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Subpixel target detectors are complete-
ly dependent on how the scene endmembers
are modeled. If the total surface area is con-
ceived to be divided proportionally accord-
ing to the fractional abundances of the con-
stituent subspaces, then there exists a linear
relation between the fractional abundances of
the substances comprising the area being im-
aged, and the spectra in the relected radiation

1 Introduction

Spectral subpixel detection in hyperspec-
tral image (HSI) data aims to identify a tar-
get smaller than the size of a pixel using only
spectral information (Broadwater & Chel-

lappa 2007). This a priori information may be
obtained from in situ measurements, a spec-
tral library or can be image derived.

Summary: Target detection is one of the most chal-

lenging issues of remotely sensed data. Due to high

spectral resolution of the hyperspectral images and

their limited ground sampling distance, targets of

interest occur at subpixel level. In such cases, spa-

tial characteristics of targets are hard to acquire and

the only way to overcome such problem is to take

advantage of the spectral information. Based on the

spectral characteristics of background and the tar-

gets to be detected, several methods have been pro-

posed. Some of these methods assume a physics-

based approach, while the other may be purely sta-

tistical. So, all of these methods are based on some

assumptions each of which can be challenged in

one way or another. One possible way to take ad-

vantage of these differences to improve the inal

results is the fusion of the detectors’ outputs. In this

paper, eight subpixel target detectors are employed

as the ensemble detectors. It is also worth mention-

ing that the detectors should be different from each

other; otherwise the overall decision will not be

better than the individual detectors. So, we suggest

using the genetic algorithms to select the most suit-

able detectors for a given decision fusion rule. Ex-

perimental results on a real world hyperspectral

data as well as a synthetic dataset show the efi-

ciency of the proposed method to improve the de-

tection performance.

Zusammenfassung:DieObjekterkennung in Fern­

erkundungsszenen ist bislang nur teilweise gelöst.

Im Fall von Hyperspektraldaten steht der hohen

spektralen eine begrenzte räumliche Aulösung ge-

genüber. Daher sind viele Objekte kleiner als ein

Pixel, so dass eine Aussage über die geometrischen

Eigenschaften nur eingeschränkt möglich ist. Da-

her kommt der spektralen Information eine erhöhte

Bedeutung zu. In der Vergangenheit wurden viele

Analysemethoden vorgeschlagen, die die Objekter-

kennung nach den spektralen Charakteristiken der

gesuchten Objekte und ihrer Umgebung, dem Bild-

hintergrund, erlauben, Einige der Methoden verfol-

gen modellbasierte Ansätze während andere rein

statistisch arbeiten. Alle Methoden erfordern spezi-

ische Annahmen, die eine zusätzliche Unsicherheit

für das Ergebnis bedeuten. Ein Ansatz zur Verbes-

serung des Gesamtergebnisses ist die Verschnei-

dung (Fusion) der mit den unterschiedlichen Me-

thoden (Detektoren) gefundenen Einzelergebnisse.

In diesem Artikel werden acht typische Detekto-

ren beispielhaft untersucht und gezeigt, wie mit

Hilfe der Methode Genetischer Algorithmus die für

eine gegebene Fragestellung geeignetste Kombina-

tion gefunden werden kann. Die Methode wird so-

wohl an echten als auch an synthetischen Hyper-

spektraldaten erprobt. Die Untersuchung zeigt,

dass die vorgeschlagene Methode die Erkennbar-

keit von Objekten verbessert.
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hypothesis test. Adaptive matched subspace
detector (AMSD) (Manolakis et al. 2001) is a
statistical target detector based on structured
background. Unlike AMSD, adaptive cosine/
coherent estimate (ACE) (kraut et al. 2005),
which is another statistical target detector, as-
sumes no structured background.
It is also well known that in many situations

combining the output of several classiiers

leads to an improved classiication result. This

happens because the subset of the input space
that one classiier will attribute a correct label

will differ from the other. This implies that by
using information from more than one classi-
ier it is probable that a better overall accuracy

can be obtained for a given problem (alexan-
dre et al. 2001). A single classiier is gener-
ally unable to handle the wide variability and
scalability of the data in any problem domain
(Mangari et al. 2010). There are mainly three
types of fusion strategies (dasarathy 1994),
namely, information/data fusion (low-level fu-
sion), feature fusion (intermediate-level fu-
sion), and decision fusion (high level fusion).
In this paper the fusion process is carried out
on decision level.
The aim of this paper is the decision fu-

sion of 8 subpixel target detectors. Since there
might be cases in which some detectors show
similar performance, we employed the genetic
algorithms (GA) to choose the most optimum
detectors as the fusion input.
The remainder of this paper is organized

as follows. Section 2 describes eight subpixel
detection methods. Section 3 briely reviews

decision fusion approaches and the proposed
method. Performance comparison of the pro-
posed method is provided in section 4 and the
conclusions are included in section 5.

