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erable urban pressure that often entails their
fast degradation and the abandonment of ag-
riculture for a more proitable use of the land
(allen 2003, HUang et al. 2009). The high
dynamics of peri-urban areas produce con-

1 Introduction

In many developed countries peri-urban areas
are undergoing major transformations (bUsCk
et al. 2006). These areas are under a consid-

Summary: This paper presents a methodology for
change detection in peri-urban areas using high
spatial resolution image and lidar data, founded on
object-based image classiication and a comparison
of the classiication results from two epochs. The
deinition of the objects is based on cadastral
boundaries obtained from a geospatial database.
An exhaustive set of descriptive features is com-
puted, characterising each object for both epochs
regarding spectral, texture, geometrical, and three-
dimensional (3D) aspects. In addition, contextual
features describing the object at two levels are de-
ined. Internal context features describe the rela-
tions between different land cover elements within
the object, whereas external context features de-
scribe each object considering the common proper-
ties of neighbouring objects, usually coinciding in
urban areas with an urban block. Both the classii-
cation and the change detection process are thor-
oughly evaluated, and the speciic contribution of
3D features to the accuracy of the processes is ana-
lysed. The results show that 3D information ena-
bles to improve the classiication results, remarka-
bly increasing the accuracy values of certain class-
es, and allowing for an enhanced discrimination of
building typologies. Moreover, the change detec-
tion eficiency is notably improved by a signiicant
reduction of both commission and omission errors.

Zusammenfassung: Dieser Beitrag beschreibt
eine Methodik zur Erkennung von Änderungen in
Stadtrandgebieten mit Hilfe von räumlich hoch auf-
gelösten Bild- und Laserscannerdaten, die auf einer
objektbasierten Klassiikation und einem anschlie-
ßenden Vergleich der Klassiikationsergebnisse für
zwei Epochen aufbaut. Die Deinition der Objekte
basiert auf Katastergrenzen aus einer räumlichen
Datenbasis. Ein umfangreicher Satz von Merkma-
len wird berechnet, der jedes Objekt aus beiden
Epochen hinsichtlich seiner spektralen, texturellen,
geometrischen und dreidimensionalen (3D) Aspek-
te charakterisiert. Zusätzlich werden Kontext-
Merkmale, welche das Objekt auf zwei Ebenen be-
schreiben, deiniert. Die internen Kontext-Merk-
male beschreiben die Beziehungen zwischen ver-
schiedenen Landbedeckungsarten innerhalb eines
Objekts, während die externen Kontext-Merkmale
jedes Objekt hinsichtlich der gemeinsamen Eigen-
schaften von benachbarten Objekten beschreiben;
letztere sind für Objekte innerhalb eines Gebäude-
blocks normalerweise ähnlich. Sowohl die Klassii-
kation als auch die Änderungsdetektion werden
sorgfältig evaluiert, und der Einluss der 3D Merk-
male auf die Genauigkeit dieser Prozesse wird ana-
lysiert. Die Ergebnisse zeigen, dass die 3D Infor-
mation dabei hilft, die Genauigkeit der Klassiika-
tion zu steigern, wobei diese Steigerung für einige
Klassen bemerkenswert ausfällt und insbesondere
eine verbesserte Unterscheidung von Bebauungsar-
ten erlaubt. Darüber hinaus wird die Efizienz der
Änderungsdetektion deutlich erhöht, indem sowohl
die Zahl der nicht erkannten Änderungen als auch
jene der falschen Alarme signiikant reduziert
wird.
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et al. 2007), or comparing the classiication
results from one date to historical databases
(VosselMan et al. 2004, VU et al. 2004, Rot-
tensteineR 2007, CHaMpion et al. 2010, Mati-

kainen et al. 2010, boUziani et al. 2010).
This paper evaluates a plot-based approach

for change detection in peri-urban areas by
comparing classiication results obtained for
data from two different epochs, taking into
consideration a set of descriptive features ex-
tracted from high-resolution multispectral im-
agery. Additionally, contextual features were
considered that correspond to two aggregation
levels: internal and external. Lastly, the effect
of the use of three-dimensional (3D) descrip-
tive features derived from lidar data on the
classiication and change detection eficiency
is evaluated.

