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two rotations R and R′ are identical, in case
their representations with homogeneous coor-
dinates, here with x and y or with quaternions,
here q and q′, are proportional. This ambigu-
ity regularly is avoided by proper normaliza-
tion of the homogeneous entities. Mostly one
applies either Euclidean normalization of ho-
mogeneous coordinates, say xe = x/x

3
, see

Kanatani (1996), then accepting that no ele-
ments at ininity can be represented, or spheri-
cal normalization, say xs = x/ |x | or qs = q/ |q |,
then accepting that the parameters to be esti-
mated sit on a non-linear manifold, here the
unit spheres S2 or S3, see Collins (1993), Heu-
el (2004). The sign ambiguity usually does not
cause dificulties, as the homogeneous con-
straints used for reasoning are independent on
the chosen sign.
The uncertainty of an observed geometric

entity in many practical cases, can be repre-

1 Introduction

Estimation of entities in projective spaces,
such as points or transformations, has to cope
with the scale ambiguity of the redundant rep-
resentations of these entities, and, as a conse-
quence, with the deinition of proper metrics

which results from the singularity of the co-
variance matrices. As an unwanted side effect
the number of parameters heavily increases in
large estimation problems. The paper shows
how to consistently perform statistical testing
and maximum likelihood (ML) estimation for
geometric entities and transformations in pro-
jective spaces including elements at ininity

while only handling the minimum of required
parameters.
The scale ambiguity of homogeneous enti-

ties results from the redundant representation,
where two elements, say 2D points, x and y or

Summary: Testing and estimation using homoge-

neous coordinates and matrices has to cope with

obstacles such as singularities of covariance matri-

ces and redundant parametrisations. The paper pro-

poses a representation of the uncertainty of all

types of geometric entities which (1) only requires

the minimum number of parameters, (2) is free of

singularities, (3) enables to exploit the simplicity of

homogeneous coordinates to represent geometric

constraints and (4) allows to handle geometric enti-

ties which are at ininity or at least very far away.

We develop the concept, discuss its usefulness for

bundle adjustment and demonstrate its applicabili-

ty for determining 3D lines from observed image

line segments in a multi view setup.

Zusammenfassung: Beim Testen und Schätzen

mit homogenen Koordinaten und Matrizen treten

wegen der Redundanz der Repräsentationen und

der daraus folgenden Singularität der Kovarianz-

matrizen Schwierigkeiten auf. Der Beitrag schlägt

eine Repräsentation für die Unsicherheit geometri-

scher Elemente vor, die (1) eine minimale Zahl von

Parametern benötigt, (2) frei von Singularitäten ist,

(3) die Einfachheit homogenener Koordinaten bei

der Formulierung geometrischer Bedingungen be-

lässt und (4) uneigentliche Elemente, d.h. Elemente

im Unendlichen bzw. sehr weit entfernte Elemente

behandeln kann. Wir stellen das Konzept vor, dis-

kutieren seine Nützlichkeit bei der Bündelausglei-

chung und zeigen seine Anwendbarkeit für die

Schätzung von 3D Geraden aus mehreren Bildern.
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homogeneous coordinates and one Lagrang-
ian for the constraint, two parameters more
than the degrees of freedom of a 2D point.

Related work

This problem of representing uncertain trans-
formations has been addressed successfully for
geometric transformations. Common to these
approaches is to represent the uncertain trans-
formations, say a rotation R as multiplicative
deviations R (r) from the mean transformation
IE(R) and to represent the small deviations as
the exponential of a matrix, say exp (S (r)),
which allows simple estimation and rigorous
update, a property resulting from the group
properties of these transformations. Based on
the work of Bregler & MaliK (1998), rosen-
HaHn et al. (2002) used the exponential map
for modelling spatial Euclidean motions, com-
posed of rotations and translations in IR3. Bar-
toli & sturM (2004) used the idea to estimate
the fundamental matrix with a minimal repre-
sentation F = R

1
Diag (exp (λ), exp (−λ), 0) R

2

T,
twice using the rotation group and once the
multiplication group IR+. Begelfor&WerMan

(2005) showed how to estimate a general 2D
homography with a minimal representation
statistically rigorously, namely using the spe-
cial linear group of 3× 3-matrices with deter-
minant 1, represented as H = exp (K) with ma-
trices K having trace zero, correctly relecting
the number of degrees of freedom, see the ap-
plication inMeidoW (2011).
To my knowledge the only attempts to use

minimal representations for geometric enti-
ties other than transformations have been giv-
en by sturM & gargallo (2007) and ÅstroM
(1998), however, both are not able to represent
elements at ininity, namely conics and points

at ininity respectively.

