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Summary: A large area located in the southwest of
Tehran is subject to land subsidence induced by
over-exploitation of groundwater. Since the use of
conventional SAR Interferometry was not possible
due to the large spatial baseline and rapid temporal
decorrelation, persistent scatterer interferometry
(PS-InSAR) using two different ascending and de-
scending datasets of ENVISAT ASAR was applied
in order to monitor the deformation. PS-InSAR is a
recently developed technique used to address the
decorrelation problem by identifying scatterers,
called persistent scatterers (PS), the echo of which
varies little in time. The estimation of the deforma-
tion rate was thus possible only in the PS pixels. In
order to retrieve the spatial pattern of the subsid-
ence, deformation rate at non-PS pixels were esti-
mated by a proposed neural network modelling
method separately applied on both descending and
ascending datasets. Input variables of the network
are geology and hydrogeology parameters of the
aquifer system, while the network output is the sub-
sidence rate. The performance of the neural net-
work trained by the PS pixels was tested on a sepa-
rate validation data. It was found that the trained
network is able to predict the subsidence rate with
the accuracy of less than 5 mm/a. The results were
then compared to the levelling measurements ac-
quired over a different time interval. The root-
mean-square error (RMSE) between the measure-
ments and the modelled deformation rate across the
leveling tracks is 19.8 mm/a. The different defor-
mation rates of both datasets in some points were
most likely due to the different time intervals cov-
ered by the radar and levelling data. Neural net-
work-based sensitivity analysis was finally per-
formed to evaluate the influences of different geol-
ogy and hydrogeology factors on the subsidence.
The sensitivity analysis results that were interest-
ingly similar for both radar datasets showed that
the hydraulic conductivity, the thickness of fine-
grained sediments and the water level decline are
the first three most effective factors on the subsid-
ence occurrence in Tehran basin.

Zusammenfassung: Neuronales Netz zur Model-
lierung von Bodensenkungen bei Teheran gemes-
sen durch Persistent Scatterer Interferometry. Ein
großes Gebiet südwestlich von Teheran ist von Bo-
densenkungen wegen übermäßiger Grundwasser-
entnahme betroffen. Die vorliegende Untersuchung
baut auf zwei Datensätzen von ENVISAT ASAR
auf, einem in Nord- und einem in Südrichtung ge-
flogenen. Früher war der Einsatz von SAR Interfe-
rometrie wegen langer Basen und zu schneller zeit-
licher Veränderungen am Objekt nicht möglich.
Die neue Persistent Scatterer Methode (PS-InSAR)
nutzt Objekte, deren Reflexionscharakteristik nur
einer geringen zeitlichen Variabilität unterliegt. Al-
lerdings kann die Deformation nur an ausgewähl-
ten, den so genannten PS-Pixeln bestimmt werden.
Die dazwischenliegenden Räume wurden in dieser
Untersuchung durch neuronale Netze überbrückt,
die geologische und hydrogeologische Parameter
berücksichtigen. Die innere Genauigkeit der Me-
thode wurde durch unterschiedliche Trainingsda-
tensätze überprüft und ergab eine Genauigkeit der
Prognose des Senkungsbetrages von weniger als
5 mm/a. Die äußere Genauigkeit wurde durch Ni-
vellement bestimmt und ergab einen RMS-Fehler
entlang der Nivellementslinien von 19,8 mm/a. Die
große Abweichung dürfte auf unterschiedliche
Zeitintervalle zwischen der SAR-Datenerfassung
und den Nivellements beruhen. Die neuronalen
Netze wurden außerdem zur Bewertung des Ein-
flusses von geologischen und hydrogeologischen
Parametern auf die Senkungsraten eingesetzt. Als
die drei wichtigsten Einflussfaktoren haben sich die
hydraulische Leitfähigkeit des Untergrundes, die
Mächtigkeit der feinkörnigen Sedimente und der
Rückgang des Grundwasserspiegels gezeigt. Beide
SAR-Datensätze führten zum gleichen Ergebnis.
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The southern part of the area primarily con-
tains Quaternary (Qt1 and Qt2) units as in-
dicated in Fig. 1b. The Qt1, or Kahrizak for-
mation, features different properties in the
northern and southern parts of the area, con-
sists of silt and cream clay in the subsidence
area, and is exposed by different faults such as
the Kahrizak, south Rey and North Rey faults
(Fig. 1a). The deposit of fine-grained sedi-
ments due to flooding generates the clay silt of
Kahrizak. The Qt2, or Tehran formation, con-
tains young alluvial fans mainly covering the
southern part of the Tehran Basin. This forma-
tion has an unsorted alluvial and a flood de-
posit with an average thickness of 60 m, pri-
marily composed of gravel, pebble and sand
in a sandy silt matrix (SHEMSHAKI et al. 2005).
The extent and thickness of the fine-grained