2 Conventional Subpixel Target
Detectors

2.1 Orthogonal Subspace Projection
(OSP)

In OSP, the endmember matrix M in (1) is di-
vided into two parts: desired signature vector
(d = m

p
) and undesired signature matrix (U =

[m
1
,m

2
,…,m

p–1
]. Then, we can rewrite (1) as

(Manolakis et al. 2003). Hence, this is called
the linear mixing model (LMM), and is ex-
pressed as

1

p

j jj
r m n M nα α

=
= + = +∑ (1)

where r is the l× 1 received pixel spectrum
vector, m

j
which represents the j-th endmem-

ber, is the j-th l× 1 column of M, α is the P× 1
fraction abundance column vector, n is the
l× 1 additive observation noise vector, M is
the l×P matrix whose columns are m

j
, l is the

number of spectral bands and P is the number
of endmembers.
We may confront a more complicated sce-

nario in which the substances comprising the
medium are organized proportionally on the
surface. This intimate mixture results when
each component is randomly distributed in a
homogeneous way. As a result, the incident ra-
diation may no longer uphold the linear prop-
erties of the constituent substance spectra.
This scenario is referred to as non linear mix-
ing (Manolakis et al. 2003).
Conventional subpixel target detectors can

be divided into four categories (Broadwater
& Chellappa 2007): One of the earliest meth-
ods uses array processing techniques to nul-
lify the background signatures as one would
nullify an interfering signature when per-
forming beamforming (Broadwater & Chel-
lappa 2007). The orthogonal subspace projec-
tion (OSP) (harsanyi & Chang 1994), con-
strained energy minimization (CEM) (Chang
& heinz 2000) and target constrained inter-
ference minimized ilter (TCIMF) (ren &
Chang 2000) algorithms are examples of such
methods. Another approach uses the linear
mixing model to directly estimate the abun-
dance values and uses the estimated target
abundances for detection purposes (Broad-
water & Chellappa 2007). Fully constrained
least squares (FCLS) (heinz et al. 1999), non-
negatively constrained least squares (NCLS)
(Bro & Jong 1997) and sum-to-one con-
strained least squares (SCLS) fall within this
category. Since FCLS and NCLS attempt to
address the phenomenological constraints in
the linear mixing model, they can be consid-
ered physics-based (Broadwater& Chellappa
2007). There are other kinds of subpixel tar-
get detectors which are based on a statistical
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2.3 Target Constrained Interference
Minimized Filter (TCIMF)

Compared to the OSP that only deals with
desired and undesired signal sources and the
CEM that only considers the desired signal
source without taking into account the unde-
sired ones, the TCIMF combines both the OSP
and the CEM into one ilter operation. Inter-
estingly, the CEM and the TCIMF can be also
interpreted as various versions of the OSP op-
erating different degrees of target knowledge
(Chang 2005).
Consider D = [d

1
,d
2
,…,d

p
] as the desired tar-

get signatures and U = [u
1
,u
2
,…,u

q
] be the un-

desired target signature matrix, the TCIMF
detector can be stated as

( ) ( )TCIMF T

TCIMF r w rδ = (6)

where

11 1 1

1

1
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×− − −

× ×
×

 
=  

 
(7)

2.4 Fully Constrained Least Squares
(FCLS)

To make the LMM have physical meaning,
two constraints are deined: the abundance

nonnegative constraint (ANC) and the abun-
dance sum-to-one constraint (ASC) (zhang et
al. 2010).

1
1

p

jj
α

=
=∑ (8)

0 1j for j pα ≥ ≤ ≤ (9)

With these two criteria, exact abundance
fractions would be extracted.
What makes the FCLS algorithm different

from the previously mentioned algorithms, is
that both the nonnegativity and sum-to-one
constraints are handled simultaneously (heinz
& Chang 2001). Therefore, the FCLS solu-
tion provides abundance estimates that meet
the linear mixing model constraints, but does
not allow a closed-form mathematical solution
due to the non-negativity constraints. Instead,
a numerical solution is proposed (Broadwater

pr d U nα γ= + + (2)

where α
p
is the abundance fraction of the de-

sired signature and γ is a (p–1)× 1 abundance
fraction vector of the undesired signatures.
To suppress the undesired target, the orthogo-
nal projection operator (P

U
⊥), which maps data

onto a subspace orthogonal to the undesired
signatures space, is used.