This paper presents a concept for statistical
testing and estimation with all types of geo-
metric entities in projective spaces using min-
imal representations which are free of singu-
larities and allow to handle entities at ininity

(förstner 2010 a,b).

Notation

We name objects with calligraphic letters, say
a point x. We denote Euclidean coordinates

sented suficiently well by a Gaussian distri-
bution N (μ

x
,Σ

xx
). The distribution of derived

entities, y = f (x), resulting from a non-linear
transformation can also be approximated by
a Gaussian distribution, using Taylor expan-
sion at the mean μ

x
and omitting higher order

terms, possibly requiring truncation of the
given distribution, see Hartley & ZisserMan
(2000, App.3). The degree of approximation
depends on the relative accuracy and has been
shown to be negligible in many cases, see Cri-
Minisi (2001, p. 55).
The invariance of estimates w.r.t. the choice

of the normalization of the estimated entities
usually is achieved by minimizing a function
in the Euclidean space of observations, in the
context of bundle adjustment being the repro-
jection error, leading to the objective func-

tion  1= ( ) ( )x xi i i ii i i

−Ω − Σ −∑ T
x x x x . This at

the same time is the Mahalanobis distance
between the observed and estimated entities
and can be used to evaluate whether the model
its the data. A similar reasoning is used when

estimating transformations, such as rotations
based on quaternions q = (q, q) or projective
transformations, e.g. 2D homographies H,
where one of the redundant elements, say the
scalar part q or the last element H

33
, is Euclid-

eanly normalized to 1 in order to arrive at a
minimal representation.
This situation becomes dificult, in case one

wants to handle elements at ininity, thus ho-
mogeneous coordinate 3-vectors with x

3
= 0,

rotations with q ≈ 0, thus around 180°, or ho-
mographies with H

33
≈ 0, and therefore one

wants to use spherically normalized homoge-
neous vectors or matrices, or at least normal-
ized direction vectors when using omnidirec-
tional cameras, as their covariance matrices
are or become close to singular.
Therefore, in case we want to use these nor-

malized vectors or matrices as observed quan-
tities, already the formulation of the objec-
tive function based on homogeneous entities
is not possible and requires a careful discus-
sion about estimable quantities (MeidoW et al.
2009). Also the redundant representation re-
quires additional constraints, which lead to
Lagrangian parameters in the estimation pro-
cess. As an example, one would need four pa-
rameters to estimate a 2D point, three for the
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2.1 Representation of Uncertainty in
non-linear Subspaces

The principle of testing and estimation of
entities can be easily visualized, if they live on
a one-dimensional manifold in 2D, see Fig. 1.
In both cases we assume the uncertainty of the
entities is small enough compared to the cur-
vature of the manifold to represent it as a co-
variance matrix in the tangent space. The ap-
proximate value may deviate from the mean
value. In order to realize this procedure we
need to deine (1) the tangent space, which is

used for representing the uncertainty and per-
forming the testing and the estimation, and (2)
the forward and (3) the backward projection
taking the uncertainty of the entities into ac-
count. The deinition of the tangent space in

all cases is realized by linearisation, while the
forward and backward projections differ for
transformations and geometric entities: While
the manifolds of transformations are repre-
sented explicitly, the manifolds for geometric
entities are represented implicitly, requiring
special care.

with a slanted letter x, homogeneous coordi-
nates with an upright letter x. Matrices are de-
noted with sans serif capital letters, say R, or
upright in case of homogeneous matrices, e.g.
H. The operator N (.) normalizes a vector to
unit length. We adopt the Matlab syntax to de-
note the stack of two vectors or matrices, e.g.
z = [x; y] = [xT, yT]T. The vec-operator stacks
the columns of a matrix to obtain a vector:
vec (A) = vec ([a

1
,…, a

n
]) = [a

1
;…; a

n
]. Sto-

chastic variables are underscored, e.g. x. We
use the skew symmetricmatrixS (a) of a 3-vec-
tor, inducing the cross product a× b = S (a) b.
As an exception, we denote three-dimensional
rotation vectors – the product of the rotation
angle with the normalized rotation axis – with
r and four dimensional quaternion vectors
with q, instead with capital letters.

