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Summary: Most of the image registration/match-
ing methods are applicable to images acquired by
either identical or similar sensors from various po-
sitions. Simpler techniques assume some object
space relationship between sensor orientations,
such as near parallel image planes, certain overlap,
and comparable radiometric characteristics. More
robust high-level feature-based methods allow for
larger variations in image orientation and texture;
for example, SIFT (scale invariant feature trans-
form), a highly robust registration technique for
wide baseline images. Nevertheless, registration
between LiDAR (light detection and ranging) in-
tensity and optical (satellite and aerial) images is
still a big challenge, as substantial differences do
exist in their radiometric characteristics. Review-
ing and testing popular multiple domain image reg-
istration techniques, such as feature-based SIFT,
intensity-based MI (mutual information), and fre-
quency-based LPFFT (log-polar fast fourier trans-
form), it is realized that no single technique could
solve LiDAR intensity and optical image registra-
tion completely. Alternatively, a new approach to
robust LiDAR/optical imagery registration, taking
advantages of feature-, intensity-, and frequency-
based methods, is proposed. Initial testing with a
few datasets showed good performance of the new
method, achieving pixel-level accuracy for the reg-
istration.

Zusammenfassung: Die meisten Methoden der
Bildregistrierung/Bildanpassung koénnen auf Bil-
der angewandt werden, die entweder mit identi-
schen oder &hnlichen Sensoren aus verschiede-
nen Positionen aufgenommen werden. Einfachere
Techniken basieren auf der Annahme eines spe-
ziellen Zusammenhangs im Objektraum, wie z.B.
anndhernd parallele Bildebenen, eine bestimmte
Uberlappung oder #hnliche radiometrischen Ei-
genschaften. Robustere high-level merkmalsba-
sierte Methoden ermoglichen grofere Variationen
in Bildorientierung und -textur, z.B. SIFT (Scale
Invariant Feature Transform), eine sehr robuste
Technik fiir die gegenseitige Registrierung von
Bildpaaren mit langen Basislinien. Dennoch ist die
Registrierung von LiDAR (Light Detection And
Ranging) Intensitétsbildern und optischen (satelli-
ten- oder flugzeuggestiitzten) Bildern noch immer
eine grofe Herausforderung, da erhebliche Unter-
schiede in ihren radiometrischen Eigenschaften be-
stehen. Ein Test mehrerer beliebter Techniken zur
Registrierung von Bildern aus unterschiedlichen
Dominen wie z.B. das merkmalsbasierte Verfahren
auf Basis von SIFT, das intensitétsbasierte Verfah-
ren mit Hilfe von MI (Mutual Information) sowie
das frequenzbasierte Verfahren LPFFT (Log-Polar
Fast Fourier Transform), haben gezeigt, dass keine
Technik einzeln das Problem der Registrierung von
LiDAR Intensitatsbildern und optischen Bildern
vollstdandig 16sen kann. Als Alternative wird eine
neue Bildregistrierungsmethode fiir LIDAR Inten-
sitdts- und optische Bilder vorgeschlagen, welche
die Vorteile der merkmalsbasierten, intensitatsba-
sierten und frequenzbasierten Methoden verbindet.
Erste Tests des Verfahrens mit wenigen Datensét-
zen lieferten gute Ergebnisse mit Genauigkeiten in
der GroBlenordnung von einem Pixel.
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1 Introduction

1.1 Motivation

Image registration is a core task for various
applications in digital photogrammetry, com-
puter vision, remote sensing, and vision-aid-
ed navigation. Its purpose is to estimate the
geometric transformation using an adequate
number of correspondences between images
acquired at different times, perspectives or
even from different sensors. Image matching
methods, computing those correspondences,
are typically applicable to images acquired by
either identical or similar sensors from vari-
ous positions, and in the past few years, much
effort has been devoted to develop automatic
tie point extraction methods (REmonDINO &
REssL 2006).