sediments serves as one of the most important
factors for land subsidence caused by ground-
water extraction. The greater extent and thick-
ness an aquifer system has, the more compac-
tion occurs. According to the studies per-
formed by the Engineering Geology group of
the Geological Survey of Iran (GSI), the thick-
est part of the alluvial layers that constitute the
aquifer system belongs to the area with a high-
er subsidence rate. The contours indicating
the alluvial thickness are illustrated in Fig. 4e.
Moreover, the central part of the subsidence

1 Introduction

Excessive groundwater pumping causes an in-
creasing effective stress in aquifer systems.
The changes in the effective stress cause some
degree of compaction in fine-grained sedi-
ments within the aquifer system resulting in
land subsidence. The land subsidence induced
by overexploitation of groundwater is one of
the major problems with its environmental
consequences in most parts of Iran. One of
these areas is located in the southwest of Teh-
ran, the capital city of Iran. The Tehran Basin
with an area of 2250 km2 is located between
the Alborz Mountains to the north and Arad
and Fashapouye Mountains to the south.
The National Cartographic Center (NCC)

of Iran firstly measured the land subsidence by
precision levelling during 1995–2002. Later,
the Geological Survey of Iran (GSI) in cooper-
ation with other organizations including NCC
and the Water Management Organization
launched a comprehensive study on subsid-
ence in and around Tehran. The area was stud-
ied from different points of view including ge-
ology, geophysics, tectonic and geotechnics.
According to the geological map (1:100,000
scale), the Tehran Basin consists of different
geological units including lower-middle Eo-
cene (Karaj formation) and Quaternary units.

Fig. 1: (a) Location of different faults surrounding the study area in Tehran province. The black
rectangle depicts the area subject to subsidence. (b) Geological units mainly consisting of Quater-
nary sediments. The blue circles represent piezometric wells while the black triangles indicate the
levelling stations.
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between 1968 and 2003 shows that the abil-
ity of the aquifer system to yield water has
significantly decreased due to insufficient re-
charge. The water level changes between 1968
and 2003 are shown as contour lines in Fig. 4a.
Among the various ground- and space-

based techniques available, interferometric
Synthetic Aperture Radar (InSAR) provides
precise measurements of land surface defor-
mation over large areas and at high spatial
resolution (GALLOWAY et al. 1998, AMELUNG et
al. 1999, PELTZER et al. 1998, FRUNEAU & SAR-
TI 2000, TESAURO et al. 2000, CROSETTO et al.
2002, MOTAGH et al. 2006). However, conven-
tional interferometry fails when the ground
surface is covered by significant amounts of
vegetation, due to a loss of correlation (GAL-
LOWAY & HOFFMANN 2007) as in Tehran ba-
sin. Persistent scatterer InSAR (PS-InSAR)
is a recently developed technique used to ad-
dress the decorrelation problem by identifying
scatterers, called persistent scatterers (PS),
the echo of which varies little in time (FER-
RETTI et al. 2000, HOOPER et al. 2004, KAMPES
2005). PS-InSAR gives measurements at a
few sparse locations, i.e. PS points. However,
despite of the improvement due to PS-InSAR
approaches it should be noted that, if the spa-
tial density of the detected persistent scatter-
ers is low, the deformation pattern cannot be
reliably retrieved. A sufficient number of PS
pixels is required to map local variation of the
deformation for deeper understanding of the
subsidence extent and spatial distribution that
enables us to better manage the water resourc-
es and construction tasks. It is however impor-