2 Minimal Representation of
Uncertainty

The natural spaces of homogeneous entities
are the unit spheres Sn, possibly constrained to
a subspace. Spherically normalized homoge-
neous coordinates of 2D points (xs) and lines
(ls) live on the sphere S2 in IR3, those of 3D
points (Xs) and planes (As) on the 3-sphere S3

in IR4 respectively. Also unit quaternions, al-
lowing to represent all rotationsRwithout sin-
gularities, live on the unit sphere S3. Lines in
3D, represented by Plücker coordinates (Ls),
live on the so-called Klein quadric Q which
is the subspace of the unit sphere S5 in IR6 re-
stricted by the Plücker constraint. Planar ho-
mographies, represented by 3× 3-matrices
may be normalized either enforcing their Fro-
benius norm ||H ||2 = ∑

ij
H
ij

2 or their determi-
nant |H | to be 1, then their vector h = vec (H)
also live on a unit sphere, namely S8 or in an-
other non-linear space respectively. Other
transformations, such as the singular correla-
tion matrix E of the relative orientation, called
essential matrix, can be represented by prod-
ucts of basic transformations, e. g. E = S (b)
R
T, as a function of a homogeneous 3-vector,
the base direction b, and the rotation R.
How to represent uncertain elements on

these curved manifolds is the topic of the next
section.

Fig. 1: Above: Testing the identity of two points
x

1
and x

2
: the points are irst projected into the

tangent space T (M, xa) of the manifold M at
some approximate value xa, leading to a substi-
tute test of x

r1
and x

r2
. Below: Estimating the

mean of three observations l
i
, i = 1, 2, 3 is per-

formed in the tangent space T (M, xa) at the
approximate value xa after projecting them to l

ri

leading to an updated estimate x̂
r
, and, after

back projecting to the manifold, to the estimate
x̂.
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yielding r = [S
23
; S

31
; S

12
]. As the elements of r

occur linearly in (3), left, it also is used for lin-
earisation within an estimation procedure.

The non-linear manifold, here of rotations,
obviously can be explicitly represented, here
by using the exponential map (2), which in the
context of estimation using the Gauß-Markov
model, is just a special case of a non-linear
function of the unknown parameters.

Uncertain homographies

This principle of representing an uncertain
transfomation can be generalized to uncertain
2D or 3D homographies and their specialisa-
tions, namely 2D and 3D motions and simi-
larities. An uncertain 2D homography, for ex-
ample, can be represented as a left-product of
the mean homography IE(H) and a small un-
certain homography H (k)

H = H (k) IE(H) . (4)

The small homography is close to the uni-
ty, as can be seen, when analysing the lineari-
sation of the transformation of the Cartesian
coordinates. It depends on a stochastic 8-vec-
tor k. We assume the matrices to have deter-
minant one, thus being spectrally normalized
|H | = ∏

i
λ
i
= 1, using the eigenvalues λ

i
of H.

Homographies close to the unit matrix having
determinant one can again be represented by
the exponential map

( ) 2

3

1
( ) = exp ( ) = ( ) ( )

2!
+ + +H K I K K k k k k

(5)

with the zero-trace matrix

1 4 7

2 5 8

3 6 1 5

( ) = .

k k k

k k k

k k k k

 
 
 
 − − 

K k (6)

Again the 8 × 8-covariance matrix Σ
kk
min-

imally and uniquely, up to the convention of
the trace-less matrix K (Begelfor &WerMan

2005), represents the uncertainty of the spec-
trally normalized homography H. Linearisa-
tion of (4) at a given approximate homography
H
a
therefore leads to

2.2 Minimal Representation for
Uncertain Transformations

We explain the principle of representing un-
certain transformations using rotations in 3D.

Uncertain rotations

Take the space S3 of rotations, represented by
rotation matrices R ∈ IR3×3. Starting from the
mean rotation IE(R) a neighbouring uncertain
rotation R can be represented by

R = R (r) IE(R) , (1)

where R (r) represents a small rotation, close
to the unit matrix depending on the stochas-
tic 3-vector r. Its 3 × 3-covariance matrix Σ

rr

minimally and uniquely represents the uncer-
tainty of the rotation matrix R. Obviously, the
vector r lies in the three-dimensional tangent
space IR3 of the rotations, evaluated at the ze-
ro-rotation R (0), represented by the unit ma-
trix I

3
. The function

( )
2

3

2

3 2

( ) = exp ( )

1
= ( ) ( )

2!

sin(| |) 1 cos(| |)
= ( ) ( )

| | | |

+ + +

−
+ +

R S

I S S

I S S



r r

r r

r r
r r

r r

(2)

maps the three-dimensional linear tangent
space IR3 to the spherical space S3 of rota-
tions. The transition from the second to the
third line of (2), uses the easy to be proved
fact: S3 (r) = −|r |2 S (r) for collecting higher
order terms of S (r), seeHartley& ZisserMan
(2000, A4.9). This function is called the expo-
nential map. In general, the exponential of a
skew symmetric matrix is a rotation matrix.
The exponential map can only represent rota-
tions with angles ≠ ±180°, which is no restric-
tion in our context.
The mapping from a rotation R to the tan-

gent space at an approximate rotation can eas-
ily be achieved from the linearised version of
(1) using some approximate rotation R

a
being

some estimate for the mean rotation, thus

3 3( ( )) or ( )a a
≈ + ≈ −

T
R I S R S RR Ir r

(3)
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This is easily achieved by using the ortho-
normal matrix collecting the two base vectors
s and t.