As a growing number of various image sen-
sors provide multiple image coverage world-
wide, the need for registering imagery ac-
quired from different airborne and spaceborne
platforms is growing. Several satellite systems
deliver high resolution imagery in short repeat
time, large-format aerial digital cameras pro-
vide multispectral imagery at unprecedented
resolution, LiDAR (light detection and rang-
ing) systems collect both range and intensity
images at local scale, while IfSAR (interfero-
metric synthetic aperture radar) data are ac-
quired from spaceborne and airborne platform
at global scale, etc. All those data should be
accurately registered for data fusion to sup-
port better geospatial data and information
extraction.

The motivation for this study comes from
three applications: terrain-based navigation,
improving the geo-referencing of satellite im-
agery by using ground control, and develop-
ing a new man-made object modelling meth-
ods via fusing LiDAR and aerial images. In
all those applications, LiDAR intensity and
optical image registration plays an important
role. It should be noted that data collected only
from airborne/spaceborne platforms is consid-
ered in this study.

Registering LiDAR intensity and optical
images is a particularly difficult task due to
their substantially different characteristics,
such as different sensing methodology (e.g.

wavelength, passive/active image acquisition),
geometric and radiometric differences, etc. In
aLiDAR system, electromagnetic pulses in the
visible and/or infrared bands are emitted from
a transmitter, and besides the range measure-
ment, the strength of the reflected pulse is re-
corded, which is known as the intensity value.
A LiDAR intensity image is typically gener-
ated by rasterizing the intensity values of the
point cloud. With increasing laser point den-
sity, e.g. 8—15 points per m?, it is possible to
obtain high-resolution LiDAR intensity imag-
es; nevertheless, they are still poor in quality
in comparison with optical images. The main
reason is the problem of rasterizing the irregu-
larly distributed point cloud. After several ras-
terization tests, 1 m GSD is selected based on
our data.

1.2 Review of Multiple-Domain Image
Registration Methods

Multiple-domain image registration, also
known as multi-modal image registration, has
been investigated for decades, and, in general,
can be classified into three major categories:
feature-based, intensity-based, and frequen-
cy-based.

Feature-based registration methods use the
similarity between features from the image
pair to determine the transformation param-
eters. Low-level feature-based techniques use
low-level features, such as points, corners and
edges extracted from images. Unfortunately,
the identification of conjugate corners or edg-
es is difficult in the LiDAR intensity and opti-
cal image pair due to the irregular and sparse
nature of LiDAR points at break lines. High-
level feature-based techniques use high-level
features such as regional descriptors and shape
descriptors. SIFT (Lowg 1999, 2004) can be
regarded as a complex descriptor, which could
provide good registration results between aer-
ial and satellite images, but failed in LiDAR
intensity and optical image domains (Ju et al.
2011, TotH et al. 2010). The reason is that the
substantial differences between the LIDAR in-
tensity and optical image make the key points
quite different in the two domains. Even for
those key points extracted from similar loca-
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tions, their descriptors can be still quite differ-
ent, leading to mismatches. In contrast, fusing
LiDAR and optical imagery for modelling of
building facades is different. More important-
ly, the terrestrial laser scanner is much closer
to the building, which can provide much dens-
er and nearly regularly distributed points on
the facades. Consequently, features, like cor-
ners of windows and doors, are easy to identi-
fy on the facades. Therefore, SIFT works rath-
er well for terrestrial laser scanner and optical
camera data (Bonm & BECkErR 2007, BECKER
& Haara 2008). For the airborne data, alter-
natively, other primitives, such as 3D straight
lines and surface patches extracted from Li-
DAR data, are generally considered to be used
to fuse optical images (HaBIB et al. 2004, Kim
& HagiB 2009). Note that in those approaches,
LiDAR intensity is hardly considered.
Intensity-based registration methods usu-
ally define an intensity-based similarity meas-
ure between the templates (reference/target)
or images, and then perform an optimization
over allowed transformations to maximize this
measure. For example, LSTM (least square
template matching) is used to estimate the
template-to-template transformation, which
is normally an affine model (GRUN 1985).
Once enough correspondences are found via
LSTM, the transformation between the image
pair can be determined, and thus, image reg-
istration is achieved. For the multiple domain
image registration, the method based on MI
(mutual information) (VioLa & WELLS 1997)
is one of the most popular ones, widely used
in medical imaging applications and proved
to be very effective. The basic concept of MI-
based image registration comes from the in-
formation theory. Each image is regarded as
a 2D discrete signal, carrying information. If
two images are matched, their mutual infor-
mation should be large and their joint entropy
should be small. The transformation parame-
ters are solved via maximizing the MI value
based target function, in which different kinds
of constraints to describe feature characteris-
tics or spatial information can be introduced
to improve the registration results. Although
a few studies applying MlI-based registration
methods on multiple domain imagery in the
fields of photogrammetry and remote sens-
ing are reported, such as registration between

