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The idea of estimating rainfall with cars
originates from HABERLANDT & SESTER (2010).
There, computer simulations for a river catch-
ment supported the assumption that areal rain-
fall estimations with cars might be superior
compared to an existing network of station-
ary rain gauges. HABERLANDT & SESTER (2010)
concluded that estimating areal rainfall with
cars is theoretically feasible and that the accu-
racy depends on the number of cars equipped
with sensors.
A possible application of this idea would be

operational flood forecasting where real-time
measurement and prediction of precipitation
is required. Another possible application in
a different field is car navigation, where real-
time predictions of rainfall are needed for the
online speed estimation for shortest path cal-
culation (THAKURIAH & TILAHUN 2013). As cars

1 Introduction and Overview

Areal rainfall, representing a good estimation
of the spatial variability and of the mean value
over specific areas, is one of the most impor-
tant inputs to hydrological models. Especial-
ly models used for reanalysis and forecasting
of highly dynamic processes like floods and
erosion have high requirements regarding the
rainfall input. Furthermore, if predictions are
required for small catchments or urban areas,
the processes are very fast. However, estimat-
ing areal rainfall, especially for short time
steps, is still a challenging task: In general, the
density of recording rain gauges is low; fur-
ther, weather radar suffers from large space-
time biases and the general problem that rain-
fall is not measured, but estimated from the
measured reflectivity values.

Summary: Areal rainfall information is one of the
most important inputs to hydrological models. This
paper presents some theoretical considerations
and initial results on the idea of using a geosensor
network of cars as a data source for areal rainfall
estimations. The types of car sensors and differ-
ent calibration schemes for the rainfall estimation
functions (W-R functions) in the cars are present-
ed. A special focus is given to the decentralized on-
line calibration of these functions in the network by
communicating measurements between measuring
units. This would allow the dynamic adaptation of
the functions to different situations such as differ-
ent drivers, the current car environment or the cur-
rent wind speed and direction. Then, results from
laboratory and field experiments are presented.

Zusammenfassung: Niederschlagsschätzungen
mit einem Geosensornetz von Autos – Konzepte und
erste Ergebnisse. Schätzungen der räumlichen Nie-
derschlagsverteilung sind eine wichtige Daten-
grundlage für hydrologische Modelle. Dieser Bei-
trag beschreibt grundlegende Konzepte der Regen-
schätzung mit einem Geosensornetz von Autos. Es
werden sowohl die verwendeten Sensoren be-
schrieben, als auch die Möglichkeiten ihrer Kali-
brierung. Dabei wird ein besonderer Fokus auf die
dezentrale Online-Kalibrierung gelegt, die es er-
möglicht, die Schätzfunktionen dynamisch anzu-
passen und so beispielsweise Faktoren wie Fahrer,
Autoumgebung oder Windgeschwindigkeit und
-richtung zu berücksichtigen. Im Anschluss daran
werden erste Ergebnisse aus Labor- und Feldexpe-
rimenten zur Bestimmung der Schätzfunktionen
präsentiert.
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b) A statistically sound model for the online
calibration has to be developed.

c) Both, the feasibility as well as the advan-
tages of online calibration have to be prov-
en by experimental data and computer sim-
ulations.

This paper gives initial results for a) and dis-
cusses requirements for b). After a brief re-
view of related works, the types of car sensors
are introduced in section 3. Then, in section 4,
the calibration of the car sensors in laboratory
and field are discussed with a special focus on
the decentralized online calibration. Section 5
gives first empirical results of the laboratory
and field experiments and section 6 concludes.