( ) = null( ) = [ , ], [ , ] = ,r x x x x 0
T T T T

J s t s tµ µ µ µ

(11)

fulilling J
r

T (μ
x
) J

r
(μ

x
) = I

2
. The subscript r in

J
r
stands for the reduced (tangent) space.
The normal of the tangent space is μ

x
.

This results from linearising the constraint
h = xT x− 1 = 0 w.r.t. x leading to the linear
constraint μ

x

T∆x = 0, expressing the fact, that
any deviation of a vector from the mean μ

x
is

perpendicular to μ
x
.

We now represent the stochastic 2-vector
x
r
with mean μx

r
= 0 and covariance Σx

r
x
r
in

the tangent space at μ
x
. In order to arrive at a

spherically normalized random vector x with
mean μ

x
we need to spherically normalize the

vector xτ = μ
x
+ J

r
(μ
x
) x

r
= μ

x
+ x

r,1
s+ x

r,2
t in

the tangent space and obtain

( )x x x( , ) = ( )r rr+x N Jµ µ µx x (12)

H ≈ (I
3
+K (k))Ha , (7)

which can be used within an iterative esti-
mation procedure and allows to determine
k for a homography H close to an approxi-
mate one H

a
, taking the irst eight values of

vec (H (H
a
)−1− I

3
).

Finally, it might be useful for some applica-
tions to represent both, the homography and
its inverse, linearly in 8 parameters, which can
easily be achieved using H−1 = (IE(H)−1H (−k))
≈ (IE(H))−1 (I

3
−K (k)) together with (4).

2.3 Minimal Representation for
Uncertain Points in 2D and 3D

We will now transfer the concept to uncertain
unit vectors on the unit sphere S2, representing
2D points and lines, and generalize it to other
geometric entities.
Let an uncertain 2D point x be represented

with its mean, the 2-vector μ
x
and its 2× 2-co-

variance matrix Σ
xx
. It can be visualized by the

standard ellipse 1( ) ( ) = 1x xx x

−− Σ −T
x xµ µ .

Sphericallynormalizing thehomogeneousvec-
tor x = [x; 1] = [u, v,w]T yields

x xx x
= , =
| |

s

s sΣ Σ
x

x
x

T
J J (8)

with the 3× 3-matrix

x x =
0

xxΣ 
Σ  

 

0

0
T

(9)

using the Jacobian

3

x 1
= = ( )

x | |

s
s s∂

−
∂

x x
x

T
J I (10)

with rank (Σ
xx
) = 2 and null (Σ

xx
) = μ

x

s. As the
smallest eigenvalue is zero, the standard ellip-
soid is lat and lies in the tangent space of x

at S2.
In the following we assume all point vectors

x to be spherically normalized and omit the
superscript s for simplicity of notation.
We now want to choose a coordinate system

[s, t] in the tangent space ⊥ μ
x
, and represent

the uncertainty by a 2× 2-matrix in that coor-
dinate system (Fig. 2).

Fig. 2: Minimal representation for an uncertain
point x (x) on the unit sphere S2 representing
the projective plane IP2 by a lat ellipsoid in the
tangent plane at the mean μ

x
. The uncertainty

has only two degrees of freedom in the tangent
space spanned by two basis vectors s and t of
the tangent space, being the null space of μ

x
T.

The uncertainty should not be too large, such
that the deviation of the distribution on the
sphere and on the tangent plane do not differ
too much, as at point y.
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2.4 Minimal Representation for
Straight 3D Lines

We now generalize the concept for 3D lines.
Lines L in 3D are represented by their nor-
malized Plücker coordinates L = [L

h
; L

0
] =

N ([Y−X,X×Y]) in case they are derived by
joining two points X (X) and Y (Y). Line vec-
tors need to fulill the quadratic Plücker con-
straint L

h

TL
0
= 0 and span the Klein quadric Q

consisting of all homogeneous 6-vectors ful-
illing the Plücker constraint. The dual line