area contains higher amounts of fine-grained
sediments, including clay, at up to 100% as
observed in Fig. 4f. Moreover, geotechni-
cal tests indicate that the storage coefficient
have smaller values in the southern part of the
aquifer system compared to the northern part
(Fig. 4c). The decrease of the storage coeffi-
cient is due to the existence of higher amounts
of fine-grained sediments in the aquifer sys-
tem. The average value of the storage coef-
ficient of Tehran aquifer system is estimated
as 5% (SHEMSHAKI et al. 2005). Moreover, as
shown in Fig. 4d, the hydraulic conductivity of
the aquifer system decreases generally from
north to south of the area and in the northeast
of the area. The decrease of the hydraulic con-
ductivity in the northeast is mostly due to the
decrease of thickness of the saturated zone.
The main part of the Tehran basin dedicated

to the agricultural activities is subject to the
land subsidence due to the over-exploitation
of groundwater. According to the latest stud-
ies, groundwater level depth exceeds 100 m
in the north of the aquifer system (Fig. 4b). A
unit hydrograph of the Tehran basin (Fig. 2)
indicating the overall changes of water level
was extracted from the piezometric informa-
tion (SHEMSHAKI et al. 2005). The locations of
piezometric wells are shown in Fig. 1b. As ob-
served in Fig. 2, the water level dramatically
declined by about 9 m in 20 years. The volume
change of the aquifer system during 10 years
is estimated as 6.6 km3. The number of pump-
ing wells has increased from 3906 in 1969 to
26076 in 2003. A comparison of the number
of wells and the volume of the extracted water

Fig. 2: Unit hydrograph for the Tehran aquifer system extracted from the groundwater information
(Shemshaki et al. 2005).
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tion 3, the information layers fed to the neu-
ral network and the obtained results will be
presented. Moreover, the sensitivity analysis
results are given in this section. Finally, con-
cluding remarks are given in section 4.

2 Subsidence Modelling based
on Neural Network

Neural networks are based on the structure
and functioning of the human brain and con-
sist of a large number of simple processing
units known as neurons. The neural network
function is determined largely by the connec-
tions between neurons. It is trained by adjust-
ing the values of the connections (weights) be-
tween neurons so that a particular input leads
to a specific target output. The network is ad-
justed based on a comparison of the output
and the target until the network output match-
es the target.
The output signal of neuron k in layer l is

calculated as follows:
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Where Kl is the number of neurons in lay-
er l, s(l)0 (.) is the activation function, w(l−1)ki is
the weight of the input y(l−1)ki to the neuron k
in which 1 ≤ i ≤Kl−1 and w(0)k0 is the bias val-
ue corresponding to the neuron k. It should
be noted that y(l−1)ki is actually the output of
ith neuron in the previous layer. If l= 1, y(l−1)ki
is the input variables to the neural network.
Weights are updated using the mean-squared
error (MSE) as cost or error function through
the training process. Readers are referred to
e.g. HAYKIN et al. (1995) for further informa-
tion about the training process and updating
the weights.
One of the important factors that affect the

success of modelling procedure is the ability
to extract information about the relationships
between the model structure’s inputs and out-
puts from the trained neural network (HASHEM
1992). This information can be used as a basis
for the analysis of the model and determina-
tion of the most significant factors that affect

tant to have the subsidence spatial extent and
pattern for land managements (GONZÁLEZ &
FERNÁNDEZ 2011). As in the Tehran basin many
agricultural fields exist, the persistent scatter-
er density is low due to the lack of coherent
scatterers over the time interval of consider-
ation. There are various algorithms to retrieve
the spatial pattern of the subsidence using the
values at PS pixels. Classic interpolation tech-
niques such as kriging can be generally used
to estimate the deformation at a non-persistent
scatterer based on the known deformation of
surrounding persistent scatterers. However,
these methods are based only on the deforma-
tion values of the neighbouring pixels. There
are some analytical methods that try to pre-
dict the aquifer compaction using the geology
and hydrogeology information (HOFFMANN et
al. 2003). However, we are left with great er-
rors using these methods when we are facing
the lack of accurate and detailed information
of the aquifer system.
In such cases, the methods based on the