2 Related Work

Information about rainfall is essential for hy-
drological predictions and water resources
management (BEVEN 2001, CHOW et al. 1988).
Due to its high variability in space and time,
areal estimation of rainfall is still a challeng-
ing task. There are several methods for meas-
uring rainfall: non-recording rain gauges are
available in a high density, however they do
only provide aggregates of the amount of pre-
cipitation over a whole day. Recording rain
gauges would be required, however, even in
Germany, the network density is only approxi-
mately one station per 1,800 km2. Weather ra-
dar also is an indicator for rainfall, however, it
does not measure rainfall directly, but reflec-
tions, which have to be transferred to rainfall
using calibration – for which a sufficiently
dense point precipitation network is needed
(SMITH et al. 2007, KRAJEWSKI & SMITH 2002).
Other special and innovative methods for rain-
fall observation use satellites (GRIMES & DIOP
2003, WARDAH et al. 2008), microwave links
(LEIJNSE et al. 2007,MESSER et al. 2006) or rain
gauges aboard moving ships to measure rain-
fall at sea (HASSE et al. 1998, YUTER & PARKER
2001). Utilising rainfall information from dif-
ferent sources together and applying sophis-
ticated interpolation or merging methods can
further improve precipitation estimation for
hydrological applications (GOUDENHOOFDT &
DELOBBE 2009, CHIANG et al. 2007, GOOVAERTS
2000,HABERLANDT 2007, EHRET et al. 2008). In

cannot measure rainfall directly, their origi-
nal raw measurements, e. g. wiper frequency,
have to be calibrated. This calibration has to
take additional factors into account, such as
speed and the local environment the car drives
through. A realization of a system would re-
quire that the calibration has to be performed
for each car, using data from each of its meas-
urements. In a centralized calculation, all cars
would communicate their measurements to a
central server. If many cars participate in such
a system, this leads to scalability problems,
as well as a high amount of data to be com-
municated to the central server. Therefore, the
idea is to use the measurement and process-
ing capabilities of the car itself to conduct the
calibration in a decentralized way, i. e. take
the cars as a distributed geosensor network
(DUCKHAM 2012). Such an approach not only
solves the scalability problem, but also en-
ables analyses beyond the calibration: the cars
can collaborate in order to determine the rain-
fall pattern and detect homogeneities or het-
erogeneities; furthermore, the locally deter-
mined rainfall estimates can be used for other
purposes such as risk warnings (aquaplaning)
or real-time speed estimation.
SCHULZE et al. (2010) investigated this idea

of calibrating the rainfall estimation functions
in the cars while driving, subsequently called
online calibration. Both earlier works relied
entirely on computer simulations of either car
measurements, rainfall or both. In FITZNER et
al. (2012), online calibration of the estima-
tion functions was investigated using real data
from a car equipped with a wiper frequency
sensor. The work analysed different online
calibration schemes and sensor communica-
tion ranges. It concluded that, if the communi-
cation range (distance) is adequately short, the
online calibration could improve rainfall es-
timation even under significant a priori train-
ing. However, not all influencing parameters
such as car speed have been modelled yet in
FITZNER et al. (2012) and no sound statistical
model for the online calibration has been pro-
vided. Therefore, additional investigations are
required, which can be summarized as fol-
lows:
a) Robust models for estimating rainfall from
the sensor readings have to be derived
from experiments.
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Two other sensors are used, which meas-
ure rainfall in an optical way via transmitted
and sensed infrared (Xanonex and Hydroeon)
(Fig. 1).

4 Sensor Calibration – Derivation
of the W-R-Relationship

In order to estimate rainfall with the sensors,
a functional relationship between the sensor
readings and rainfall needs to be established,
termed Wiper-Rainfall (W-R) relationship or
W-R function. The nature of such a relation-
ship ranges from a simple linear regression
with a single predictor variable, e. g. wiper
frequency, to more complex non-linear mod-
els with multiple parameters. Calibration can
either be performed in an off-line fashion in a
controlled environment in a laboratory or also
“in the field”, by equipping cars on the road
with sensors. The latter can also be organized
in an online way, taking advantage of the fact
that cars can continuously measure wiper fre-
quencies and compare it with given rainfall
measurements of stations and other cars in
their vicinity.
In the following the different calibration

strategies are described. Whereas the major

a recent study the inclusion of distributed low
cost and low accuracy measurement devices
for the improvement of radar rainfall was in-
vestigated (HILL & FARZAN 2012).