TerraSAR-X and IKONOS images (Surt &
REINARTZ 2010) as well as between terrestrial
camera image and infrared image (Liu et al.
2010), they have not been applied to LiDAR
intensity and optical images. According to our
limited datasets, NMI (normalized mutual in-
formation) can be used to find the transforma-
tion parameters, in the latter case; preliminary
test results are discussed in the section 2.2.

Frequency-based registration methods use
characteristics, such as the phase in the spec-
tral domain to determine the transformation
parameters between two images. Note that
these techniques are typically restricted to
handle images with limited surface-induced
distortions. A popular frequency-based meth-
od is LPFFT (log-polar fast fourier transform)
which estimates the shift or similarity trans-
formation between image pairs without any
feature detection (REDDY & CHATTERI 1996,
WOLBERG & ZokAl 2000, Zokal & WOLBERG
2005). Based on our experiences, it is difficult
to achieve reliable results applying the tradi-
tional LPFFT to our data.

Experimental results of using SIFT, MI and
LPFFT on LiDAR intensity and optical imag-
es are given in section 2.

1.3 Proposed Method

The main contribution of this paper is to pro-
pose a hybrid multiple domain image registra-
tion method using a coarse-to-fine strategy,
which largely refines our previous approach
(Totn et al. 2011). First, a modified LPFFT
with an internal validation module is used to
estimate the coarse similarity transformation
between LiDAR intensity and optical image
pair. Next, strong HCs (Harris corners) in both
images are generated and transformed to the
other image via the estimated coarse transfor-
mation, and, subsequently, scale- and rotation-
invariant PDF (probability density function)
mean-shift matching (Comaniciu et al. 2003)
is performed to find the correct correspond-
ences. Finally, the RANSAC (random sample
consensus) (FiscHLER & BoLLEs 1981) scheme
is used to remove outliers and estimate the pa-
rameters of an affine transformation.
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1.4 Data

To support this study, two datasets were used.
The 1 m GSD orthorectified satellite images
by GeoEye, acquired in January 2010, and 1 m
GSD intensity images from airborne LiDAR
data by Fugro-EarthData from 2009 covering
the San Diego, California, USA area, repre-
sent a typical mix of terrain topography and
landscape, including residential areas, roads,
and vegetated areas. The 0.2 m GSD high res-
olution DMC aerial imagery and 1 m GSD in-
tensity image from LiDAR data by ODOT (the
Ohio Department of Transportation) cover the
corridor area of highway I-70 in the Belmont
County and highway 161 in Franklin County,
Ohio, USA.

2 Experiences with SIFT, Ml and
LPFFT

In this section, test results of applying SIFT,
MI and LPFFT to LiDAR intensity and optical
image registration are discussed. These expe-
riences directly inspired us to seek an alterna-
tive approach.

21 SIFT

In our early study, the baseline SIFT imple-
mentation was used for multiple domain im-
age registration. It was found that SIFT can
provide reliable matching results between sat-
ellite and aerial images. However, based on
our limited data, SIFT matching between Li-
DAR intensity and optical images is not reli-
able. Fig. 1 shows typical SIFT matching re-
sults for a LiDAR intensity and satellite im-
age pair. The number of the matched features
is pretty small, and, more importantly, none
of the matches is correct for this image pair,
though there are keypoints extracted at sim-
ilar locations. The main reason for the fail-
ure of SIFT matching is that it is very diffi-
cult to find similar keypoints in both images
due to the substantial differences in radiomet-
ric characteristics and, in some extent, spatial
resolution.