intelligence systems can be effectively used
instead of modelling the subsidence. In this
paper we present a method based on a back-
propagation neural network in order to mod-
el the subsidence signal. The deformation at
non-persistent scatterer is estimated by neural
network interpolation using not only the PS-
InSAR derived deformation of the persistent
scatterers but also their hydrogeology prop-
erties that highly affects the subsidence. The
constructed neural network is trained using
the hydrogeology parameters of the aquifer
system as input variables of the network and
PS-InSAR derived subsidence rate at PS pix-
els as the network output. The PS pixels whose
deformation could be measured by PS-InSAR
are used to train the network. The trained neu-
ral network is then used: (i) to retrieve the spa-
tial pattern of the subsidence or to estimate
the subsidence rate at non-PS pixels and to (ii)
perform sensitivity analysis to identify a hy-
drogeology factor with the most influence on
the subsidence. In other words, we can recog-
nize to which hydrogeology factor the subsid-
ence in Tehran basin is most sensitive.
This paper is structured as follows: Section

2 presents the proposed modelling method
based on neural network and the mathematical
framework of the sensitivity analysis. In sec-
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respectively. xi is its ith input. The updated
weights from training step are used to calcu-
late (2). The more sensitive the output w.r.t. to

xi is, the higher the
i

y
x

∂
∂

is. A little change to xi
will then cause a great change to the output ŷ.
Subsidence due to the over-exploitation of

groundwater is a complex procedure influ-
enced by different geology and hydrogeology
factors. Groundwater information collected at
different piezometric wells in the Tehran basin
showed that the water level decline is not the
only important cause for the subsidence oc-
currence in this area (DEHGHANI et al. 2010).
Instead, some other geology and hydrogeolo-
gy factors such as the fine-grained sediments
thickness in the aquifer system are controlling
the subsidence rate. In this paper, a method
based on neural network is presented to mod-
el the subsidence for areas in which we could
not measure the deformation rate using PS-In-
SAR. Moreover, in order to identify the main

it. HASHEM (1992) presented a closed-form ex-
pression for first order as well as higher order
output sensitivities w.r.t. variations in the in-
put variables for multilayer feedforward neu-
ral networks. These sensitivities can be used
as a basis for inference about input-output re-
lationships. In order to estimate the sensitiv-
ity of the network output w.r.t. to its inputs,

the partial derivative,
i

y
x

∂
∂

is estimated where

y is the network output and xi is its ith input.
Consider a neural network with 2 hidden lay-

ers consisting of K1 and K2 neurons.
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Where n is the number of input variables, ŷ
is the network output, and y(1) and y(2) are the
outputs of the first and second hidden layer,

Fig. 3: Framework of the presented method for modelling the subsidence and sensitivity analysis.
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Fig. 4: Network inputs and output: (a) water level decline between 1969 and 2003, (b) groundwater
depth, (c) storage coefficient, (d) hydraulic conductivity, (e) alluvial thickness, (f) frequency of fine-
grained sediments in terms of percentage.
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basin subsidence was monitored using PS-In-
SAR technique by which the annual deforma-
tion rate was measured at persistent scatterer
locations. The available radar data consisted
of 22 descending ENVISAT ASAR images
of track 149 acquired between 2003 and 2008
and 19 ascending ENVISAT ASAR images of
track 414 spanning between 2004 and 2009.
PS-InSAR method was separately applied on
both ascending and descending radar data.
The results obtained from PS-InSAR indicate
that the deformation time series contained a
significant linear component on which the in-
significant seasonal fluctuations are superim-
posed (DEHGHANI et al. 2010, DEHGHANI et al.
2009). The PS-InSAR results were then used
to extract the annual deformation rate that is
assumed to be constant from 2003 to 2009 as
deformation time series suggested. The es-
timated subsidence rates obtained from de-
scending and ascending data are slightly dif-
ferent due to the different imaging geometries
of both datasets and non pure vertical com-
ponents of the deformation system (SAMIEIE-
ESFAHANY et al. 2009).
The number of PS pixels detected from

ascending and descending data is around
400,000 and 800,000, respectively. Due to the
low spatial density of PS pixels, the deforma-
tion pattern cannot be easily recognized in the
area. Hence, the presented modelling method
is used to estimate the deformation rate at non-
persistent scatterers in order to retrieve the de-
formation pattern. About 60% of the detect-
ed persistent scatterers are used to train the
network while the rest is applied for network
validation. The introduction of the inputs and
output of the network as well as the obtained
results from the modelling are presented in the
next section.