2 Study Area and Data

The study area is located in the north of the
city of Valencia, Spain (Fig. 1), having ap-
proximately 5,372 ha. The region has under-
gone important changes in LU/LC for the last
decade, including the transformation and ur-
banisation of large agricultural areas formerly
covered by orchards and horticulture crops,
and the removal of some industrial and agri-
cultural structures.

tinuous changes of land cover and land use
and, consequently, cartographic information
is quickly outdated. Detailed and up-to-date
cartographic and geographic information is
needed for adequate urban management and
planning.
Although urban growth has been tradi-

tionally monitored by using pixel-based clas-
siication techniques (Del FRate et al. 2005,
YUan et al. 2005, zHoU et al. 2008a) or stand-
ard change detection methodologies (kWon
et al. 2006, xian & HoMeR 2010), many reli-
able change detection analyses in urban en-
vironments have been performed using ob-
ject-based approaches. In an object-based ap-
proach, image analysis is performed by con-
sidering objects instead of pixels. An image
object, or simply an object, is a group of pixels
with common characteristics according to a
segmentation criterion (blasCHke 2010). Sev-
eral works have been presented using auto-
matic segmentation methodologies applied to
urban and peri-urban areas (zHoU et al. 2008b,
Doxani et al. 2008, lU et al. 2010, MYint et
al. 2011). The segmentation method employed
has a considerable impact on the extraction of
descriptive features of objects, since the re-
sultant object shapes and properties will dif-
fer depending on the algorithm used and the
parameters selected (HaY & Castilla 2006).
Plot-based image analysis is a speciic case

of object-based image analysis that uses plot
boundaries derived from land-use/land-cover
(LU/LC) geospatial databases (i.e. cadastre,
agricultural inventories). These boundaries
enable the deinition of semantic properties
better than pixel aggregation algorithms. This
methodology is suitable for environments
such as urban, suburban and peri-urban areas,
where landscape units present unambiguous
boundaries. Plot-based approaches have also
been employed for change detection in forest
(Hall & HaY 2003) and in agricultural areas
(Raza&kainz 2002,WalteR 2004,gaManYa
et al. 2007), since they allow for an easy inte-
gration and relation of image-derived change
information with LU/LC geospatial databases.
Buildings represent primitive entities of ur-

ban areas (tHoMson & béRa 2008), and many
change detection studies are focused on com-
paring detection or classiication results cor-
responding to two different epochs (HYYppä

Fig. 1: Location of the study area in the north of
the city of Valencia.
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epochs, change detection, and evaluation. A
plot-based image classiication approach was
used, where the objects were deined by the
cartographic boundaries of the plots in the ca-
dastral database. The objects were exhaustive-
ly described by image-based features, geo-
metrical features describing the shape of each
object, and contextual features. Contextual
features were deined at two levels: internal
and external. Urban change detection – con-
cerning building construction, destruction or
use alteration – was performed by comparing
the class assigned to each plot at both epochs.

3.1. Deinition of Classes and Sample
Selection

The deinition of land-use classes was based
on the land cover catalogue of the Land Cov-
er and Land Use Information System of Spain
(SIOSE). This database, corresponding to a
scale of 1:25,000, was created to homogenize
former LU/LC national databases. Based on
this catalogue seven classes were deined, and
some of them were subdivided into more spe-
ciic classes for classiication purposes. Thus,
four building-related classes were deined:
historical, planned urban (subdivided in
closed urban and open urban), industrial, and
suburban housing (consisting of semidetached
housing and detached housing). The rest of the
classes were arable land and croplands (inter-
nally divided into cropland and arable land,
depending of the presence of vegetation), cit-
rus orchard, and bare soil. Fig. 2 shows exam-
ples of the classes.
Training samples were collected by assign-

ing classes to objects (cadastral plots) by visu-
al photointerpretation, applying two main cri-
teria: the representativeness of samples select-
ed per class; and the homogeneity of the spa-
tial distribution of samples in the study area. A
restricted randomization scheme (CHatFielD
1991) was applied consisting of a random sam-
ple selection followed by a monitored sample
reallocation and selection in order to maintain
a minimum number of samples per class, to
obtain a representative sample of each class,
and to represent the changes in the area. As
a result, 1458 training samples were selected
(see sample number distribution for both ep-