3 Car Sensors

Different types of sensors for estimating rain-
fall with cars have been used in the experi-
ments. These include sensors for measuring
the wiper frequency of a car as well as optical
sensors that are typically installed in cars with
automated wiper control.
A wiper frequency sensor has been devel-

oped in the course of the project which is based
on a microcontroller connected to a GPS-re-
ceiver and a magnetic sensor. The magnetic
sensor is placed behind the windscreen and
triggers each time a magnet attached to the
windscreen wipers passes, which occurs two
times for each single wipe. Then an NMEA
String, i. e. position, time and additional infor-
mation, is recorded in an ASCII text file on an
SD-card. The wiper frequency sensors are in-
stalled in cars with both manual and automatic
wiper control. Cars with manual wiper control
have discrete wiper frequency classes to be
manually adjusted by the driver. In addition
to the manual option, some cars have an auto-
matic wiper system. When automatic wiping
is switched on, an optical sensor attached to
the windscreen detects raindrops on the wind-
screen surface and triggers the wipers. Also in
this case, however, the wiper frequency is not
determined completely automatic but depends
on a manually controlled sensitivity setting.

Fig. 1: Xanonex (left) and Hydroeon (right)
(XANONEX 2013, RAINSENSORS 2013).

Tab. 1: Influencing factors and their consideration in the current experiments.

Factor Lab Experiments Field Experiments

Wiper Frequency Optical Sensor

Car speed No Yes Yes

Windscreen angle Yes Yes Yes

Car environment No No Yes

Wind speed / wind direction No No No

Drivers No No Yes

Road type (and road surface), spray No No Yes
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two layers. The size of the simulator is suffi-
cient for creating a homogeneous rainfield for
a single car and all sensors under consideration
at the same time. Rainfall intensities between
9 mm/h and 100 mm/h can be produced. As
a reference for the car sensors, i. e. “ground
truth”, both, a recording rain gauge with a
tipping bucket sensor and a disdrometer are
used. Tipping bucket sensors are widely used
to provide point-rainfall measurements. Dis-
drometers give valuable additional informa-
tion of the rainfall characteristics such as the
rain droplet distribution or its falling speed. In
order to investigate the effect of car speed on
the optical devices, the two optical sensors are
placed on a rotating machine. The Xanonex
sensor is placed with an angle of 45° in rotat-
ing direction, in order to simulate an average
windscreen angle. Due to minor variations in
the rain intensity for each individual run dur-
ing the experiments, each of the dynamic sen-
sors is compared with a static one of the same
type within a particular run. Currently, speeds
of up to 45 km/h can be generated.
W-R functions can also be established in

a real-world setting by using cars equipped
with sensors for recording wiper activity, po-
sition and time with a particular sampling rate
(Fig. 3). In this way, it is possible to investigate
influencing factors that are not easily testable
in the laboratory, such as wind speed or lo-
cal environment. The main problem in deriv-
ing accurate W-R relationships from the field
experiments is the availability of suitable and
correct “ground truth”-data, i. e. reference
rainfall at the car positions. Currently, data
from the 11 stationary rain gauges in the Han-
nover area are used as reference, with an in-
verse distance weighted (IDW) interpolation
to derive rainfall estimations at the car posi-
tion. As the stationary rain gauges provide
measurement every minute, the sensor read-
ings of the cars (and the car positions) have
been averaged over a minute as well. Current-
ly, 10 cars are equipped with the wiper fre-
quency sensor, among them 6 from a taxi fleet.