1( )T T

UP I U U U U⊥ −= − (3)

where I denotes the L×L identity matrix.

Applying P
U
⊥, under the white-noise as-

sumption (du et al. 2003), results in the OSP
detector

OSP Ud P rδ
⊥

= (4)

2.2 Constrained Energy Minimization
(CEM)

In order to implement OSP, knowledge of all
target signatures of interest is required. Such
knowledge is generally dificult to obtain in

practice (Chang & heinz 2000). So, CEM is
developed for the case that the only available
knowledge is the signature to be classiied.

The CEM algorithm tries to maximize the re-
sponse of the target spectral signature while
minimizing the response of the unknown
background signatures. The algorithm uses
an estimate of the sample correlation matrix
as a basis for determining the unknown back-
ground signatures and is computationally ef-
icient. It also does not assume the linear mix-
ture model or any noise characteristics (du et
al. 2003).

The CEM detector can be given by

1 1 1( ) ( ) ( )T T

CEM L L L Lr d R d R d rδ
− − −

× ×
= (5)

where R is the sample correlation matrix.

The CEM generally outperforms the OSP
in terms of eliminating unidentiied signal

source and suppressing noise, but it has a poor
generalization property since it is very sensi-
tive to the knowledge used for the desired tar-
get as well as the noise (Chang&heinz 2000).
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the abundance using (14). Note that for irst it-
eration unconstrained least squares solution
will be used. At each iteration, those indices
(Lagrange multipliers) corresponding positive
abundance fractions are placed in the passive
set P and the remainder abundance fractions
are placed in the active set R. Iterate (14) and
(15) until all Lagrange multipliers in the pas-
sive set are zero and all Lagrange multipliers
in the active set are either zero or negative.
At this point, the Kuhn-Tucker conditions are
satisied and an optimal mean-squared error

solution for the unmixing of the image can be
obtained.

2.5 Nonnegatively Constrained Least
Squares (NCLS)

The idea of NCLS is to minimize the LSE by
estimating the non-negative abundance val-
ues. In other words, to solve the following op-
timal problem

minimize LSE {( ) ( )}Tr M r Mα α− −
subject to α ≥ 0 (16)

As can be seen, the solution provided in (14)
and (15) accounts for both the nonnegativity
and sum-to-one constraints. So, the answer to
the NCLS is straightforward. To handle the
nonnegativity constraint, the modiications

applied to the endmember matrix (M) and the
pixel signatures (r) will be eliminated, i.e., the
sum-to-one constraint will be ignored.

2.6 Sum-to-one Constrained Least
Squares (SCLS)

Unlike FCLS and NCLS, the SCLS method
produces a closed form solution. The SCLS
solves the following optimization problem:

minimize LSE{( ) ( )}TM Mα α− −r r

subject to p
j 1{ 1}jα α=∆ = =∑ (17)

The answer to this problem can be ex-
pressed as:

1 1 1

,

ˆ ( )

ˆ ( ) ( ) [ ( ) ]

SCLS

T T T

M l LS

r

P r M M M M

α

α⊥ − − −

=

+ 1 1 1 (18)

& Chellappa 2007). In FCLS, the endmember
matrix (M) and pixel signatures (r) are exten-
ded such that:

1T
M

N
σ 

=  
 

(10)

1

r
S

σ 
=  

 
(11)

where l = [l, l,…, l]T is a p× 1 vector. The pa-
rameter σ is a small number (typically l × 10–5)
controlling how close the resulting abundanc-
es would sum to one. After the aforemen-
tioned procedure, the next step is to minimize
the least squares error (LSE) by estimating the
non-negative abundance values, which can be
expressed as:

Tminimize LSE {(N - ) (N - )}S Sα α subject
to α ≥ 0 (12)

Using the Lagrange multipliers, the follow-
ing function can be deined.

1
( ) ( ) ( )
2

TJ N S N S cα α λ α= − − + − (13)

where c is an unknown constant vector and
each member of this vector is nonnegative to
enforce the nonnegativity constraint.

ˆ
( )

FCLS

J
αα

∂
∂

and α = c.

So, the obtained equation contains two un-
knowns: the abundance estimates and the
Lagrange multipliers. Solving for these un-
known results in

1 1

1

ˆ ( ) ( )

ˆ ( )

− −

−

= − =

−

T T T

FCLS

T

LS

N N N S N N

N N

α λ

α λ (14)

and

ˆ( )T

FCLSN S Nλ α= − (15)

In (14) α̂
LS
is unconstrained least squares so-

lution.

