
PFG 2012 / 4, 0371–0384 Article
Stuttgart, August 2012

© 2012 E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany www.schweizerbart.de
DOI: 10.1127/1432-8364/2012/0124 1432-8364/12/0124 $ 3.50

Kernel Composition with the one-against-one Cascade
for Integrating External Knowledge into SVM
Classiication

anDreaS CH. braUn, UWe WeiDner, boriS JUtzi & SteFan Hinz, Karlsruhe

Keywords: data fusion, knowledge integration, SVM, hyperspectral, airborne laserscanning

dering classiication results more reliably,
a better interpretation of the resulting maps
is ensured, which inally can help to make
better decisions. Various approaches for
multisource classiication have been pub-

1 Introduction

For many applications in remote sensing,
it is beneicial to use multiple data sources
(aMaRsaikHan & DoUglas 2004). By ren-

Summary: This work focuses on two main ques-
tions. How can data fusion be performed before
SVM (support vector machine) classiication? And
secondly: how can the one-against-one cascade be
exploited to use information selectively thus inte-
grating human knowledge? Kernel composition
represents a specialized method for fusing data on
the feature level. Its main advantage is given by the
fact that it reduces the Hughes phenomenon (per-
formance decrease due to high dimensionality) be-
cause it abstains from raising dimensionality in the
feature space. Since the paper focuses on hyper-
spectral data, a specialized kernel based on the
spectral angle is employed and evaluated. Two ap-
plication schemes are presented. At irst, hyper-
spectral data are fused with laserscanning data by
taking into account explicit knowledge on roof ge-
ometries. Secondly, a spectral-spatial framework
for hyperspectral data is presented which integrates
implicit knowledge on the relevance of spatial con-
text into classiication. Both approaches are prom-
ising as they obtain higher classiication accuracies
when integrating external knowledge. The innova-
tion of the contribution is that data fusion with a
second source of data via kernel composition is
combined with a modiication of the one-against-
one cascade which allows integration of human
knowledge.

Zusammenfassung: Verknüpfung von Kernfunk-

tionen mit der eins-gegen-eins Kaskade für die

Einbindung von Wissen in die SVM Klassiizierung.

Dieser Beitrag vertieft zwei Hauptfragen. Wie
kann die Datenfusion für die SVM Klassiizierung
vorgenommen werden? Und zweitens: wie kann die
eins-gegen-eins Kaskade genutzt werden, um In-
formation selektiv zu nutzen und menschliches
Wissen einzubringen? Die Verknüpfung von Kern-
funktionen stellt eine spezielle Methode der Daten-
fusion für kernbasierte Klassiikatoren wie Stütz-
vektormaschinen (support vector machines, SVM)
dar. Ihr Hauptvorteil besteht darin, dass dadurch
das Hughes Phänomen (Performanzverlust durch
hohe Dimensionalität) reduziert wird, indem sie es
vermeidet, die Dimensionalität des Merkmals-
raums zu erhöhen. Da sich der Beitrag mit hyper-
spektralen Daten beschäftigt, wird eine spezielle
Kernfunktion, die auf dem spektralen Winkel ba-
siert, eingesetzt und bewertet. Zwei Anwendungs-
schemata werden vorgestellt. Zuerst werden Hy-
perspektraldaten mit Laserscanningdaten fusio-
niert, wobei explizites Wissen über Dachgeometri-
en genutzt wird. Danach wird ein spektral-räumli-
cher Klassiizierungsansatz vorgestellt, welcher
implizites Wissen über die Relevanz des räumli-
chen Kontextes in die Klassiizierung einbringt.
Beide Ansätze sind vielversprechend, da sie höhere
Klassiizierungsgenauigkeiten erzielen, wenn Wis-
sen genutzt wird. Die Innovation des Beitrages ist,
dass eine zweite Datenquelle über die Verknüpfung
von Kernfunktionen kombiniert wird mit einer
Modiikation der eins-gegen-eins Kaskade, die es
erlaubt, Wissen zu integrieren.
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knowledge on the classes available to the op-
erator can be considered.
Both aspects are demonstrated and dis-