2.2 Ml

To assess the MI-based registration perfor-
mance on LiDAR intensity and optical image
pairs, only simplified test scenarios are used.

Fig. 1: SIFT matching results between LiDAR intensity image (top) and satellite image (bottom).
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Also, the LiDAR intensity image is manually
aligned with the optical image. Then, differ-
ent scale, rotation and translation parameters
are computed through expanding the correct
parameters (s), @, t,,, t ) by a combination
of incremental values (As, A and At) via (1).
Those parameters are applied to the optical
image, and then, the NMI (normalized mutual
information) is computed for each image pair.
3D surfaces extended by (s, ¢, NMI) and (t,, t,,
NMI) are used to visualize the performance.
The NMI surface should peak at the location
of the correct parameters (s, ¢,) and (t,, t,),
respectively. For our tests, As = 0.05, Ap = 1°
and At = 1 pixel. Fig. 2 illustrates the typical
NMI surface w.r.t. translation parameters (a)
and w.r.t. scale and rotation parameters (b).
Clearly, NMI can be used to locate the correct
parameters in a given searching space. Fig. 2b
shows that NMI is more sensitive to scale than
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to rotation angle, though, the correct scale and
rotation parameters can be identified in the
search space, see Fig. 3.

s: = {s[s; = s,£iAs}

0:={0|p; = ¢+ A}
to = {t ot TAL, tr = {tft o+ PAL

M

NMI is a reliable indicator to locate the
correct transformation parameters in a given
(limited) search space; however, the determi-
nation of the right search space can be diffi-
cult.

2.3 LPFFT

Using the LPFFT registration method, scale
and rotation parameters of the similarity mod-
el are estimated in the first step. Next, the sec-
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ond image is transformed based on the esti-
mated scale and rotation values, so the images
have comparable orientation and scale. Final-
ly, the translation parameters are estimated by
NCC (normalized cross correlation). For effi-
cient processing, FFT-accelerated NCC (FFT
NCC) is used. In our testing, the cross phase
correlation, i.e. the response to iFFT (inverse
fast fourier transform) of the phase difference
turned out to be very noisy. Simply consider-
ing the maximum response, which would indi-
cate the correct scale and rotation parameters,
is just not reliable. Therefore, a validation of
the scale and rotation based on a Monte Carlo
test is proposed, and provided good results.

According to our tests, using FFT NCC to
compute the translation parameters is gener-
ally not reliable. Therefore, to estimate the
translation parameters, a different approach
was proposed. First, both images are con-
verted into binary edge images; and then, a
number of reference patches are automatical-
ly generated in the reference image. Next, the
reference patches are matched in the second
image based on template NCC matching. Ide-
ally, image coordinate differences between all
reference and matched patches should be iden-
tical, representing the common shift between
the image pair. Our results confirmed the fea-
sibility of the proposed procedure.

3 Methodology
Based on our experiences, the registration of
the LiDAR intensity and optical image pair

by the tested registration methods alone is just
not reliable. Therefore, the coarse-to-fine hy-
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Fig. 4: Proposed multiple domain image regis-
tration workflow.

brid multiple domain image registration ap-
proach is proposed; the workflow is illustrated
in the Fig. 4. In the following subsections, the
main components will be discussed in detail.

3.1 Similarity Transformation
Estimation

The workflow of the adapted LPFFT similar-
ity estimation approach is given in the Fig. 5.
First, using the LPFFT, two parameters (scale
and rotation) of the similarity model are es-
timated. LPFFT could provide a number of
possible scale and rotation parameters from
which the correct ones have to be identified
through a validation. The validation of the
scale and rotation parameters is achieved via
a Monte Carlo test; more specifically, a Monte
Carlo test is performed for a set of scale and
rotation values computed using (1), where
the two originally estimated parameters (s,
@,) are perturbed by a combination of incre-
ment values (As, Ag). Next, the second image
is transformed using each scale and rotation
combination in the set. If the scale and rotation
parameters are correct, the image pair should
have comparable orientation and scale. FFT-
accelerated NCC, an efficient NCC computa-
tion method, is used to estimate the transla-
tion parameters for each image pair based on
the maximum NCC values. For correct scale
and rotation parameters, the maximum NCC
values of all image pairs should fall in a sig-
nificantly high range, which means that small
scale and rotation changes around the correct
scale and rotation still lead to a high NCC
value. If the estimated scale and rotation are
wrong, the maximum NCC values of all im-
age pairs should be small. Fig. 6 shows a typi-
cal NCC surface based on wrong and correct
parameters, (s, 9,), respectively.