The objects were deined using the plot
boundaries derived from cadastral maps pro-
duced by the Spanish General Directorate for
Cadastre (Dirección General de Catastro),
with a scale of 1:1,000 in urban areas and
1:2,000 in rural areas.
High-resolution multispectral imagery and

lidar data were available for both epochs. For
the irst epoch, QuickBird imagery acquired
in February 2004 was available, with 11 bits/
pixel radiometric resolution and four spectral
bands (visible and near infrared). The multi-
spectral and panchromatic bands were merged
using the substitution method based on prin-
cipal components transformation, obtaining a
inal spatial resolution of 0.6 m/pixel. The im-
age was georeferenced and orthorectiied. Li-
dar data were acquired in December 2003 by
an ALTM-2033 sensor, and a digital surface
model (DSM) having a grid size of 1 m was
computed. In addition, a manually edited dig-
ital terrain model (DTM) was available. The
normalised digital surface model (nDSM) was
generated as the difference between the DSM
and the DTM.
Additional aerial images were acquired in

August 2008 in the framework of the Span-
ish National Plan of Aerial Orthophotography
(PNOA), with 0.5 m/pixel spatial resolution,
8 bits/pixel radiometric resolution and four
spectral bands in the visible and near infrared
domains. These images were orthorectiied
and georeferenced. Panchromatic and multi-
spectral bands were merged, and mosaicking
and radiometric adjustments were applied as a
part of the PNOA programme. Lidar data were
acquired in September 2009 using a RIEGL
LMS-Q680 sensor with a nominal density of
0.5 points/m2. The DTM was computed by
means of the iterative algorithm described by
estoRnell et al. (2011) that selects minimum
elevation points and eliminates points belong-
ing to above-ground elements such as vegeta-
tion or buildings.

3 Methodology

Land use classiication and change detection
were carried out according to the following
steps: class deinition, sample selection, fea-
ture extraction, object classiication at both
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proposed by HaRaliCk et al. (1973), edgeness
factor (sUtton & Hall 1972), and semivari-
ogram-based descriptive features (balagUeR
et al. 2010). Three-dimensional features were
derived from the nDSM computed from li-
dar data, each object being characterised by
the mean, standard deviation, and maximum
values of the heights. Geometrical features
describing the dimensions of the objects and
their contour complexity were computed: area,
perimeter, compactness (bogaeRt et al. 2000),
shape index and fractal dimension (kRUMMel
et al. 1987,MCgaRigal &MaRks 1995).
Some of the context-based features were

based on the area covered by buildings and
vegetation inside each object, since this distri-

ochs in Tab. 1). A total of 128 objects (8.8%)
of the samples corresponded to urban chang-
es, concerning building construction, destruc-
tion, or use change.

3.2. Feature Extraction

Descriptive features were extracted attend-
ing to three different object aggregation lev-
els: object-based, related to internal context
and related to external context (Fig. 3). Ob-
ject-based features describe the properties of
each object (plot) considered as a single unit.
They were computed using the object-based
feature extraction software FETEX 2.0 (RUiz
et al. 2011). These descriptive features provide
information about spectral, textural, geomet-
rical, and 3D properties. Spectral features in-
form, through the intensity values of the pixels
contained in the plots, about the objects’ over-
all spectral behaviour in the different spec-
tral bands used. Mean, standard deviation, as
well as minimum and maximum of the inten-
sity values of the pixels for all available bands
and an NDVI image were computed for each
object (NDVI = normalized difference veg-
etation index). Texture features quantify the
spatial distribution of the intensity values in
the analysed objects. The following descrip-
tive features were derived: histogram kurto-
sis and skewness, descriptors derived from
the grey level co-occurrence matrix (GLCM)

Fig. 2: Examples of the classes deined: historical (a), closed urban (b), open urban (c), industrial
(d), semidetached housing (e), detached housing (f), cropland (g), arable land (h), citrus orchard
(i), and bare soil (j).

Tab. 1: Number of samples per class used in
both dates.