cussed on two application schemes. The irst
is multisource classiication of hyperspectral
and laserscanning data based on our previ-
ous work in bRaUn et al. (2011). The second
is spectral-spatial classiication on a hyper-
spectral benchmark dataset. Many research-
ers have made much effort on integrating the
spatial context of pixel neighbourhoods into
classiication (plaza et al. 2009). These spec-
tral-spatial approaches slightly differ from
the multisource case (fusion of hyperspec-
tral and laserscanning data) since the spatial
data source is derived from the spectral data
source. However, an important issue which
both have in common is the necessity to fuse
two different sources of information. As a
consequence, both multisource and spectral-
spatial approaches need methodologies for
data fusion. The main objectives of this pa-
per are therefore data fusion and the way in
which the OaO cascade can be used to inte-
grate knowledge into classiication. In the irst
application scheme, the knowledge is explic-
it knowledge of the operator about the shape
of roofs. In the second scheme, it is implicit
knowledge on the separability of classes. The
OaO cascade allows using this knowledge in
SVM classiication. The remainder of the pa-
per is organized as follows. Section 2 presents
a mathematical introduction to the methods
used. Section 3 outlines the data preprocess-
ing, data fusion and classiication of an urban
dataset composed of hyperspectral and laser-
scanning data. In section 4, the transferabil-
ity of the proposed framework will be shown
for a spectral-spatial classiication approach.
In section 5, both classiication approaches are
discussed and compared in a synoptic manner,
while section 6 concludes the paper.

2 Mathematical Foundations

This section provides briely the mathemati-
cal foundations of the methods used. Kernel
composition utilizes the Mercer property that
kernels can be combined by addition, multipli-
cation or ratio formation. SVMs ensure gener-
alization by accepting a small amount of er-

lished based on state-of-the-art classiiers
like Markov random ields (solbeRg et al.
1996), neural networks (paola & sCHoWen-

geRDt 1995), fuzzy classiiers (binagHi et al.
1997), or combined classiiers (HUang & lees
2004). Many approaches based on support
vector machines (SVM) have been published
as well. SVMs are a group of supervised
learning methods that can be applied to clas-
siication or regression (bURges 1998). Wata-
naCHatURapoRn et al. (2008) use an approach
based on feature concatenation. HallDoRsson
et al. (2003) propose a multisource frame-
work for SVM which modiies the RBF (radi-
al basis function) kernel by using the distanc-
es of data points in various sources as fea-
tures. Waske et al. (2007) classify two data
sources separately. Then, the outputs of the
SVM decision functions are used as new fea-
tures which are again classiied. Approaches
for the fusion of hyperspectral with laser-
scanning data are presented by e.g. Jones et
al. (2010) and Voss & sUgUMaRan (2008). A
crucial prerequisite of all of these classii-
cation approaches is data fusion. For kernel
based classiiers (like SVMs) a specialized
method is offered by kernel composition. It
exploits the fact, that kernel functions can be
combined (e.g. by addition, multiplication, or
weighting) to form new kernels. Thus, dif-
ferent kernels computed on different data
sources can be combined. The irst main fo-
cus of this contribution is to exemplify multi-
source classiication by data fusion via kernel
composition using SVMs. A second focus is
also discussed. Adapting the SVM from bi-
nary to multiclass classiication is frequently
done via the one-against-one (OaO) cascade.
Instead of considering all of the n classes in
one step, the OaO cascade considers only two
classes at a time. For each of the n  (n – 1)/2
combinations of classes, an individual SVM
is trained. Each SVM assigns a class label to
each point. Afterwards, the inal class label
for each point is the label that has been most
frequently assigned by the individual SVMs
(bRaUn et al. 2010). Since the cascade consid-
ers only two of the n classes, it can be exploit-
ed to use additional sources of information
selectively, i.e. only when the human opera-
tor considers it discriminative for the distinc-
tion of two particular classes. Thus, external
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to maximizing (1). The class labels y
i
are in

{−1,1}. Since the second part of (1) is subtract-
ed, only points with different class labels can
maximize the term. Since their product y

i
 y
j
=

−1, the double sum term is made positive and
the double sum of this combination of points
can contribute to maximizing (1). The prob-
lem is usually optimized by an optimization
procedure. This procedure sequentially as-
signs λ

i
to the training data. It converges if

points are chosen as SVs which have different
class labels but are found close to each other
in the feature space. Such points will yield a
high value in the kernel matrix K (x

i
,x
j
). Their

double sum of (1) will thus yield a high value
and contribute strongly to maximizing (1). To
conclude, it can be said that the similarity val-
ues of the kernel matrix are used for inding
the best suited training points as SVs. By not
letting non-SV points (which have λ

i
= 0) in-

luence (1), a sparse solution is found which
only depends on the SVs (which have λ

i
> 0).