Next, the second image, B, is transformed
using the estimated (correct) scale and rotation
parameters, at which translation difference
may still exist between the two images. To es-
timate the translation parameters, both images
are converted into binary edge images. Then,
a number of reference patches are automati-
cally generated in the reference image, and fi-
nally, those reference patches are matched in
the second image based on the template NCC
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Fig.7: (a) Reference patches in the LiDAR intensity edge image and (b) matched patches in the
satellite edge image.
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matching. Fig. 7a shows the reference patches
in the LiDAR intensity image A. Fig. 7b rep-
resents the matched templates in the second
image. The template size is empirically de-
termined, e.g. 0.3 times the image height and
width. Ideally, image coordinate differenc-
es between all reference and matched patch-
es should be identical. In reality, mismatch-
es cannot be ruled out, and thus, the correct
translation parameters are determined based
on a statistical analysis of all column and row
differences. For example, as shown in Fig. 8,
most x-translations, t_, fall between -3 and 0
pixels, and their accumulated total count over
the interval is 28 out of 57. Similarly, the ma-
jority of y-translations t_ are between -1 and 0
pixels, totalling 47 out of 57. Thus, the average
values t = -2.5, t = -1 pixels are accepted as
the translation parameters.

3.2 Scale-, Rotation-invariant
Regional PDF Descriptor
Matching

The proposed feature generation and match-
ing approach is illustrated in the Fig. 9. First,
the HC detector is used to extract local fea-
ture points. As HCs in the two images are dif-
ferent, HCs from one image are transformed
to the other image via the estimated similar-
ity model from the adapted LPFFT. Square re-
gions centred on those HCs are created in both
images. Next, rotation-invariant kernel based
PDF (probability density function) descrip-
tor is created by applying a circular Epanech-
nikov kernel to the square region centred at
the HC. The scale factor is known from the
adapted LPFFT, hence the PDF descriptor is
scale-invariant by adjusting the Epanechnikov
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Fig. 9: Proposed affine transform estimation method.
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kernel. The intensity PDF of the circular re-
gion is approximated by the normalized histo-
gram; note for the 8-bit input image, the fea-
ture descriptor is 256-dimensional. Although
the histogram is not the best nonparametric
density estimation, it was proven to be suffi-
cient for PDF matching purpose (ComaNICIU
et al. 2003). The similarity between two PDF
descriptors is computed via the Bhattacharyya
coefficient. Selecting PDF as feature descrip-
tor is based on our earlier evaluation of mul-
tiple-domain image matching based on differ-
ent feature spaces (Ju et al. 2011).

If the similarity transformation is adequate
(and properly estimated), the transformed fea-
ture locations should be close to the correct
positions, and consequently, PDF mean-shift
matching can fast reach the local maximum.
PDF mean-shift matching is an efficient and
robust object tracking method which can track
objects under different illumination condi-
tions and perspectives. In short, it maximizes

Similarity Score Curve (Mean-shift Approach)
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the Bhattacharyya coefficient by finding the
mode (peak) of the density in the local neigh-
bourhood using mean-shift to recursively
move to a new location (update). Feature re-
gion size can influence the PDF mean-shift
matching performance and it is selected em-
pirically. In our data, 50110 pixels are appro-
priate. Fig. 10a shows an original feature in the
LiDAR intensity image and Fig. 10b depicts
the matched feature in the satellite image.
Fig. 10c shows the PDF similarity score curve
versus number of iterations; the local maxi-
mum is reached at the 4% iteration. Fig. 10d
is the comparison between the reference PDF
(blue) and the matched PDF (red).