Iterating through (14) and (15) provides the
numerical solution for the non-negativity con-
straints. To begin this iterative method, set all
the Lagrange multipliers to zero and calculate
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where B contains the background signatures,
and Z is deined as the concatenation of the
target and background signatures.

2.8 Adaptive Cosine/Coherent
Estimator (ACE)

We may focus on modeling the background in
a stochastic sense. Here, we think of inding

a mean centred target in additive background
noise. Therefore, the model we assume is

2

0 0

2

1 1

: ~ (0, )

: ~ ( , )

Γ

Γs

H r N

H r N Sa

σ

σ (23)

where
1

1
( ) ( )

N
T

i

r i r i
N =

Γ = ∑ is the MLE of the

covariance matrix. N is the number of back-
ground pixels in the image. If we assume that
N is very large, the covariance estimate from
these likelihoods can be simpliied to

1

( ) ( )
N

T

i

r i r i
=

Γ = ∑ , which is a standard assump-

tion made in the literature. Referring to (20),
the ACE algorithm sets B = 0, therefore the
sum-to-one and nonnegativity constraints
cannot be met either as they require a back-
ground subspace (Broadwater & Chellappa

2007).
The ACE detector can be expressed as

1 1 1

1

ˆ ( )
( )

ˆ

− − −

−

Γ Γ Γ
=

Γ

T T T

ACE T

r S S S S r
D r

r r
(24)

Despite this seemingly simple background
model, the ACE detector is one of the most
powerful subpixel detectors available for HSI
data (Manolakis & shaw 2002).

3 Decision Fusion

As stated before, in this paper the fusion pro-
cess is carried out on decision level, so this
section gives an insight into the decision fu-
sion methods. Fusion at decision level can be
divided into three categories based on the type
of the classiier outputs (xu et al. 1992):
Type 1 (abstract level): given L classiiers

each classiier (D
i
) outputs a class label. So, for

where

1 1 1

, ( ) [ ( ) ]T T T T

M l L LP I M M M M⊥ − − −

×= − 1 1 1 1 (19)

and l = [l, l,…, l]T is a p× 1 vector.

2.7 Adaptive Matched Subspace
Detector (AMSD)

Another kind of subpixel target detection
method is based on a statistical hypothesis
test. Adaptive matched subspace detector
(AMSD) is such an algorithm that formulates
the target and background subspaces and uses
the LMM and the generalized likelihood ra-
tio test (GLRT) to separate a probable subpix-
el target (Manolakis et al. 2001). AMSD uses
the LMM; however, the sum-to-one and non-
negativity constraints are not satisied. To de-
velop such algorithm, we establish the follow-
ing hypothesis tests

2

0 ,0 ,0 w

1 ,1

: , ~ N(0, )

:

= + = +

= + + = +

b b

s b

H r Ba n Sa w w I

H r Sa Ba n Sa w

σ

(20)

where H
0
is the null hypothesis (target absent)

and H
1
is the alternate hypothesis (target pre-

sent). In the AMSD, the noise is assumed as
a zero mean normal distribution with covari-
ance matrix σI. Then, the hypotheses are ex-
pressed as

2

0 ,0 0

2

1 ,1 1

: ~ ( , )

: ~ ( , )+

b

s b

H r N Ba I

H r N Sa Ba I

σ

σ (21)

In practice, noise variance σ
w
2 and abun-

dance vector a are unknown and should be es-
timated from image data using maximum like-
lihood estimation (MLE) for both the null and
alternate hypotheses. Afterwards, taking the
derivative of the MLEs with respect to each
of the unknown parameters and setting them
equal to zero, the MLE estimate of abundance
and noise variance are found. After some al-
gebraic manipulations and forming the GLRT,
the AMSD detector will be obtained

( )
( )

T

B Z
AMSD T

Z

r P P r
D r

r P r

⊥ ⊥

⊥

−
= (22)
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1 ,( ) min , 1,...,L

j i i jx d j cµ == = (28)

Median rule: The mean and the median meth-
ods have approximately the same performance
for normally distributed data but are different
for the uniform distribution, the average being
the better of the two (kunCheva 2002).

1 ,( ) , 1,...,L

j i i jx med d j cµ == = (29)

3.2 Proposed Fusion Scheme

In real world hyperspectal applications espe-
cially target detection, training data are lim-
ited or it is expensive to collect such data for
all phenomena. In particular, when spectra of
several targets are known and ground truth of
only a few are available. So, this motivated us
to design a scheme which makes use of avail-
able knowledge and is capable to generalize it
for other targets.