3 Results

The available hydrogeology information of
the Tehran basin includes hydraulic con-
ductivity, storage coefficient, frequency and
thickness of fine-grained sediments, ground-
water depth, amount of water level decline be-
tween 1969 and 2003 extracted from piezo-
metric measurements and alluvial thickness
of the Tehran aquifer system. These proper-

controlling factors in the Tehran basin subsid-
ence, the sensitivity analysis was performed
using the trained network. The framework of
the presented method for subsidence model-
ling and sensitivity analysis is illustrated in
Fig. 3.
The first step in the network construction

is to determine the number of layers and their
neurons as well as the activation functions.
The most proper network architecture here
was identified in a trial-and-error manner. As
the network initialization for training is ran-
domly done, the obtained results including
the updated weights and the sensitivity anal-
ysis result are slightly different in each run.
It should be noted that each run includes a
complete training procedure. The criterion for
stopping the training procedure in each run is
the number of iterations. According to Fig. 3 a
neural network is fully trained in N indepen-
dent runs where N can be arbitrarily set. The
trained network is tested at the end of each run
using the validation data. Moreover, the sensi-
tivity analysis result obtained in each run will
be saved for further integration. The updated
weights corresponding to the minimum over-
all network error are used for the final simula-
tion step.
The network input variables are hydroge-

ology factors controlling the subsidence rate
while the output is the subsidence rate at PS
pixels derived from PS-InSAR. The Tehran

Fig. 4: Network inputs and output: (g) thick-
ness of fine-grained sediments.
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moid activation function was constructed.
The hydrogeology information at PS pixels
and their derived deformation rate were used
as the network input and output, respectively.
The constructed network was trained using
60% of the detected PS pixels. As already not-
ed, the network was constructed in N runs (N
is here set to 50) for each of which the trained
network was tested using the validation data,
i.e. 40% of the PS pixels. After comparing the
results of different runs, the weights corre-
sponding to the minimum overall network er-
ror are used for final simulation step.
The correlation between the trained net-

work output and the observed subsidence rate
for training and validation pixels in both as-
cending and descending datasets is illustrated
in Fig. 5.

ties were measured at different measurement
sites across the study area using various meth-
ods including geotechnical testing and geo-
physics approaches. The point measurements
were then converted to contour lines using in-
terpolation. All the information layers super-
imposed as contours on the deformation rate
map of PS pixels are shown in Fig. 4 as already
explained.
In order to make the hydrogeology data

compatible with the PS-InSAR-derived sub-
sidence data in the neural network, all data
were interpolated into grids with the pixel size
of 90 m. Therefore, the total number of 320 ×
210 pixels for which there are 7 features, i.e.
hydrogeology information, covered the study
area. A network consisting of two hidden lay-
ers of 20 and 5 neurons with the tangent sig-

Fig. 5: Correlation between the subsidence rate simulated from the trained network (y axis) and
the observed one derived from the PS-InSAR (x axis) for different datasets: (a-b) training and
validation data of the descending mode, and (c-d) training and validation data of the ascending
mode.
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better validate the performance of the model,
the subsidence rate at all PS pixels (training
and validation pixels) for which the observed
subsidence rate is available from PS-InSAR is
simulated by the trained network as shown in
Fig. 6. In this figure, the observed and simulat-
ed subsidence rates for both datasets are illus-
trated. Furthermore, the residual map as the

As can be observed in Fig. 5, a high cor-
relation exits between the simulated subsid-
ence data and the observed one extracted
from PS-InSAR. The linear regression equa-
tion for each dataset presented below its cor-
responding plot is significantly close to A=T
where A and T is the simulated and observed
deformation values, respectively. In order to