2.2 Spectral Angle Kernels

In bRaUn et al. (2011) the linear kernel is used
predominantly. It represents a dot product of
the features and, thus, does not induce a high
dimensional reproducing kernel Hilbert space
(RKHS). However, the input feature space is
already high-dimensional for hyperspectral
datasets. Chances are that a good separation
is achieved without transformation. Statisti-
cal learning theory teaches that unnecessar-
ily complex functions raise the upper bound
on the generalization error, a principle similar
to Occam’s razor. Therefore, it is beneicial to
evaluate more simple functions – like the lin-
ear kernel – before trying more complex ones.
Another advantage of using the linear kernel
for kernel composition is its simple computa-
tion. Since the resulting kernel matrices are
huge, computational load should be kept as
low as possible. Good results were achieved by
using this kernel function. On the other hand,
the spectral angle (3) is considered a highly
valuable measure of similarity for hyperspec-
tral data due to their high dimensionality. One
main advantage is that the spectral angle is in-
sensitive with respect to differences in illumi-
nation. Thus, brighter and darker parts of the

rors on the training data. This paper uses the
ν-SVM by sCHölkopF et al. (2000). The choice
of data preprocessing and error handling
strategy used herein is based on bRaUn et al.
(2011), where a more thorough discussion on
the different types can be found.

2.1 Kernels and the Support Vector
Machine

Given a dataset X with n data points, kernel
matrices K (x

i
,x
j
) are the result of kernel func-

tions applied over all n2 pairs of data tuples.
The outcome of a kernel function K (x

i
,x
j
) =

fδ (x
i
,x
j
) is a similarity measure for the two

training data x
i
and x

j
depending on some dis-

tance metric δ. φ is usuallythe Euclidean dis-
tance (MeRCieR & lennon 2003). However,
kernel functions can be modiied e.g. by in-
troducing different similarity measures (aM-
aRi & WU 1999). To model complex distribu-
tions of the training data in the feature space,
fφ is usually some non-linear function. The
most frequently applied family of non-linear
functions are Gaussian radial basis functions
(RBF) (MeRCieR & lennon 2003, aMaRi &
WU 1999). The closer two points in the fea-
ture space are, the higher the resulting kernel
value is. Given these facts, the kernel matrix
simply represents the similarity between the
points of the training dataset. To understand
how the kernel matrix is used in SVM classi-
ication, it is helpful not to look at the primal,
but the dual formulation of the SVM problem.
The dual problem is given by (1).

maximize: 1
( , )

2
i i j i j i j

i i j

y y K x xλ λ λ−∑ ∑∑
(1)

with
λ
i
> 0 ∀ support vectors,

λ
i
= 0 ∀ other points.

The Lagrange multipliers λ
i
are only great-

er than zero for the support vectors (SVs) (see
constraint of (1)). Hence, only training data
which are SVs contribute to the solution of (1).
For all cases where at least one of the points is
not a support vector, λ

i
 λ
j
= 0. Thus, the dou-

ble sum term of (1) is also zero. Hence, if at
least one of the points is not a support vec-
tor, the couple of points does not contribute
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ity in the second domain. The decision wheth-
er a point belongs to a certain class would
therefore strongly depend on the irst domain,
while the second domain would inluence it
much less. Under these circumstances, the
second domain may only be decisive if a point
yields very comparable decision values for
two classes based on the irst domain. As men-
tioned above, this option is not available for
concatenating features. (7) is called the cross-
information kernel. It consist of four single
kernels where the last two KAB and KBA allow
the incorporation of the mutual information
between the data sources A and B (e.g. differ-
ences between the values of both data sourc-
es for a particular data point). The most im-
portant advantage of kernel composition over
concatenation is that the Hughes phenom-
enon is circumvented. The Hughes phenom-
enon is an accuracy decrease which occurs
when the dimensionality of the feature space
rises (HUgHes 1968). Given a certain number
of training samples, the predictive power of
classiication algorithms tends to decline as
the dimensionality increases, e.g. because the
feature space becomes more and more empty
and statistics in the feature space cannot be
estimated properly any more. For a thorough
discussion see lanDgRebe (1997). Concatena-
tion fuses data in the feature space, thus rais-
ing dimensionality. Kernel composition fuses
data in the RKHS. Since this space is high-di-
mensional (possibly ininite-dimensional), in-
troducing extra features affects the solvability
of the separation problem to a much smaller
extent. On the other hand, it could be argued
that concatenation has one advantage over
kernel composition. If the data are not separa-
ble in all single kernel RKHS, there is a pos-
sibility that the separability in the composite
RKHS is reduced, thus making concatenation
the more favourable method in this case. For
this reason, both approaches presented herein
use kernel composition only if separability is
assumed in the individual kernel spaces. If a
certain information domain and its respective
kernel are not considered representative for
the separation, they are not used.