L̅ (L̅ ) has Plücker coordinates L̅ = [L
0
;L

h
], ex-

changing its irst and second 3-vector. As in

addition a 6-vector needs to fulill the Plücker

constraint in order to represent a 3D line, the
space of 3D lines is four-dimensional.
The transfer of the minimal representation

of points to 3D lines requires some care. The
four-dimensional tangent space is perpendicu-
lar to L, as LTL− 1 = 0 holds and perpendicu-
lar to L̅ , as L̅TL = 0 holds. Therefore, the tan-
gent space is given by the four columns of the
6× 4 matrix

( )( ) = null ,r
  L L L

T

J (17)

again assuming this matrix to be orthonor-
mal. Therefore for random perturbations L

r

we have the general 6-vector

L L L( , ) = ( )r rr

τ +L Jµ µ µL L (18)

in the tangent space. In order to arrive at a
random 6-vector, which is both spherically
normalized and fulills the Plücker constraint

also for inite random perturbations we need

to normalize Lτ = [L
h

τ;L
0

τ] accordingly. The
two 3-vectors L

h

τ and L
0

τ in general are not or-
thogonal. Following the idea of Bartoli &
sturM (2005) we therefore rotate these vec-
tors in their common plane such that they be-
come orthogonal. We use a simpliied modi-
ication, as the normalization within an iter-
ation sequence will have decreasing effect.
We use linear interpolation of the directions
D
h

τ = N (L
h

τ) and D
0

τ = N (L
0

τ) (Fig. 3). With the
distance d = |D

h

τ−D
0

τ | and the shortest dis-

tance 2= 1 / 4r d− of the origin to the line
joining D

h

τ and D
0

τ we have

x

=

( ) = .r

r x
x

µ

∂
∂
x

J µ
x (13)

We thus can identify J
r
(μ
x
) with the Jaco-

bian of this transformation evaluated at x = μ
x
.

The inverse transformation is the reduction of
the homogeneous vector to its reduced coun-
terpart

x= ( ) .r r

τ
x

T
Jx µ (14)

omitting the superscript τ in case no confu-
sion is to be expected. Since J

r

T (μ
x
)μ

x
= 0 the

mean of x
r
is the zero vector, μx

r
= 0, as speci-

ied.

This allows to establish the one-to-one cor-
respondence between the reduced covariance
matrix Σx

r
x
r
of the reduced coordinates x

r
and

the covariance matrix Σ
xx
of x:

xx x x= ( ) ( )r x x r
r r

T
J JΣ µ Σ µ (15)

x xx x= ( ) ( ).x x r r
r r

T
J JΣ µ Σ µ (16)

We use (14) to derive reduced observations
and parameters and after estimating correc-
tions ∆x

r
then apply (12) to ind corrected esti-

mates x̂ = x̂ (xa, ∆x
r
).

The non-linear manifold, here of the 3-vec-
tors of homogeneous coordinates, is implicitly
represented, here by the unit norm constraint,
just as in estimation models using constraints
onto the observations or the unknown param-
eters.
A similar reasoning leads to the representa-

tion of 3D points. Again, the Jacobian, J
r
(μ

X
)

overloading the function J
r
(.), is the null space

of XT and spans the three-dimensional tangent
space of S3 at μ

X
. The relations between the

singular 4× 4-covariance matrix of the spher-
ically normalized vector X and the reduced
3× 3-covariance matrix Σ

X
r
X
r

are equivalent to
(15) and (16).
Homogeneous 3-vectors 1 representing 2D

lines and homogeneous 4-vectors A represent-
ing planes can be handled in the same way.
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3 Estimation and Testing with
minimal Representations

3.1 Estimation

Using the minimal representations introduced
in the last section, we are able to perform ML
estimation for all entities. We restrict the fol-
lowing discussion to the model containing
constraints between observed and unknown
entities only, known as Gauß-Helmert mod-
el. Generalizations to include constraints be-
tween the parameters only are possible. We
start the derivation with the model where the
observations have regular covariance matrices
and then reduce the model, such that also ob-
servations with singular covariance matrices
can be handled.

The optimization problem

We want to solve the following optimization
problem

1minimize ( ) = ll

−Ω T
  v v vΣ (24)

subject to ( , ) =+ 0 g l v x (25)

where the N observations l, their N×N cova-
riance matrix ∑

ll
and the G constraint func-

tions g are given, and the N true corrections
ṽ to the observations and the U true param-
eters x̃ are unknown. The number G of con-
straints needs to be larger than the number
of parameters U. Also it is assumed that the
constraints are functionally independent. The
solution yields the ML estimates, namely the
itted observations l̂ = l+ v̂ via v̂ and parame-
ters x̂ , under the assumption that the observa-
tions are normally distributed with covariance
matrix Σ

ll
= D (l) = D (v), and the true obser-

vations l ̃ fulill the constraints given the true
parameters x̃.