The block diagram of the proposed fu-
sion scheme is shown in Fig. 1. The proposed
framework is as follows. For the detectors
which require to know the spectra of all end-
members present in the scene, the HySime (Bi-
ouCas-dias& nasCiMento 2008) coupled with
the vertex component analysis (VCA) (nasCi-
Mento & BiouCas-dias 2005) are employed to
extract such knowledge. In case of using CEM
and ACE, the only required knowledge is the
targets’ spectra. However, due to sensitivity
of the CEM detector to noise (Chang & heinz
2000), which is the function of the sample cor-
relation matrix rank, only a subset of eigen-
vectors is used to calculate the inverse of sam-
ple correlation matrix. The number of eigen-
vectors is determined through singular value
decomposition (SVD) (Chang & heinz 2000).
After generating detection results for each tar-
get, the individual decisions are aggregated
through the aforementioned decision fusion
rules. As shown in (kunCheva 2002), apart
from the fusion methods, diversity among
classiiers can provide higher classiication

accuracies. In case of target detection, cor-
responding to each decision fusion rule, the
most optimum detectors can be chosen using
a search strategy. In fact, we aim at improv-
ing detection performance through choosing

any input object (x) to be classiied, the L clas-
siiers deine a vector 1 2[ , ,..., ]T L

Ls s s s= ∈Ω

where { }1 2, ,..., cω ω ωΩ = is the set of class
labels. In the simplest fusion scheme, the en-
semble chooses the class which receives the
highest number of votes (majority voting).

Type 2 (rank level): the output of each D
i
is

a subset of Ω, with the alternatives ranked in

order of plausibility of being correct label.

Type 3 (measurement level) each classiier

outputs a c-dimensional vector of measure-
ments [d

i,1
,d
i,2
,…,d

i,c
], each value of this vector

represents how likely a label is.

3.1 Decision Fusion Approaches

Product rule: This rule is good if the individu-
al classiiers are independent, i.e., that the out-
comes of d

i,j
for random x are independent for

ixed i (classiier) and variable j (class). This is
hardly ever the case.

,( ) , 1,...,
L

j i ji
x d j cµ = =∏ (25)

The rule assumes noise free and reliable
conidence estimates. It fails if these estimates

may be accidentally zero or very small (duin
2002).

Mean rule: In case the base classiiers contain

independent noise behaviour, the errors in the
conidences are averaged out by the summa-
tion (duin 2002).

,1

1
( ) , 1,...,

L

j i ji
x d j c

L
µ

=
= =∑ (26)

Maximum rule: At irst glance this seems

reasonable: select the classiier that is most

conident of itself. However, this assumption

immediately fails, if some classiiers are more

overtrained than others. In that case they may
be overconident and thereby dominating the

outcome, without having a better performance
(duin 2002).

1 ,( ) max , 1,...,L

j i i jx d j cµ == = (27)

Minimum rule: Like for the maximum rule, a
good example of a situation in which this rule
is really adequate is hard to ind (duin 2002).
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tra of both background and target pixels were
obtained from Indian Pines dataset (hsieh &
landgreBe 1998) (after removing noisy and
water absorption bands). Fig. 2 shows the spec-
tra of the target and background endmembers.
The spectra of soy-clean, corn-notill, corn-
mintill, soy-notill and soy-mintill are chosen
as desired targets and the spectra of grass/pas-
ture, grass/trees and woods classes are regard-
ed as background endmembers. The synthetic
image has 185 spectral bands.
Having generated the background image, a

10× 18 matrix consisting of target pixels was
implanted in the following manner. Two rows
of the target matrix correspond to one tar-
get. The irst column of this matrix replaced

the entire background pixel, i.e., irst column

contains targets with abundance values of 1.

the most effective detectors for each decision
rule. A possible way to reach this goal is to
take advantage of GA. This approach may al-
locate distinct banks of detectors for each de-
cision rule through GA.

4 Experimental Results and
Discussion

4.1 Dataset Description

Synthetic dataset: To evaluate the subpixel de-
tection performance, a synthetic image con-
sisting of 54× 54 mixed pixels is simulated. In
order to generate the background image, three
materials’ spectra were selected and mixed ac-
cording to a Dirichlet distribution. The spec-

Fig. 1: Architecture of the proposed detector fusion scheme, SVD = singular value decomposition,
OSP = orthogonal subspace projection, TCIMF = target constrained interference minimized ilter,
AMSD = adaptive matched subspace detector, FCLS = fully constrained least squares,
NCLS = nonnegatively constrained least squares, SCLS = sum-to-one constrained least squares,
CEM = constrained energy minimization, ACE = adaptive cosine/coherent estimator.