( , ) ( , ) ( , )C C A A B B

C i j A i j B i jK x x K x x K x x= + (4)

same material are more likely to be assigned
to the same class if such a distance measure is
used. MeRCieR & lennon (2003) and Honeine
& RiCHaRD (2010) propose a methodology for
integrating the spectral angle into SVM clas-
siication. By simply replacing the ||x

i
–x

j
|| in

the RBF (2) with the spectral angle (3), they
obtain a spectral kernel which combines the
illumination insensitivity of the spectral angle
distance with the discriminative power of ker-
nel-based classiication:

|| ||
exp( )

2

i j

RBF

x x
K

γ

− −
= (2)

( , ) arccos
|| || || ||

i j

i j

i j

x x
x x

x x
α

 ⋅
=   × 

(3)

2.3 Kernel Composition for Data
Fusion

For both application schemes presented in this
paper, two information domains are available
that have to be fused. Kernel matrices based
on kernel functions are the representation of
the similarity among input data and are used
to identify the support vectors. According
to Mercer’s theorem, kernel matrices can be
combined. Thus, after computing one kernel
on the domain A and one kernel on the do-
main B, data fusion can be performed for in-
stance by adding the kernels from A and B.
Various methods for kernel composition are
available (CaMps-Valls et al. 2005). Herein,
four composed kernels will be exempliied:
the direct summation kernel (4), the weighted
summation kernel (5), the product kernel (6)
and the cross-information kernel (7). The di-
rect summation kernel is a simple addition of
two kernels. The weighted summation kernel
introduces weighting factors τ

1
and τ

2
. By set-

ting these parameters, the user can deine to
which extent the information in each domain
is considered as signiicant for the classiica-
tion problem. For instance, if the user consid-
ers the irst domain to be more relevant for the
classiication problem, he or she could set λ

1
=

0.8 and λ
2
= 1–λ

1
. Thus, the similarity of two

features in the irst domain inluences their
kernel values much more than their similar-
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roof geometries (sloped vs. sloped or lat vs.
lat), the spectral domain is used exclusively.
In this way, data known not to contain any
new information can be omitted and the clas-
siier training is focused on relevant informa-
tion. Since this framework is very general, it
can be applied to different kinds of data and
different knowledge.

3 Fusion and Classiication of
Hyperspectral and ALS data

Within this section, improvements of our pre-
vious work on data fusion are presented. The
application scheme is based on the fusion of
hyperspectral and laserscanning data. The ap-
proach in bRaUn et al. (2011) is enhanced by
using the spectral angle kernel for the hyper-
spectral data and a radial basis function ker-
nel for the ALS data. Moreover, further kernel
composition approaches are employed.

3.1 Data Preprocessing

An image from the city of Karlsruhe taken by
the HyMap sensor in 2003 with a spatial res-
olution of 4×4 m2 and 126 spectral channels
provides the hyperspectral information. A la-
serscan with 1×1 m2 resolution from 2002 de-
livers geometrical information. Apart from the
irst and last pulse information, the gradient
and curvature of the irst pulse are computed.
This information is used to distinguish sloped
roofs from lat roofs. Hence, six information
channels are derived from the ALS data. The
data of HyMap is resampled to the spatial res-
olution of the laser scan, using nearest neigh-
bourhood interpolation. To reduce computa-
tional cost, and to allow for a later comparison
with leMp &WeiDneR (2004) and bRaUn et al.
(2011), a 605×987 pixel subset is chosen which
shows the campus of the Karlsruhe Institute
of Technology (KIT). A z-transformation
(i.e. normalization by mean and standard de-
viation) on each layer is performed to ensure
comparability. The material classes to be dis-
tinguished are: brick (red in the classiication
results), copper (green), gravel (brown), slate
(dark blue), zinc (light blue) and stone plates
(grey). For each class, various training areas

( , ) ( , ) (1 ) ( , )C C A A B B

C i j A i j B i jK x x µK x x µ K x x= + −
(5)

( , ) ( , ) ( , )C C A A B B

C i j A i j B i jK x x K x x K x x= × (6)

( , ) ( , )

( , )

C C A B

C i j A B AB i j

B A

BA i j

K x x K K K x x

K x x

= + +

+ (7)

2.4 Exploitation of the one-against-
one Cascade

Since SVMs are binary classiiers, their orig-
inal formulation is only able to solve classi-
ication problems distinguishing two classes.
For our irst application scheme, 14 subclass-
es need to be distinguished, though. Thus,
the 14-class problem needs to be split up into
various two class problems. The OaO strate-
gy considers each of the 91 permutations of
the classes separately – leading to 91 train-
ing and classiication steps. For each step, a
model is trained to separate a subset of two
classes, considering e.g. the training pixels of
class 6 and class 9. During classiication, this
SVM assigns either 6 or 9 as a label to each
pixel. Each pixel is labelled by all 91 models
and, thus, receives 91 labels, so that a 1×91 la-
bel vector v