Example: Bundle adjustment

Bundle adjustment is based on the projection
relation IE(x

ij
′) = λ

ij
P
j
X
i
between the scene

points X
i
, the projection matrices P

j
and the

image points x
ij
of point X

i
observed in camera

j. The classical approach eliminates the indi-

,0 0= (1/ 2 / ) (1 / 2 / ) .h hr d r dτ τ
± + D D D

(19)

The 6-vectorM = [|L
h
|D

h
; |L

0
|D

0
] now ful-

ills the Plücker constraint and preserves the

length ratio of its two parts, as the vectors D
h

and D
0
have the same length by construction.

The vector M inally needs to be spherically

normalized. This leads to the normalized sto-
chastic 3D line coordinates

L= ( ( , )) /| |r

τ
L L M MN µ L  (20)

which guarantees L̲ to sit on the Klein quad-
ric, thus to fulill the Plücker constraint.

The inverse relation to (20) is

L( )r r= L
T
JL µ (21)

as J
r
(μ
L
) is an orthonormal matrix. The re-

lations between the covariances of L and L
r

therefore are

LL L L= ( ) ( )r L L r
r r

T
J JΣ µ Σ µ (22)

L LL L( ) ( ).L L r r
r r

= T
J JΣ µ Σ µ (23)

Fig. 3: Enforcing the Plücker constraint onto a
6-vector Lτ = [L

h
τ;L

0
τ]. Starting from vectors

D
h
τ = N (L

h
τ) and D

0
τ = N (L

0
τ), which in general are

not perpendicular, we easily can enforce the
perpendicularity by symmetric linear interpola-
tion, leading to D

h
and D

0
, which are perpen-

dicular. The vector M = N ([|L
h
|D

h
; |L

0
|D

0
])

yields a valid Plücker vector close to Lτ.
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 ˆ( , ) =
a

a + ∆ + ∆ 0
T

A Bg l x x l (26)

with the corresponding Jacobians A and B of
g to be evaluated at the approximate values.

Reducing the model

We now want to transform the model in order
to allow for observations with singular covari-
ances. For simplicity we assume the vectors l
and x of all observations and unknown param-
eters can be partitioned into I and J individ-
ual and mutually uncorrelated observational
vectors l

i
, i = 1,…, I and parameter vectors x

j
,

j = 1,…, J, referring to points, lines, planes, or
transformations.

We irst introduce the reduced observations

l
ri
, the reduced corrections of the observations

∆l
ri
, and the reduced corrections ∆x

rj
:

ˆ= ( ) ,a

ri r i i

T
Jl l l (27)

 ˆ= ( ) ,a

ri r i i
∆ ∆T

Jl l l (28)

 ˆ= ( ) ,a

r j jrj
x∆ ∆T

Jx x (29)

where each Jacobian refers to the type of the
entity it is applied to. The reduced approxi-
mate values are zero, as they are used to de-
ine the reduction, e.g. from (14) we conclude

for 2D points x̂
r

a = J
r

T (x̂a) x̂a = 0. We collect
the Jacobians in two block diagonal matri-
ces J

l

T = {J
r

T (l̂
i

a
)} and J

x

T = {J
r

T (x̂
j

a)} in order
to arrive at the reduced observations l

r
= J

l

T l,
the corrections for the reduced observations
∆l
r
= J

r

T∆l and parameters ∆x
r
= J

r

T∆x.

Second we need to reduce the covariance
matrices Σl

i
l
i
. This requires some care: As a

covariance matrix is the mean squared devi-
ation from the mean, we need to refer to the
best estimate of the mean when using it. In
our context the best estimate for the mean at
the current iteration is the approximate value
l̂
i

a
. Therefore we need to apply two steps: (1)
transfer the given covariance matrix, refer-
ring to l

i
, such that it refers to l̂

i

a
and (2) re-

duce the covariance matrix to the minimal
representation l̂

ri
. As an example, let the ob-

servations be 2D lines with spherically nor-
malized homogeneous vectors l

i
. Then the re-

vidual scale factors λ
ij
by using Euclidean co-

ordinates for the image points. Also the scene
points are represented by Euclidean coordi-
nates. This does not allow for scene or image
points at ininity. This may occur when us-
ing omnidirectional cameras, where a repre-
sentation of the image points in a projection
plane is not possible for all points or in case
scene points are very far away compared to
the length of the motion path of a camera, e.g.
at the horizon. There are two ways to elimi-
nate the scale factor while being able to handle
points at ininity.