(a) (b)

Fig. 2: Spectral signatures of background and target endmembers, (a) background endmembers
and (b) target endmembers.
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age of the scene with highlighted target loca-
tions can be seen in Fig. 4 (snyder et al. 2008).

4.2 Organization of the Experiment

The experiment was organized as follows:

Signal subspace identiication and endmem­
ber extraction: In case of using real-world data,
the background endmembers are not known a
priori. However, some of the aforementioned
detectors require this a priori knowledge (i.e.,
background endmembers). So, two key issues
have to be addressed. One is the number of
endmembers assumed to be present in the hy-
perspectral data, which is referred to as vir-
tual dimensionality (VD) (Chang&du 2004).
Another is how to estimate these endmembers
once the VD is determined. There are some
algorithms to estimate these quantities. In this
paper, the HySime and VCA were used to es-
timate the signal subspace dimension and
the endmembers’ spectra, respectively. Two
reasons can justify the use of these two al-

In the next column, the abundance values of
targets decreased to .95 while the abundance
values of background pixels increased to .05.
By the same token, this pattern continues till
the last column, wherein the abundance values
of targets reduce to .15. After generating the
synthetic image, it was corrupted by Gaussian
additive noise to reach a signal-to-noise ratio
(SNR) of 20:1. Fig. 3 shows band 30 of the syn-
thetic image.
Real­world hyperspectral dataset: The second
dataset employed in this work is a real hyper-
spectral relectance image of size 120 × 250.

This image has been extracted from a larger
image acquired by the HyMap airborne hyper-
spectral sensor over Cook City, MT, U.S., on
July 4, 2006. The data have a ground sample
distance (GSD) of about 3 m and 126 bands
in the VNIR-SWIR range. The scene encom-
passes several types of land cover classes.
During acquisition, several targets with sizes
comparable to or smaller than the GSD were
placed in open grass ields (Tab. 1) and their

relectances were collected. A true colour im-

(a) (b)

Fig. 3: Synthetic hyperspectral dataset, (a) 180 simulated target panels and (b) band 30 of the
synthetic image with SNR 20:1.

Fig. 4: True colour representation of the HyMap dataset; the red region represents the study area.
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for each target are made comparable by scal-
ing them to the [0-1] interval.

Decision fusion: By combining the individu-
al outputs, we aim at a higher accuracy than
that of the best classiier. There is a consensus

among the researchers in classiier combina-
tion that the major factor for a better accuracy
is the diversity in the classiier team and, so,

the fusion method is of a secondary impor-
tance (kunCheva 2002). In other words, diver-
sity among themembers of a team of classiiers

is deemed to be a key issue in classiier com-
bination (kunCheva &whitaker 2003). Thus,
we suggest using a GA to design a multiple-
classiier system corresponding to each of the

fusion rules.

In GA, binary coding scheme is used. The
chromosome length is determined based
on the number of the detectors. The process
starts by generating a population equal to the
chromosome length based on Goldberg’s rule
of thumb (goldBerg 1989). For initialization
all chromosome bits are set to one. In other
words, GA starts using all detectors. Binary
tournament selection is applied for parent se-
lection. Two point crossover is used, where the
crossover probability and the mutation rate are
set to .8 and .03, respectively. As the stopping
condition for the algorithm, the number of
generations is set to 50.

Detection performance: For any given target
detector or binary classiier, its performance is

described via the receiver operating charac-
teristic (ROC) curve, which plots detection
rate versus false alarm rate for all possible
thresholds (i.e., [1~0]). Generally, the area un-
der the curve (AUC) is used as a metric to
evaluate detection performance independent
of threshold selection. Since we have more
than two targets (or classes) here, the mean de-
tection rate DR and mean false alarm rate FR

gorithms: 1) the HySime method is unsuper-
vised and fully automatic (i.e., it does not de-
pend on any tuning parameters) (Broadwater
& Chellappa 2007), and 2) the VCA achieves
state-of-the-art performance with a computa-
tional complexity between one and two orders
of magnitude lower than the best algorithms
(nasCiMento & BiouCas-dias 2005).
As stated in section 2, the ACE and CEM

algorithms assume no background signatures,
which removes the need to extract and identi-
fy the proper number of background endmem-
bers. However, as noted in section 2, the CEM
approach has a signiicant shortcoming. It is

very sensitive to the noise. As was shown in
(Chang & heinz 2000), the noise sensitivity is
closely related to the number of eigenvectors to
be used to calculate