i
for each pixel is produced. The

inal class membership for the ith pixel is de-
cided by mode(v

i
), i.e. the label most frequent-

ly assigned to the pixel. As mentioned above,
two different information domains are avail-
able for each application scheme in this paper.
Consider the urban image scenario in which
different roof material classes are to be sep-
arated. While information of the airborne la-
serscanning (ALS) data can be helpful to dis-
tinguish between sloped brick roofs and lat
gravel roofs, it will not facilitate the separa-
tion of two sloped roof classes signiicantly. At
this point, the OaO cascade can be exploited.
As it does not consider all 14 classes in one
step, the cascade can be used to recognize
whether the user considers geometry as sig-
niicant for a given classiication step or not.
When separating two roof material classes
with different geometries (sloped vs. lat) the
spectral domain is fused with the geometric
domain. In contrast, when separating similar
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subsequent processes. We start with a pixel-
based classiication. Afterwards, the results of
the pixel-based classiication are transferred
to the roof segments. This is done by assign-
ing each roof segment the class label most fre-
quently assigned to the pixels it consists of.

3.2 Selection of Single Kernels

In a irst step, we evaluated the capacities of
single kernel functions on each domain. We
trained a SVM using only one data domain to
identify the best suited kernel for hyperspec-
tral and ALS data separately. We evaluated
the capacities of the linear, the polynomial,
the radial basis function, the sigmoid and the
spectral angle kernel by training, using ive-
fold cross validation to optimize ν and the re-
spective kernel parameters (i.e. γ for RBF, sig-
moid and spectral angle kernel, the degree for
the polynomial and none for the linear kernel)
simultaneously. Validation was performed on
an independent set of validation data, entire-
ly unknown to the classiier. The range of the

are deined. With respect to roof geometry, a
sloped roof class and lat roof class are distin-
guished by integration of spatial information
during the OaO cascade. However, the distinc-
tion is implicit in the sense that no classiica-
tion map on sloped and lat roofs is produced.
The relationship between the classes can be
seen in Fig. 1. 200 points are randomly chosen
from these areas for training and 100 for vali-
dation. Mean-shift segmentation is applied to
the irst pulse information. In order to be able
to decide whether segments correspond to
roofs or not, a ‘roof mask’ is calculated from
laserscanning and hyperspectral data. First,
a normalized digital surface model (nDSM)
is computed by subtracting the terrain mod-
el from the surface model. All pixels having
nDSM heights below two metres are consid-
ered to be non-roof pixels; this process will re-
move streets and other low man-made objects.
Furthermore, the normalized difference vege-
tation index is computed on the hyperspectral
data to mask out the remaining vegetated ar-
eas. Only segments being consistent with the
roof mask thus created are considered in the

Fig. 1: Classes of the urban dataset and their relationship; left: material classes, right: geometry
classes.
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ful. Since the spectral angle is especially de-
signed to exploit the information of the numer-
ous wavelengths in a hyperspectral dataset, it
does not seem to be appropriate to reduce by
discarding PCAs with lower eigenvalues. Ac-
cording to bRaUn et al. (2011), we performed
data fusion by kernel composition only for the
OaO steps where a sloped roof class is separat-
ed from a lat roof class. The selection scheme
follows these short heuristics:
if geometry of roof_class 1 ≠ geometry of

roof_class 2:
use hyperspectral and ALS data jointly via

kernel composition
else: use hyperspectral data only via sin-

gle kernel
After applying these heuristics, we checked

for how many steps of the OaO cascade the
second domain had been used. It had been
used for 40 out of the 91 OaO steps (i.e. in
~44% of the steps). As Tab. 2 reveals, all data
fusion approaches yielded higher overall ac-
curacy values than did the best single kernel.
The best approach is the direct summation
kernel which yielded 86.9% overall accura-
cy, thus improving the best result published
in former work by 0.3%. An attempt to use
both data sources at each step yielded 79.6%
overall accuracy, thus validating the assump-
tion that selective usage is beneicial. These
indings conirm the conclusions on selec-
tive usage thoroughly discussed in bRaUn et
al. (2011). Running the algorithm concatenat-
ing the features yielded 84.1% overall accu-
racy. The classiication results of using only
the hyperspectral domain are given in Fig. 2

grid search for γ was [2-15, 25], ν was tuned in
[0, 1], the polynomial degree was tuned in [1,
10]. For each tuning interval, 10 steps were
evaluated (e.g. polynomial degree: 1,2,3,...,10).
As Tab. 1 reveals, the best suited kernel

for the hyperspectral data is the spectral an-
gle kernel. This inding empirically conirms
the advantages which were theoretically de-
scribed in section 2.2. The optimal kernel for
laserscanning data is the polynomial kernel.
The overall accuracy values yielded for the
classiication based on laserscanning data
only were low, which is not surprising keeping
in mind the features derived from laserscan-
ning described above are merely enough to
separate the spectrally different roof material
classes. The sigmoid kernel performed poorly
for both domains.