All original features in the image pair are
transformed to the other image; original fea-
tures in the image A (set A) are transformed
to the image B to form the set A . The same
operation is applied to the original features in
the image B. The PDF mean-shift matching is
performed on features between Aj and A, as

(h)
PDF Comparison

e e

BiE— i
——— POF of relorence temglate
.- L'

(d)

Fig. 10: (a) Feature location in the LiDAR intensity image, (b) matched feature location in the satel-
lite image, (c) PDF similarity score curve and (d) comparison of reference PDF and matched PDF.
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well as between B and B, to find matched fea-
tures with a similarity score larger than 0.7.
Correspondences from A <A, and B «<B, are
merged as the complete set of tie points. De-
pending on object space characteristics, either
affine and collinearity models, or more so-
phisticated models can be formed based on the
matched feature locations. In all cases, blun-
der detection is necessary, which is based on
RANSAC. In our test, RANSAC affine model
estimation specifying a 0.5 pixel threshold for
residual errors is used.

4 Experimental Results and
Precision Analysis

The proposed approach was implemented in
MATLAB and tested using the data intro-
duced in section 1.4. Four aerial/LiDAR and
satellite/LiDAR intensity image pairs were
selected to evaluate the registration perfor-
mance. The overlap is more than 90 % in the
aerial/LiDAR and 100 % in the satellite/Li-
DAR image pairs. The extents of the over-
lap areas of the test image pairs are shown
in Tab.1. After RANSAC affine model es-
timation, the number of inliers is more than
enough to determine the 6 parameters of the
affine transformation in all tests. The RMSE
(root-mean-square error) of position errors is
used to judge the registration precision. Simi-
larly to the re-projection error, the position er-
ror is computed as the position difference be-
tween the matched and transformed points in
the optical image. The RMSE is computed on

a pixel basis. As seen in Tab. 1, pixel level reg-
istration precision is obtained.

5 Conclusion

Feature-based SIFT registration, intensity-
based MI registration, and frequency-based
LPFFT registration methods were tested in
this paper. Due to very different characteris-
tics of LiDAR intensity and optical images,
SIFT is unable to provide acceptable results
based on our somewhat limited dataset. MI-
based methods show good performance if
the correct search range is given, which is a
hard task. The traditional LPFFT has difficul-
ty with finding the correct scale and rotation
parameters from a set of candidates, and, in
addition, the translation parameter determi-
nation is not reliable using FFT-accelerated
NCC. Therefore, a hybrid method is proposed
which is based on a two-step approach. The
adapted LPFFT with a Monte Carlo validation
check for the scale and rotation parameters,
and estimating translation parameters based
on the template NCC matching, is used to es-
timate an initial similarity transformation.
Then, the scale- and rotation-invariant cir-
cular PDF descriptors centred at local strong
HCs are created in each image, and then they
are transformed to the other image via the es-
timated similarity transformation. The trans-
formed feature location is the starting search
position of a mean-shift PDF matching. In the
final step, RANSAC affine model estimation
is applied to the matched correspondences.

Tab. 1: Registration precision and performance and size of the test areas.

Aerial/LiDAR 3-11 3-12 4-11 4-12
Position RMSE (pixel) 0.95 116 0.99 113
Inlier/matched 16/30 11725 8/16 15/26
%fgﬁi%;‘fﬁ:; ) 463x811 | 465x804 | 473x823 | 458818
Satellite/LiDAR 06 07 08 09
Position RMSE (pixel) 115 1.29 130 1.25
Inlier/matched 17/29 28/57 28/54 13/28
%‘gﬁ%iife}l(;’;)ht ™) 663x331 | 860x1426 | 723x970 | 326%x575
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(b)

Fig. 11: (a) Registration between LiDAR intensity and satellite image pair, (b) beween LiDAR inten-

sity and aerial image pair.

This registration method is applied to LIDAR
intensity and optical images. The results on
a few image pairs have shown good perfor-
mance, as pixel level registration precision
was obtained.
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