1

L LR−

× and the intrinsic di-
mensionality of a hyperspectral image, which
is usually less than the data dimensionality L.
If the number of eigenvectors (q) is known a
priori (q, for example), we can use SVD so that
R
L×L
can be reduced to T

L LR V V× = Λ   , where

1 2( , ,..., )qV v v v=    is an eigenmatrix, kv is the
L-dimensional vector corresponding to the kth
eigenvalue λ

k
, and { }1 2, ,..., qdiag λ λ λΛ = is a

diagonal matrix with eigenvalues as diagonal
elements. Using this eigen-decomposition,
the inverse of T

L LR V V× = Λ   can be found by
1 1 T

L LR V V− −
× = Λ   (harsanyi 1993). Criteria for

choosing the number of basis vectors are most-
ly based on the percent of variability explained
by the irst q vectors. Since the SVD is very
efficient in capturing the directions (vectors)
explaining most of the variability, a relatively
small number of basis vectors tends to explain
more than 99.99% of the overall variability
(ientiluCCi 2005). So, we use the SVD to com-
pute the inverse of sample correlation matrix.

Target detection: After endmember extrac-
tion, target detection methods will be applied.
Before decision fusion the outputs of detectors

Tab. 1: HyMap target characteristics.

TargetName Colour Material Units Size

F1 Red Cotton 1 3m×3m

F2 Yellow Nylon 1 3m×3m

F3 Blue Cotton 2 2m×2m, 1m×1m

F4 Red Nylon 2 2m×2m, 1m×1m
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shows the AUC of target detectors as well as
the number of false alarm pixels for the detec-
tion probability of .9. It can be induced that in
terms of AUC and number of false alarm (FA)
pixels, the ACE and CEM algorithms showed
the best performance. At irst sight, it seems

that fusing the results of these detectors with
those of others may deteriorate the fusion out-
put; however, fusion results, especially in case
of mean and median rules, show the eficiency

of the fusion scheme.
Although fusing detection results increases

the detection performance, the choice of the
detectors to take the results from is also of vi-
tal importance. So, in order to choose the most
optimum subset of detectors for each fusion
rule via GA, the AUC of the irst two targets

can be deined by taking the mean of detection

rate and false alarm rate over all targets as

,

1

p

D j D j

j

R w R
=

= ∑ and ,

1

p

F j F j

j

R w R
=

= ∑ , respec-

tively, where
1,...,

j

j

p

N
w

N
= , N

j
is the number of

j-th target pixels and N
1,…,p

is the total number
of all target pixels (Chang et al. 2001). Here,
GA aims to maximize the AUC, i.e., the AUC
is used as the itness measure.

4.3 Experimental Results on
Synthetic Dataset

As stated in the previous section, detection
performance is described via the AUC. Tab. 2

Tab. 2: AUC and number of false alarm pixels (synthetic dataset).

Detector
Mean

AUC

Number of False Alarm Pixels
Mean False

Alarm PixelsSoy-

clean

Corn-

notill

Corn-

mintill

Soy-

notill

Soy-mint-

ill

OSP 0.643 1997 2175 2171 2617 2118 2216

CEM 0.968 92 104 344 281 292 223

TCIMF 0.634 2025 2167 2031 2536 2061 2164

ACE 0.958 81 61 200 508 812 332

AMSD 0.556 2880 2880 2880 2880 2880 2880

FCLS 0.875 103 175 2880 2880 2880 1784

NCLS 0.869 211 2880 2880 2880 2880 2346

SCLS 0.688 1703 2146 2192 2776 2059 2175

Max (DS*) 0.968 92 104 344 281 191 223

Mean (DS) 0.976 52 67 211 186 121 127

Median (DS) 0.974 71 51 237 589 85 207

Min (DS) 0.957 80 61 272 413 541 273

Product (DS) 0.954 72 78 153 885 528 343

*detector selection (via GA)

Tab. 3: Optimum detectors for each decision fusion rule (synthetic dataset).