3.3 Classiication of Fused Dataset

After identifying the most suitable single ker-
nels, we performed kernel composition. Note
that the cross-information kernel requires
both input data domains to have the same di-
mensionality. Since the hyperspectral data
consists of 126 features while the ALS data
consists only of 6, this constraint is not ful-
illed. Therefore, a principal component anal-
ysis (PCA) was computed on the hyperspectral
data and only the irst six principal compo-
nents are used. The PCA is employed only for
the cross-information kernel, because for the
other kernel composition approaches the two
data domains do not need to have the same di-
mensionality. In the case of the spectral angle
kernel, feature reduction via PCA is not help-

Tab. 1: Overall accuracy values using different
kernel functions on a single data domain: ur-
ban dataset application scheme (RBF = radial
basic function).

Kernel Hyper­

spectral

Laser­

scanning

Linear 80.10% 27.00%

Polynomial 80.20% 55.90%

RBF 80.00% 51.00%

Sigmoid 53.90% 25.30%

Spectral angle 84.80% 26.80%

Tab. 2: Overall accuracy values of different fu-
sion approaches for urban dataset application
scheme.

Classiication approach Overall

accuracy

Only hyperspectral domain 84.80%

Concatenation 84.10%

Direct summation (selective)
τ
1
=1, τ

2
=1.

86.90%

Weighted summation (selective)
τ
1
=0.8, τ

2
=0.2.

85.50%

Cross-information kernel (selective) 85.60%

Product kernel (non selective) 85.90%
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sition approach using the McNemar test. The
test yielded a value of |z| = 18.9. Thus, the ad-
vantage of the proposed selective kernel com-
position approach is highly signiicant.
In order to assess the performance of the

two approaches to individual classes, produc-
er’s and user’s accuracies were compared. As
Tab. 3 reveals, the laserscanning data is help-
ful for the producer accuracies of gravel and
slate. For copper and stone-plates, no differ-
ences were found, for brick and zinc, the laser-
scanning data impairs the producer accuracy
slightly. The average improvement over all six
classes is 1.81 percent points. The producer’s
accuracies of some classes of both sloped and
lat roofs were improved, others slightly im-
paired. Hence, no clear trend with respect to
roof geometry can be observed. Results for the
user’s accuracy are similar. Brick, zinc and
stone-plates were improved by laserscanning,
the copper class was not changed and gravel

(3) and the result of the direct summation
kernel is shown in Fig. 2 (4). Due to the quite
high classiication accuracies, both results are
visually similar in their major part. Fig. 2 (2)
visualizes the differences between the two re-
sults. The result based on hyperspectral in-
formation contains many roofs classiied as
stone-plate roofs (grey) or zinc roofs (bright
blue) which in reality belong to other classes –
mostly gravel (brown). The method based on
the direct summation kernel of hyperspectral
and ALS data classiied the circular building
in the north-east as brick (red), although it is a
zinc roof. A McNemar test (FooDY 2004) was
used to check the signiicance of the improve-
ment. The value of the McNemar test |z| indi-
cates the signiicance of differences between
classiication results. A difference is consid-
ered as signiicant if |z| ≥ 1.96. The results
based solely on hyperspectral data were tested
against the proposed selective kernel compo-

Fig. 2: Urban dataset, 1: True colour view of the hyperspectral data, 2: Agreement (green: equal
labels, red: different labels), 3: Classiication based on hyperspectral information only (orange ills:
training areas), 4: Proposed direct summation approach (fusion of hyperspectral and ALS data).
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The spatial context is produced by a sim-
ple 3x3 median ilter on each channel. The re-
sulting feature vector is then fused with the
spectral data. For each class, 20% of the data
labelled by ground truth are used for training
and the rest for classiication. Selective data
fusion via kernel composition of spectral and
spatial data by exploiting the OaO cascade is
used. However, unlike in section 3, no explic-
it knowledge is available on whether to use
spectral information for a certain classiica-
tion step or not. Thus, this knowledge is cre-
ated implicitly after two basic classiications.
Again, we evaluated the capacities of the sin-
gle kernels on the two data domains. The tun-
ing of hyperparameters was performed identi-
cally to section 3.2. The polynomial kernel is
identiied to be ideal for the spectral domain
and the RBF kernel to be ideal for the spatial
domain (Tab. 4). The overall accuracies yield-
ed were higher on the spatial domain for each
kernel except for the sigmoid kernel whose
performance is again poor. We believe that

and slate were slightly impaired. Again, no
clear trend with respect to roof shape can be
observed. The average improvement is 3.14
percent points.