1. The easiest way is to rewrite themodel using
spherical normalisation: IE(x

ij
′s) = N (P

j
X
i
)

and then multiplying each equation with
J
x
(x
ij
′aT) leading to x′

r,ij
= J

x
(x
ij
′aT) N (P

j
X
i
).

The reduced coordinates x′
r,ij
of the camera

rays x′ s
r,ij
have a regular covariance matrix,

allowing to use the classical Gauß-Markov
model for estimation.

2. The scale factor also can be eliminated by
expressing the collinearity as IE(x

ij
′ ) ×P

j
X
i

= 0, thus requiring the two homogeneous
coordinate vectors x

ij
′ and P

j
X
i
to be par-

allel. These constraints between observa-
tions and unknown parameters thus re-
quire to use the Gauß-Helmert model from
(24) (sCHneider et al. 2011). However, we
also can handle constraints of image lines
l
ij
′ passing though the projected point P

j
X
i
,

reading as IE(l
ij
′T)P

j
X
i
= 0. Thus both types

of constraints can be represented using (25).
The singularity of the covariance matrix of

the spherically normalized image points and
the necessity to represent the scene points also
with spherically normalized homogeneous
vectors, requires to use the corresponding re-
duced coordinates.
For solving the generally non-linear prob-

lem, we assume approximate values x̂a and l̂
a

for the itted parameters and observations to

be available. We thus search for corrections ∆l

and ∆x for the itted observations and param-
eters using l̂ = l+ v̂ = l̂

a
+∆l and x̂ = x̂a+∆x.

With these assumptions we can rephrase
the optimization problem: minimize Ω (∆l)
= (l̂

a
− l+∆l)T Σ

ll

−1 (l̂
a
− l+∆l) subject to

g (l̂
a
+∆l, x̂a+∆x) = 0. The approximate val-

ues are iteratively improved by inding best

estimates for ∆l and ∆x using the linearized
constraints
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Let the two entities be two linesL
i
(L

i
, ΣL

i
L
i
),

i = 1, 2, speciied by their, not necessarily nor-
malized, Plücker coordinates and their covari-
ance matrices. Testing their identity would re-
quire to test μL

1
= λμL

2
for some unknown scale

factor λ, which is cumbersome (MCglone et
al. 2004). But this can be realized easily by
testing the identity of their reduced coordi-
nates as follows. (1) Spherically normalize the
lines L

i

s
= L

i
/ |L

i
| and derive their 6 × 6-cova-

riance matrix ΣL
i

sL
i

s by variance propagation
similar to the normalization of 2D points in
(8). The constraint to be tested now reads sim-
ply as IE(L

2

s
−L

1

s
) = 0. (2) Change to reduced

coordinates, as the covariance matrix of the
difference is singular. This requires the choice
of an approximate 3D line L

a
, close to the giv-

en ones, approximating the mean μ
L
and using

L̲
ri
= J

r

T
(L

a
)L

i
, see (21). We may choose one

of both lines. The constraint with reduced co-
ordinates now reads as

IE (L
r2
−L

r1
) = 0 . (32)

In case the two lines are mutually statisti-
cally independent the optimal test statistic
now is

T = dT Σ
dd

−1 d ~ χ
4

2 , (33)

with the difference and its regular covariance
matrix

d = L
r2
−L

r1
, (34)

Σ
dd
= Σ

L
r1
L
r1

+Σ
L
r2
L
r2

. (35)

The test statistic T is χ
4

2-distributed in case
the null-hypothesis, namely if the two lines
are identical, holds. It obviously is the Maha-
lanobis distance of the two reduced line coor-
dinates, thus can be used to measure the dif-
ference between two 3D lines.
The test on the identity of two entities us-

ing their minimal representation, thus their
reduced coordinates can be applied to all geo-
metric entities and also to all homogeneous
transformations.

duction is achieved by: Σ
a

l
ri
l
li

= J
i

a
Σ
l
i
l
i

J
i

aT
with

J
i

a
= J

r

T (l
i

a
) R (l

i
, l̂i
a
) namely by irst applying

a minimal rotation from l
i
to l̂i

a
(MCglone et

al. 2004), second reducing the covariance ma-
trix following (15). The superscript a in Σ

a

l
ri
l
li

indicates the covariance to depend on the ap-
proximate values.
The reduced constraints now read as

 ˆ ˆ( , ) =a a

r rr r
+ ∆ + ∆ 0

T
A Bg l x x l (30)

with

= = .r x r l

T T T T
A AJ B B J (31)

Now we need to minimize the weighted
sum of the squared reduced corrections v̂

r
=

l̂
r

a
− l

r
+∆l

r
= − l

r
+∆l

r
. Thus we need to mini-

mize Ω (∆l
r
) = (− l

r
+∆l

r
)T (Σ

a

l
r
l
r

)−1 (− l
r
+∆l

r
)

subject to the reduced constraints in (30).
The estimated corrections ∆x

r
and ∆l

r
to the

reduced parameters and observations of the
reduced linearised model are obtained from
MCglone et al. (2004, Tab. 2.3). They are used
to update the approximate values for the pa-
rameters and the itted observations using the

corresponding non-linear transformations,
e.g. for an observed 2D point one uses (12),
for an unknown 3D line (20). Using (15) and
(22), for example, one can determine the cova-
riance matrices of the non-reduced homoge-
neous coordinate vectors.