OSP CEM TCIMF ACE AMSD FCLS NCLS SCLS

Max 0 1 0 0 0 1 1 0

Mean 0 1 0 0 0 1 0 0

Median 1 1 0 1 0 1 1 1

Min 0 1 0 1 0 0 0 1

Product 0 0 0 1 0 0 0 1
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tion. As mentioned before, the HySime and
VCA methods are used to estimate the signal
subspace and endmembers, respectively. The
HySime method is applied to the HyMap sub-
set and the signal subspace dimension of 21 is
obtained.
As mentioned, the CEM algorithm is sensi-

tive to noise, and the noise sensitivity is close-
ly related to the number of eigenvectors to be
used to calculate R̃

L×L

−1 , so the number of eigen-
vectors is chosen such that 99.99% of the data
variance is maintained.
Quantitative results on the real-world hy-

perspectral data, containing the number of
FA pixels, are tabulated in Tab. 5. It can be
observed that regardless of the physical con-
straints imposed on the FCLS and NCLS de-
tectors, their detection performance is lower
than the SCLS algorithm; however, from the
material quantiication point of view (i.e., esti-
mating true abundance fraction) this might not
be true. In the case of material quantiication it

is necessary to satisfy nonnegativity and sum-
to-one constraints. But in the case of target de-
tection the satisfaction of the aforementioned
constraints is not necessary. As mentioned in
Chang& heinz (2000) this unconstrained dis-
advantage turns out to be an advantage in the
detection of targets. It also can be inferred that
similar to the previous case, the mean fusion
rule outperforms the best detector (i.e., OSP).
The comparative results of conventional fu-

sion rules and the proposed method are pre-

(soy-clean and corn-notill) are chosen as the
itness measure. Final chromosomes corre-
sponding to each decision fusion rule are pre-
sented in Tab. 3.
It is worth mentioning that the mean rule

as the best decision fusion rule does not make
use of ACE. Instead it uses the detection out-
puts of FCLS, which are notably worse than
the ACE outputs. Tab. 4 demonstrates the ef-
fectiveness of choosing optimum detectors. It
can be induced that detector selection strategy
causes a dramatic drop in the number of FA
pixels in all cases.

4.4 Experimental Results on Real-
World Data

In the case of the HyMap dataset, a limited
number of target pixels would prevent a reli-
able estimate of the detection probability and
leads to a sparse ROC curve. Therefore, the
detection performance is evaluated by ind-
ing the highest test statistics within the region
of interest (ROI) and by counting the num-
ber of pixels in the image with a higher val-
ue. Hence, the resulting value is the number of
false alarms arising from the detection of the
given target (Matteoli et al. 2011). Therefore,
in this case GA aims at minimizing the num-
ber of false alarm pixels instead of maximiz-
ing the AUC. Here, the sum of FA pixels of
targets 1 and 3 is regarded as GA itness func-

Tab. 4: Effect of optimum detector selection (synthetic dataset).
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Tab. 5: Number of false alarm pixels (real-world data).

Detector Number of False Alarm Pixels Mean False Alarm

Pixels
1st target 2nd target 3rd target 4th target

OSP 2 0 71 23 24

TCIMF 0 0 1207 0 302

AMSD 5 0 347 280 158

FCLS 145 646 154 29990 7734

NCLS 377 572 342 29990 7820

SCLS 1 0 78 40 30

ACE 0 0 3945 0 986

CEM 126 447 607 285 366

Max (DS) 2 0 82 41 31

Mean (DS) 0 0 64 2 17

Median (DS) 0 0 156 6 41

Min (DS) 14 1 9 29990 7504

Product (DS) 3 0 13 29990 7502

Tab. 6: Effect of optimum detector selection (real-world data).

Fusion rule Number of False Alarm Pixels Mean False Alarm

Pixels
1st target 2nd target 3rd target 4th target

Max 5 3 191 5 51

Max (DS*) 2 0 82 41 31

Mean 0 0 158 4 41

Mean (DS) 0 0 64 2 17

Median 0 0 385 2 97

Median (DS) 0 0 156 6 41

Min 14 1 9 29990 7504

Min (DS) 14 1 9 29990 7504

Product 3 0 13 29990 7502

Product (DS) 3 0 13 29990 7502

*detector selection (via GA)

Tab. 7: Optimum detectors for each decision fusion rule (real-world data).

OSP CEM TCIMF ACE AMSD FCLS NCLS SCLS

Max 0 0 0 0 1 0 0 1

Mean 1 1 1 0 0 0 0 1

Median 0 1 1 1 1 1 1 1

Min 1 1 1 1 1 1 1 1

Product 1 1 1 1 1 1 1 1
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success of fusion approach to improve detec-
tion performance, due to lack of training data
in detection applications, further research on
developing unsupervised methods to measure
the diversity among detectorsʼ outputs is re-
quired.
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