4.2 Geosensor Network of Cars

Instead of storing the sensor readings and
evaluating them in a postprocessing or at a

parameters for the determination of the rain-
fall are the sensor readings, there are addition-
al factors which can influence the calculation
of the rainfall, such as car speed and prefer-
ences of the driver (Tab. 1). Some of the fac-
tors influence the rainfall as such, e. g. wind,
car environment such as buildings, trees,
others influence the measurement of the rain-
fall, e. g. speed, driver. The details are ex-
plained in section 4.1.
The calibration data for the sensors is col-

lected in the laboratory or field and used for
estimating theW-R function coefficients. This
can be done e. g. by executing a least squares
algorithm such as ordinary least squares
(OLS). Once the coefficients are determined,
they can be implemented in the cars to be used
for calculating rainfall during subsequent
rainfall events. The offline calibration in a
laboratory and field setting is summarized in
4.1. The online calibration within the geosen-
sor network of cars is described in 4.2. First
calibration results are given in section 5.

4.1 Derivation of a Base Calibration
in Lab and Field

A basic W-R relationship can be derived in
laboratory and field experiments. For the lab-
oratory experiments, a sprinkler system has
been designed and built (Fig. 2).
In order to produce different rainfall inten-

sities, the system allows different combination
of nozzles as well as different pressures on the

Fig. 2: Sprinkler system for the laboratory ex-
periments.
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be used to update the current W-R function.
When the car enters the communication range
of another car (measurement 7 of Car 1), both
cars exchange measurements (Car2Car) and
improve their W-R function. The accuracy of
the update samples is a function of:

a) the original accuracy of the measurement
or estimation at the location of the sending
unit. Stationary rain gauges can be expect-
ed to provide higher accuracies compared
to cars,

b) the spatial distance of the sending and re-
ceiving unit and the temporal lag between
the time, the received measurement has
been taken and the time, the receiver meas-
ured the predictor variables, e. g. the wiper
frequency,

c) the spatio-temporal variability of the cur-
rent rainfall field.

While it is possible to determine a) and b), the
estimation of c) is more difficult and subject
to future work. For example radar estimations
or the geosensor network of cars could be em-
ployed. The update accuracies can be taken
into account; e. g. by methods such as weight-
ed least squares (RAWLINGS et al. 1998).
The factors influencing W-R function es-

timations from Tab. 1 can be categorized as
shown in Tab. 2. Here, the term “dynamic” re-

central server, a W-R function could be di-
rectly applied to estimate rainfall while the car
is driving, with the advantages as described
in section 1. In addition, taking advantage
of technologies of wireless sensor networks
for vehicular networks, there is the possibil-
ity for the cars to exchange information with
each other (Car2Car) or with stationary rain
gauges equipped with communication facili-
ties (Car2Station). Besides the general benefit
of scalability described in section 1, this in-
formation exchange has two main advantages:

a) Each car iteratively calibrates a W-R rela-
tionship that takes car specific factors into
account that cannot be calibrated in ad-
vance, e. g. a particular windscreen angle
or driver type.

b) When exterior situations change, which
are not (yet) respected in theW-R function,
e. g. the current local wind speed and di-
rection, the deviations from the estimation
can be corrected on-the-fly and the model
can be adjusted to the current situation.

As soon as a car enters the communica-
tion range of a stationary rain gauge (Car 1
in Fig. 3), a data exchange is established and
the stationary rain gauge transmits its current
rainfall measurement to the car. This results in
a (sensor readings, rainfall)-sample that can

Fig. 3: Car2Car and Car2Station communication.
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car cannot learn the influence of a particular
dynamic factor that it cannot measure. Since
there will most likely always be unknown fac-
tors, the online estimations of rainfall by the
W-R functions will most likely always deviate
from the true rainfall.
Even a W-R function perfectly calibrated

for a set of predictors does not imply accurate
individual rainfall estimations, it just esti-
mates best on average given the available pre-
dictors. For example, in an area where the car
is covered by obstacles preventing the rain at
least partly to reach the car sensor, it is like-
ly that any W-R function will underestimate
rainfall. E. g. a wiper frequency of 30 wipes/
min measured under normal conditions in
open space will deliver a quite accurate rain-
fall estimation, i. e. the estimated rainfall for
that wiper frequency will be close to the true
rainfall. The same model and the same wiper
frequency will lead to a significant underesti-
mation of rainfall when the car is placed in an
area such as a dense forest, where obstacles,
e. g. trees, prevent the rain from reaching the
windscreen.
These dynamic and not measureable factors