Classes Dates

2004 2008

Historical 213 213

Urban 234 298

Industrial 105 98

Suburban housing 222 256

Arable land and croplands 277 259

Citrus crop 235 182

Bare soil 172 152

Total 1458 1458
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tures describing their heights, using the mean,
standard deviation, and maximum values from
the nDSM. Similarly to (1), the percentage of
surface covered by vegetation within an object
was deined, and additionally a set of statis-
tical descriptors of height and status of veg-
etation sub-objects (mean and standard devia-
tion of nDSM and NDVI, extracted only from
groups of vegetation pixel) was computed.
Due to the hierarchical structure of urban

landscapes, the analysis and exploration of
their various aggregation levels result in a pre-
cise analysis of the relations of objects (bRU-
zzone & CaRlin 2006). Features based on
external context provide information about
the properties of the urban blocks. An urban
block is the area surrounded by public roads
or streets and it may be subdivided into any
number of plots. In the Spanish urban ca-
dastral maps, streets are not represented by
polygons. This enables to delimit the urban
blocks by iteratively merging adjacent plots.
Urban blocks signiicantly determine the ap-
pearance of urban environments, inluencing
spatial experience and deining local particu-
larities related to a spatial identity (laskaRi

bution is strongly related to the different urban
typologies. Building and vegetation masks
were obtained using an automatic building
detection technique consisting of applying
a multiple-threshold based approach, as de-
scribed in HeRMosilla et al. (2011). Buildings
and vegetation correspond to the sub-objects
inside the plots.
Internal-context features describe an object

by characterising the internal sub-objects of
the plots. Both 2D and 3D features describing
the buildings inside each object were comput-
ed. The 2D features consist of the built-up area
and the percentage of built-up areas in an ob-
ject. The latter feature – usually referred to as
building coverage ratio (BCR) or sealed sur-
face (YosHiDa & oMae 2005, Van De VooRDe

et al. 2009, YU et al. 2010) – is computed as
described in (1):

100
Building

Object

A
BCR

A
= ⋅ (1)

where A
Building

is the built-up area, and A
Object

is the area of the considered object. Buildings
were also characterised by a set of 3D fea-

Fig. 3: List and graphic examples of the features computed.
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ing the features area, perimeter, compactness,
shape index, and fractal dimension.

3.3. Classiication, Accuracy
Assessment and Change
Detection

In order to evaluate and quantify the effect of
the 3D features in the change detection pro-
cess, two classiications were performed per
epoch: with and without using lidar-derived
features. Classiication was carried out using
decision trees constructed with the C5.0 al-
gorithm (qUinlan 1993), combined with the
boosting technique. This algorithm divides
the sample set by using mutually exclusive
conditions, until homogeneous subgroups are
generated, i.e., all the elements in a subgroup
belong to the same class, or a stopping con-
dition is satisied. The stopping condition de-
ined in this work is the minimum number of
training cases that must follow each node. It
was ixed to 5 cases, constraining the degree
to which the initial tree its the training data.
In order to maximize the eficiency of the

number of available samples, the accuracy of
the classiication was assessed using leave-
one-out cross-validation. This method uses a
single observation from the original sample
set as validation data, and the remaining ob-
servations as training data, iterating until each
observation in the sample set is used for vali-
dation once. The evaluation of the classiica-
tion was based on the analysis of the confusion
matrix, which compares the class assigned to
each sample to the reference class obtained by
photointerpretation. From the confusion ma-
trix, the user’s and producer’s accuracies per
class were computed, measuring the commis-
sion and omission errors, respectively (Con-
galton 1991).
Changes were detected by comparing the

classes assigned to each plot in the classii-
cations of both epochs. The change detec-
tion process was focused on urban changes
concerning building construction, destruc-
tion or use change. Changes produced be-
tween agricultural classes were not consid-
ered in this study. Although many land-use
transitions are theoretically possible, there are
limitations by law and by nature which may