4 Fusion and Classiication of
Spectral Spatial data

To show the transferability of the methodol-
ogy developed above to a different application
scheme, a similar framework of a different
dataset is developed. This approach is based
on a spectral-spatial classiication of the well-
known AVIRIS Indian Pines dataset provided
in the MultiSpec toolbox (bieHl & lanDgRebe
2002). The Indian Pines dataset consists of a
145x145 pixel image of an agricultural area
taken by the AVIRIS sensor. This dataset is
known as a dificult benchmark for hyper-
spectral classiication due to the high spec-
tral similarity of the classes included (differ-
ent crops at an early phenological stage). It has
220 spectral bands and includes 16 land use
classes. Many bands are quite noisy so some
authors remove some bands from the dataset
before classiication. The dataset comes with
a ground truth image in which around 49%
of the pixels are labelled. Nonetheless, some
classes consist of very few labelled points (e.g.
only 20 points). For this contribution, all 16
classes were used and no bands were removed
in order to maintain a high dimensionality and
the noise level typical for many hyperspectral
sensors. The ground truth data were randomly
split into training data (20%) and evaluation
data (80%).

Tab. 3: Producer’s (PA) and user’s (UA) values and their differences for the two approaches
(HYP = hyperspectral data, LS = laserscanning data).

Class PA (HYP/LS) PA (HYP) δ(PA) UA (HYP/LS) UA (HYP) δ(UA)

Brick 85.17 87.70 -2.53 100.00 94.86 5.14

Copper 87.28 87.28 0.00 100.00 100.00 0.00

Gravel 100.00 89.73 10.27 62.30 66.69 -4.39

Slate 85.00 77.72 7.28 81.28 83.74 -2.46

Zinc 87.56 91.67 -4.11 97.38 88.77 8.62

Stone-plates 74.61 74.61 0.00 76.81 64.79 12.02

Ø=1.81 Ø=3.15

Tab. 4: Overall accuracy values using different
kernel functions on a single data domain: spec-
tral-spatial application scheme.

Kernel Spectral

domain

Spatial

domain

Linear 79.50% 87.80%

Polynomial 81.10% 89.40%

RBF 79.80% 90.10%

Sigmoid 38.70% 38.40%

Spectral angle 73.80% 80.20%
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else: use spatial information only via single
kernel
Given 16 classes, the OaO cascade consists

of 120 classiication steps. Applying this heu-
ristic, the spectral information proved relevant
for 49 steps. A third classiication was per-
formed, using the spectral and spatial infor-
mation jointly for these 49 steps only. Various
kernel composition approaches were evaluat-

this is due to the lack of preprocessing steps of
the spectral domain, which therefore is classi-
ied with all the noise it contains. For this rea-
son, we decided to use the features derived by
median iltering as our main domain. Unlike
for the irst classiication approach, the spec-
tral angle kernel did not produce the best re-
sults on the spectral domain. Having identi-
ied the best kernels, we classiied the AVIRIS
dataset using only the spectral information of
the original channels irst. Afterwards, a con-
fusion matrix for the result based on spectral
data only is computed (it is called CMsc). In a
second step, we classiied, but using the spec-
tral and spatial information jointly at each step
of the OaO cascade. Again, a confusion matrix
based on the joint usage of spectral and spatial
data is computed (it is called CMscsp). From
these two confusion matrices, the knowledge
of whether to use the spatial information is
created by simple and straightforward heuris-
tics:
if CMscsp(i,j) > CMsp(i,j) or CMscsp(j,i) >
CMsp(j,i) with i≠j:
use spectral and spatial information jointly
via kernel composition

Tab. 5: Overall accuracy values of different fu-
sion approaches for spectral-spatial applica-
tion scheme.

Classiication approach Overall

accuracy

Only spatial domain 90.10%

Direct summation (non selective)
τ
1
=1, τ

2
=1.

83.70%

Weighted summation (non selective)
τ
1
=0.6, τ

2
=0.4.

84.00%

Cross-information (non selective) 74.60%

Product kernel (non selective) 90.70%

Product kernel (selective) 91.60%

Fig. 3: Result for AVIRIS, 1: Spectral data, 2: Spatial data, 3: Spectral, spatial data fused at each
step, 4: Spectral, spatial data with selective kernel composition.
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5 Discussion

