ac-
curacy measurement but the quality is sufi-
cient for the analysis of the deformation and
motion behaviour of objects.
The matching algorithm could be improved

by using second order smoothness constraints
like inWooDforD et al. (2009) in order to mod-
el slanted surfaces more accurately without
favouring fronto-parallel surfaces. Unfortu-
nately, this algorithm has limitations in opera-
tional systems because it only works for very
small images and is computationally very de-
manding.
TheMRF used in our investigation assumes

conditional independence of the variables
which might not result in a realistic posterior
distribution. In principle this assumption can
be relaxed by employing conditional random
ields (CRFs) which learn the free parameters
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