et al. 2008). Urban block entities have been
commonly employed in urban environments
to deine a higher hierarchical context (baU-
eR & steinnoCHeR 2001, HeRolD et al. 2003,
WiJnant & steenbeRgHen 2004, noVaCk et al.
2010, HUCk et al. 2011). Two-stage approxima-
tion methods are frequently employed. Initial-
ly, the main land-cover types are detected and
this information is afterwards analysed in the
spatial context deined by the urban blocks to
determine land use. HeRMosilla et al. (2012)
showed that the speciic addition of external
context features derived from urban blocks in-
creases the classiication accuracy of different
typologies of urban plots. Applying this meth-
odology, all the plots contained in the same
urban block are described with the same ex-
ternal context features. Thus, external context
is described by considering the spatial rela-
tions of adjacent objects by means of building-
based, vegetation-based, geometrical and ad-
jacency features. Adjacency between objects
was characterised based on the graph theory
(laURini& tHoMpson 1992) by using the num-
ber of neighbours with surrounding objects,
as well as the mean and standard deviations
of the centroid distances between adjacent ob-
jects. The shape, size, and number of build-
ings per block are often related to their socio-
economic function and determine the area and
volume for an urban block. Therefore, the land
use of an urban block may be indicated by the
quantitative observations related to the build-
ings present in it (YosHiDa & oMae 2005).
Thus, urban blocks were also characterised by
the built-up area and the built-up percentage.
The height distribution of the buildings con-
tained in an urban block was described using
the height mean and standard deviation values
obtained from the nDSM. Features related to
the volumetric information of buildings were
also considered. Thus, the mean volume was
computed as the total volume of buildings di-
vided by the number of buildings contained in
the block. In a similar manner to the internal
context features, vegetation distribution was
characterised using the vegetation cover ra-
tio, as well as the mean and standard deviation
values of the nDSM and NDVI obtained only
from the vegetation area masked within the
super-object. Finally, the geometrical prop-
erties of the urban blocks were described us-
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errors are given when unchanged plots are
wrongly detected as changed, whereas unde-
tectable errors are produced when plots where
changes occurred are detected as unchanged.
The combination of detected changes and de-
tectable errors composes the number of plots
that would be manually reviewed in an updat-
ing process.

4 Results and Discussion

Classiication overall accuracy values ob-
tained for both epochs with and without con-
sidering 3D data are shown in Tab. 3. The clas-
siication performance without considering li-
dar data is approximately 90%, while the sub-
sequent addition of 3D descriptors results in
an increase of the accuracy of about 5%.
Analyzing the speciic per-class accuracy

values shown in Fig. 5a, the bare soil class
shows the lowest user’s and producer’s accura-
cies without considering 3D data. This can be
attributed to the high variability of this class,
which includes a diversity of agricultural and
non-agricultural plots, such as abandoned ag-
ricultural or un-built areas. In the same sense,
the class industrial also has low accuracy val-
ues, especially when compared to the other
building-related classes. Due to the similar
spectral and textural properties of industrial
and bare soil, these classes were occasional-
ly confused, notably affecting their respective
errors. For the rest of the classes, high user’s
and producer’s accuracies were obtained for
both epochs.
Although the inclusion of 3D information

from lidar data has a limited effect on the
overall accuracy (about 5%), some classes no-
ticeably improve their user’s and producer’s
accuracies (Fig. 5b). Especially remarkable is

be used to improve the change detection pro-
cess (pakzaD 2002). Following these criteria,
a knowledge-based land-use transition dia-
gram was designed to formulate the possible
land-use changes that are likely to occur in the
study area (Fig. 4), restricting unlikely land-
use changes. Therefore, when a change that
does not fulil the land-use transition diagram
is detected, it is directly removed and consid-
ered as no change. These unlikely transitions
would necessarily require the revision by a hu-
man operator before being fully accepted or
rejected in a LU/LC geospatial database up-
dating process.
The LU/LC differences found between the

classiication results of both epochs enable the
detection of the actual LU/LC changes occur-
ring in the territory, but also reveal classiica-
tion errors. The result of the change detection
process is shown in the matrix of Tab. 2. The
change detection eficiency is deined by add-
ing the correctly detected changes to the cor-
rectly detected unchanged objects. Detectable

Fig. 4: Land-use transition diagram, showing
the possible changes and hiding the restricted
land-use transitions.