include the car environment, the wind speed
and the direction or the erratic wiper opera-
tion by the driver. As these factors are often
spatially, e. g. car environment, temporally,
e. g. current driver, or spatio-temporally cor-
related, e. g. wind speed and direction, they
result in autocorrelated deviations of the W-R
function estimations from the true (but un-
observable) rainfall values. These deviations
e. g. appear as autocorrelated residuals in the
analyses (Fig. 7a). For example, if a car is trav-
elling through a dense forest and hence under-
estimates the rainfall, it is quite likely that at a
subsequent measurement, the car is still trav-
elling under similar conditions and still under-
estimates. This can also be considered as the
problem of dynamic model coefficients. Mod-
el fitting approaches that take this into account
are e. g. rolling regression models or the Kal-
man filter (KALMAN 1960).

5 Experimental Results

In the following the results of the lab and field
experiments will be presented.

fers to factors that can change for a particular
car while driving.
Factors that are measured by a car can func-

tion as parameters of the W-R function and
hence their influence, i. e. coefficients, can be
calibrated. This means, when the car receives
a rainfall estimation from a neighbouring sen-
sor (other car or station), it has typically a val-
ue for each measured parameter such as car
speed or wiper frequency available. There-
fore, an update results e. g. in a (wiper fre-
quency, car speed, received rainfall)-sample
that can be used to calibrate the model.
Some other factors, such as a specific sen-

sor type or windscreen angle, remain constant
for a particular car. This means, the calibra-
tion samples (sensor readings, rainfall) do not
contain a reading for that particular factor,
e. g. a particular value for a windscreen angle.
However, with the online updates, the model
is still implicitly adjusted to account for such
constant factors. With a sufficiently large set
of calibration samples collected over time, it
can be expected that a specific car will gener-
ate a model that will work best on average for
its car specific constant factors. Some influ-
encing factors, such as the driver, change less
frequently or sometimes even remain constant
for a particular car and hence, cannot easily be
categorized into constant or dynamic.
The calibration and application of a W-R

function for online measurements requires
that all factors are either:

a) dynamic and measured by a car, a model
parameter, e. g. car speed, or

b) static for a particular car, e. g. windscreen
angle, and not necessarily measured

Factors that are neither static nor measurable
cannot be calibrated. This means, a particular

Tab. 2: Categorisation of influencing factors.

Constant Dynamic

Measured - Car speed, wiper
frequency

Not (yet)
Measured

Sensor system,
windscreen
angle (driver)

Wind direction
and speed, local
car environment,
e. g. landuse
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c) the rainfall type, e. g. heavy rain, light
rain, etc., corresponding to droplet falling
speed.

Theoretically, there is a positive linear re-
lationship between the velocity of an object
in rain and the water mass hitting the object
(BOCCI 2012). The slope of the relationship is
a function of the rainfall type and windscreen
angle. The red and blue lines in Fig. 5 illus-
trate the theoretical relationships according to
BOCCI (2012) for two droplet falling speeds of
2 m/s and 5 m/s, respectively and a flat sensor
placed 45° towards the direction of movement.
The green line in Fig. 5 illustrates the em-

pirical result. It shows the ratio, dynamic di-
vided by static sensor readings, between a dy-
namic sensor and a static one of the same type
(Xanonex), averaged over different rain inten-
sities. In contrast to the theoretical curves, the
result is not a linear increment but becomes
static at approximately 20 km/h. Possible rea-
sons are a) the amount of drops remaining
on the sensor surface which changes with in-
creasing speed and b) the centrifugal force on
the drops, originating from the rotation of the
sensor.