3.2 Testing the Identity of Two
Entities

Testing geometric relations using homoge-
neous coordinates in most cases leads to con-
straints which are linear in the coordinates of
each geometric entity. Examples are the inci-
dence of a 2D point x and a 2D line l, name-
ly the constraint xT l = 0, of a 3D line L and
a plane A, namely the constraint Γ(L)A = 0
with the Plücker matrix Γ(L) = XYT−YXT for
a line L through the points X and Y, or the
identity of two points x and y, namely the con-
straint S (x)y = 0. Among all these tests, the
tests on the identity of two homogeneous en-
tities can be simpliied using reduced coordi-
nates.
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As a second result we analysed the angles
between the directions of the 12 lines. As they
are clustered into three groups correspond-
ing to the main directions of the building, we
should ind values close to 0° within a group

and values close to 90° between lines of differ-
ent groups. The results are collected in Tab. 1.
The angles between lines in the same group

scatter between 0° and 14.5°, the angles be-

4 Example: Estimating 3D Line
from Image Line Segments

The following example demonstrates the prac-
tical use of the proposed method: namely de-
termining 3D lines from image line segments.
Fig. 4 shows three images taken with a CA-
NON 450D. The focal length was determined
using vanishing points, the principal point
was assumed to be the image centre, the imag-
es were not corrected for lens distortion. The
images then were mutually oriented using a
bundle adjustment program. Straight line seg-
ments were automatically detected and a small
subset of 12, visible in all three and pointing
in the three principal directions were manu-
ally brought into correspondence. From the
straight lines l

ij
(l
íj
), i = 1,…, 12; j = 1, 2, 3 and

the projection matrices P
j
we determined the

projection planes A
ij
= P

j

T l
ij
′ of the line seg-

ments. For determining the ML estimates of
the 12 lines L

i
, each from the three corre-

sponding projection planes, we needed their
covariance matrices. They were determined
by variance propagation based on the covari-
ance matrices of the image lines l

ij
and the co-

variance matrices of the projection matrices.
As we did not have the cross-covariance

matrices between any two of the projection
matrices, we only used the uncertainty ΣZ

j
Z
j

of the three projection centres Z
j
. The cova-

riance matrices of the straight line segments
were derived from the uncertainty given by
the feature extraction. For this we itted a

straight line through the edge pixels, which
was assumed to be determinable with a stan-
dard deviation of σ

p
= 0.3 pixel]. The covari-

ance matrix of the projection planes then is
determined by variance propagation of A

ij
=

P
j

T l'
ij
= (I

4
⊗ l'

ij
) vecP

j
from Σ

A
ij
A
ij

= P
i

TΣ
l'
i
l'
i

P
i
+

(I
4
⊗ l'

ij
)Σ

p
i
p
i

(I
4
⊗ l

ij
'
T).

We achieved the following results. First,
the square roots σ̂

0
of the estimated variance

factors σ̂
0

2 = Ω/(G−U) range between 0.03

and 3.2. As the degrees of freedom for each
3D line estimation is G−U = 2I− 4 = 2 · 3 − 4
= 2, thus in this case is very low, such a spread
is to be expected. The mean value for the 12
variance factors is 1.1, which conirms the

model to it to the data.

Fig. 4: Three images with 12 corresponding
straight line segments used for the reconstruc-
tion of the 3D lines, forming three groups [1...4],
[5...8], [9...12] for three main directions.
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timation. We demonstrated the rigour of the
method with the estimation of 3D lines from
projection planes in a multi-view setup.

The convergence properties when using
the proposed reduced representation does not
change as the solution steps are algebraically
equivalent. The main advantage of the pro-
posed concept is the ability to handle elements
at or close to ininity and the full range of the

transformations without loosing numerical
stability and that the representation is mini-
mal, which allows to use the representation for
large estimation problems, such as the bundle
adjustment. The concept can be extended to
higher level algebras, such as the geometric or
the conformal algebra (geBKen 2009) where
the motivation to use minimal representations
is even higher than in our context.
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