The results presented in bRaUn et al. (2011)
could be enhanced by various means. First of
all, the spectral angle kernel computed on the
hyperspectral data improved the performance
in terms of the best accuracy achieved by
4.7% compared to the previous approach. As
the spectral angle is a very well suited meas-
ure of similarity for hyperspectral data its in-
tegration into SVM combines the advantages
of traditional classiication approaches for hy-
perspectral data (the spectral angle mapper)
with the advantages of kernel learning. Our
results indicate that the spectral angle kernel
should be taken into account for hyperspectral
classiication approaches. Rong et al. (2006)
provide an insightful overview on selection of
kernel functions. However, their paper does
not include the spectral angle kernel. FaUVel
et al. (2006) present a comparison taking into
account the spectral angle kernel. Their re-
sults indicate a slight advantage of RBF over
the spectral angle kernel. However, their data-
set requires the distinction of classes which
mainly differ in intensity (trees, meadows).
Furthermore, the best classiication accuracy
achieved by an approach based on selective
data fusion (bRaUn et al. 2011) could be raised
to 86.9% in this paper. Individual values of
producer’s and user’s accuracies were im-
proved for some classes and impaired for oth-
ers. However, both producer’s and user’s accu-
racy were improved on average. No clear trend
between improvements and roof geometries
could be observed. This was to be expected,
because each class had to be distinguished
from classes having both the same and dif-
ferent roof shapes. The highest classiication
accuracy is achieved by selective data fusion
based on the direct summation kernel. Just as
CaMps-Valls et al. (2005, 2008) we found that
simple kernels tend to produce better results
than more sophisticated ones. Results indicate
that the single kernel type should be selected
individually for each input domain. Although
it is also possible to use the same kernel type
for both domains, higher accuracy values and
a more lexible approach are achieved by an
individual selection. In our case, the spectral
angle kernel and the polynomial kernel proved

ed. As can be seen in Tab. 5 all except one ap-
proach which use the two domains non-selec-
tively produce worse results than using only
the median iltering (spatial). The cross-infor-
mation kernel performs worst of all approach-
es, conirming the indings of CaMps-Valls et
al. (2005, 2008) who state that more sophis-
ticated kernels tend to produce worse results.
Again, this inding underlines the care that
should be taken when fusing data. However,
the non-selective product kernel produces a
slightly higher overall accuracy than using
the approach based on one domain only. As
can be seen, spectral information is helpful for
most, but not for all the classes. Finally, when
using a product kernel only for the 49 steps
described above, an overall accuracy value
of 91.6% is obtained, which is the best value
for all approaches presented for this dataset.
The McNemar test is used to check the sig-
niicance of the improvements yielded. The
value for the test statistic when testing the se-
lective product kernel against the single kernel
(only spatial domain) is 2.9, thus, the improve-
ment is signiicant. When testing the selective
product kernel against the non-selective prod-
uct kernel, a value for the test statistic of 2.7
is obtained, indicating that the improvement
caused by selective usage was signiicant as
well.
Fig. 3 shows a comparison of classiication

results. Fig. 3 (1) shows the result for a clas-
siication based on the spectral data only and
Fig. 3 (2) shows the result obtained by using
the spatial data. Fig. 3 (3) shows the result ob-
tained by fusing spectral and spatial informa-
tion at each OaO step. Fig. 3 (4) shows the re-
sult produced by selectively integrating the
spatial information applying the heuristics
given above. Note that the images based on us-
ing spatial context appear to be much smooth-
er while the borders of different crop ields are
preserved. The results are much less affected
by salt-and-pepper classiication noise. While
using spatial information at each step already
seems to raise classiication performance, the
selective usage of the spatial context seems to
be even more suitable. The right image is even
less affected by salt-and-pepper noise and the
ield borders are more clearly outlined (south-
east quarter of the image).
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work to differently posed problems and con-
stitutes an important step towards a general
framework for knowledge integration. The re-
sults conirm that the approach is applicable
to different data types and different types of
knowledge. Using the second data domain in a
naïve way does not necessarily increase clas-
siication accuracy; as some fusion approach-
es perform worse than the approach based on
a single domain only, thorough consideration
needs to be made not only on how to fuse the
data but also on when to use the second infor-
mation domain.

6 Conclusion

Kernel composition proves to be a potent
method for data fusion when using SVM. Best
results are achieved with the direct summation
and the product kernel. The OaO cascade is a
useful way to integrate the second information
domain selectively. Knowledge is exploited to
use information selectively and proves suita-
ble to enhance classiication results for both
application schemes described in this paper.
The spectral kernel is used for hyperspec-
tral data since it integrates a well-established
measure of similarity into SVM classiication.
Furthermore, an approach for spectral-spatial
classiication is presented for the well-known
AVIRIS Indian Pines datasets. Spatial context
is used for classiication. Implicit knowledge
on the relevance of the spatial context is in-
tegrated. The transfer from fusion of hyper-
spectral and ALS data based on given explic-
it knowledge to spectral-spatial classiication
based on implicit knowledge highlights the
transferability of the proposed framework.
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