Fig. 6: Observed deformation rate obtained from the (a) descending and (b) ascending data; sim-
ulated deformation rate using the (c) descending and (d) ascending data; residual map as the
difference between the observed deformation rate and the simulated one using the (e) descending
and (f) ascending data.
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is related to their different imaging geometry.
The maximum deformation rates estimated
from descending and ascending datasets are
241 mm/a and 203 mm/a, respectively. The
coincidence of the spatial pattern of the sub-
sidence area with the cultivated area indicates
that the subsidence in the Tehran basin is due
to groundwater exploitation. The spatial pro-
files across the deformation show that the sub-
sidence follows a “v” type pattern.
The results obtained from the proposed

method were compared to the levelling data
collected by NCC in two periods, 2004 and
2005 (ARABI et al. 2008). The available lev-
elling data consists of five levelling tracks,
SB1, SB2, SB3, SB4 and HQH as illustrated
in Fig. 1 in different colours. The deformation
rates at levelling stations are estimated from
the trained neural network and then compared

difference between the observed and modelled
subsidence rate is presented in Figs. 6c and 6f.
Accordingly, the most amount of subsidence
could be simulated by the proposed model and
the residual map has a noisy behaviour rather
than a systematic one. The root-mean-square
error (RMSE) of the residual map is estimated
as 3.53 mm and 4.58 mm for the descending
and ascending datasets, respectively. The low
values of RMSE are an indication of the high
performance for the subsidence modelling.
The subsidence rate for all pixels (PS and

non-PS) in the study area was then simulated
by the trained network (Fig. 7).
As shown in Fig. 7, the spatial subsidence

pattern including 3 main lobes has been re-
trieved. The slight difference observed be-
tween the spatial subsidence patterns simu-
lated from descending and ascending modes

Fig. 7: Subsidence rate simulated from the proposed method applied on (a) descending dataset
and (b) ascending dataset.

Fig. 8: Comparison of subsidence rate inferred from the proposed method (red lines) and levelling
(blue lines) across different levelling tracks SB1, SB2, SB3, SB4 and HQH.
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pixels for which one factor is indicated as the
most effective one (Fig. 9). For example, ac-
cording to Fig. 9 in about 3500 pixels the most
effective factor on the subsidence occurrence
is the hydraulic conductivity (#1). In fact, the
effectiveness of a factor is determined by the
number of pixels in which that factor is the
most effective one. According to Figs. 9a and
9b, the subsidence has the most sensitivity to
the hydraulic conductivity, thickness of fine-
grained sediments and water level decline.
A considerable fact is that the sensitivity

analysis results separately obtained from the
descending and ascending data are highly
comparable. The significance orders extract-
ed from both datasets are exactly similar. This
may indicate the correctness of the generated
model.

4 Conclusions

Studying the land subsidence first requires
measuring the magnitude of the deformation
caused by this phenomenon. Analysis of the
temporal and spatial behaviour of the defor-
mation caused by subsidence allows us to mit-
igate its devastating effects and manage wa-
ter resources. PS-InSAR is a method recent-
ly developed to measure the deformation in
an area suffering from temporal and spatial

to the values measured by levelling. The com-
parison between levelling measurements and
the vertically-converted subsidence rate esti-
mated from the proposed method is shown in
Fig. 8. The overall RMSE between levelling
measurements and the vertically-converted
subsidence rate extracted from the proposed
method is estimated as 19.8 mm/a.
The different deformation rate of both da-

tasets is most likely due to the different time
intervals covered by the radar data (2004 and
2008) and levelling measurements (2004 and
2005), though the spatial distribution of the
rates from levelling is consistent with that de-
rived from the proposed method.
According to the diagram of Fig. 3, in order

to study the effect of each input variables on
the subsidence the sensitivity analysis is per-
formed at the end of each run for all pixels.
In each run, the sensitivity of the subsidence
to different input variables (7 factors in here)
is calculated for each pixel using the updat-
ed weights (2). The calculated sensitivities are
then sorted based on their values indicating
the significance order of the input variables af-
fected by the subsidence rate. The maximum
value is corresponding to the most effective
factor. Finally, the sensitivity analysis out-
comes of all 50 runs are integrated to obtain
more reliable results. The final result is pre-
sented as a histogram showing the number of

Fig. 9: Histograms of the sensitivity analysis results obtained from (a) descending data and (b)
ascending data. The X-axis indicates the input variables (#1: hydraulic conductivity, #2: storage
coefficient, #3: frequency of fine-grained sediments, #4: thickness of fine-grained sediments, #5:
groundwater depth, #6: amount of water level decline and #7: alluvial thickness). Y-axis represents
for the number of pixels.
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