Tab. 2: Distribution of cases and errors in the
change detection assessment.

Classiication

Unchanged Changed

Refer-
ence

Un-
changed

Coincidences
Detectable

errors

Changed
Undetectable

errors

Detected

changes

Tab. 3: Classiication overall accuracy values
achieved for both epochs with and without con-
sidering 3D features, for a total of seven LU/LC
classes (as in Fig. 5).

Date Overall accuracy

Without lidar With lidar

2004 90.3% 94.5%

2008 89.2% 94.5%
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provided by the texture and semivariogram-
based features used.
The change detection results are shown in

Tab. 4. When 3D data are not considered, the
detection eficiency is 94.5%, obtained as a re-
sult of adding correctly detected changes plus
correctly detected unchanged objects. The
percentage of detectable errors is 3.7%, and
the percentage of plots that would be manu-
ally revised to be conirmed as actual changes
is 10.4%. There is a signiicant rate of unde-
tectable errors (1.9%), mostly due to misclas-
siications of bare soil for one of the epochs.

the case of class industrial, where misclassii-
cations are signiicantly reduced when using
3D information. Bare soil has a more mod-
est improvement of the accuracy values, due
to confusion with arable land and croplands.
The accuracies of historical, urban and sub-
urban housing classes increase when 3D in-
formation is added, even though their values
were already particularly high, producing
more balanced user’s and producer’s accura-
cies per class. Finally, citrus accuracies do not
increase when 3D information is added, prob-
ably because of the correct characterization

Fig. 5: Per-class user’s and producer’s accuracies in both dates without (a) and with three-dimen-
sional data (b).

Tab. 4: Change detection assessment concerning urban-related changes considering the land-
use transition diagram shown in Fig. 4.

Without lidar data With lidar data

Unchanged Changed Unchanged Changed

Reference
Unchanged 87.8% 3.7% 90.6% 0.9%

Changed 1.9% 6.7% 0.4% 8.1%
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icant reduction of undetectable errors and the
increase of detected changes are perceptible.
For comparative purposes, Tab. 5 shows the

change detection assessment results when the
land-use transition diagram (Fig. 4) is not con-
sidered. Contrasting these results with the re-
sults presented in Tab. 4 it is noticeable that
the restriction of unlikely changes enables to
reduce the detectable errors by 35% to 45%
with and without lidar data, respectively,
and to increase the coincidences. Undetect-
able errors practically remain invariable, and
the amount of detected changes is slightly re-
duced.

5 Conclusions

In this paper, an object-based classiication
methodology for building change detection
in peri-urban areas is presented and evalu-
ated. Objects are deined by using cadastral
plot boundaries, allowing the direct relation
of the information derived from imagery to
the information present in LU/LC databases.
A comprehensive set of descriptive features

Additionally, buildings under construction,
which were considered as bare soil samples,
are inally classiied as one of the building-re-
lated classes. Moreover, the shadows of neigh-
bour buildings affect the classiication nega-
tively, increasing the number of undetectable
errors.
When 3D features derived from lidar data

are used, both detectable and undetectable
errors are reduced by approximately 75%,
enabling the change detection eficiency to
achieve up to 98.7%. Thus, the number of
plots to be manually reviewed using photoin-
terpretation and ield visits would decrease
from 10.4% to 9%, mostly corresponding to
plots with actual changes. Height informa-
tion has been shown to be critical to satisfac-
torily discriminate between building typolo-
gies and buildings from bare soil, correcting
most of the detectable and undetectable errors,
and improving the performance of the change
detection process. Fig. 6 shows an image de-
tail of the study area and the change detection
represented for the selected samples with and
without considering 3D data, where the signif-

Fig. 6: Detail of study area in colour infrared composition for years 2004 (a) and 2008 (b); and
maps showing change detection results of samples without considering (c) and considering (d) 3D
features.

Tab. 5: Change detection assessment concerning urban-related changes without considering the
land-use transition diagram.

Without lidar data With lidar data

Unchanged Changed Unchanged Changed

Reference
Unchanged 84.8% 6.7% 89.8% 1.4%

Changed 1.9% 6.9% 0.5% 8.3%
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