5.2 Field Calibration Results

A set of 6 cars with manually operated wipers
has been equipped with frequency measure-
ment sensors. In total, around 36 hours of car
data with substantial wiping activity has been
collected (~2200 wiper frequency measure-

5.1 Laboratory Calibration Results

The red points in Fig. 4 show the relationships
between wiper frequency (x-axis) and refer-
ence rainfall measured by a tipping bucket (y-
axis) in the laboratory, averaged over a minute,
and a linear function fitted with OLS. Fig. 4a
shows the results for the W-R relationship of a
car with automatic wiper option. Fig. 4b shows
the result for the wipers of the same car being
adjusted completely manually. This means, a
single human operator initiated a single wipe
each time, his visibility was impaired. The
dashed lines in both figures illustrate the 95%
prediction interval.
The figures demonstrate that there is a sig-

nificant correlation between wiper frequen-
cy and rainfall. It can be observed that the
manually operated wipers lead to higher co-
efficients of determination than the automat-
ic wipers. The conclusion drawn from this is
that wiper actions triggered by the desire for a
clear visibility indeed is an indication for the
rainfall. Thus, the better a person or an auto-
matic system fulfils this desire, the better the
correlation with rainfall is.
In this way, the laboratory experiments sup-

port the projects’ underlying assumption that
there is, indeed, a relationship between visi-
bility and rainfall intensity. Additional experi-
ments have been conducted to investigate the
influence of speed. There are different factors
effecting the general overestimation of the
rainfall when the sensor is moving:
a) the sensor speed,
b) the shape and angle of the optical sensor,

(a) W-R relationship for wiper frequency of au-
tomatic wipers

(b) W-R relationship for completely manual ini-
tiation of single wipes

Fig. 4: W-R (wiper-rainfall) functions determined in laboratory experiments.
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data points is too low to perform reliable fine-
grained analysis of additional factors such as
the influence of different car installations (car
types, drivers) on the W-R function.
For the analyses, the mean IDW rainfall

for each measured wiper frequency is calcu-
lated, i.e. the rainfall conditioned on the wip-
er frequency. In this way, the set of samples
for model fitting is reduced such that there is
a single sample for each wiper frequency, rep-
resented by the individual red points in Fig. 6.
A linear regression is fitted to the data, rep-
resenting the W-R function for automatically
(a) and manually controlled wipers (b). Here,
manually refers to the manual selection and
adjustment of the discrete wiper classes (e. g.
slow, medium, fast) in cars without a rain sen-
sor controlling the wiper frequency. As the
conditional mean values are plotted, no confi-
dence or prediction intervals are provided. In
contrast to the laboratory experiments, the R²
values are lower – and they are even signifi-
cantly lower when all samples are plotted. The
major reason for this is that influencing fac-
tors are contributing to the function, which are
not yet respected. Furthermore, the quality of
the interpolated rainfall is not yet known. Al-
though the distance to the stations is limited to
4000 m, this distance still might be too large.
The analysed car data shows a clear indi-

cation of multicollinearity, i. e. a linear rela-
tionship between the predictor variables wiper
frequency and speed (RAWLINGS et al. 1998).
This can be explained by the way, in which
the wiper frequency adjustment in cars works.
For periodic wiping, i.e. wiping with intervals

ments with a sampling rate of 1 min). 4 cars
with automatically controlled wipers have
been equipped with frequency sensors, result-
ing in 30 hours of wiper frequency measure-
ments with one minute resolution (~1800 min).
This sample has been preprocessed in order
to produce specific selection sets, which al-
low for a separate investigation of influencing
factors. Further, only car measurements have
been selected, where the distance to a rain
gauge is lower than a given maximum. For
the first experiments, the distance has been set
to 4000 m, since it seemed to provide a good
trade-off between the number of samples and
the interpolation accuracy. In order to further
reduce errors in the car measurements, e. g.
due to windscreen cleaning, only those car tra-
jectories have been evaluated with a substan-
tial and long wiping activity.
Whereas this dataset allows for first analy-

ses presented in the following, the number of

Fig. 5: Influence of speed on optical sensor
readings.

(a) Conditional mean values and fitted linear
W-R relationship for a car with automatically
operated wipers

(b) Conditional mean values and fitted linear
W-R relationship for a car with manually oper-
ated wipers

Fig. 6: W-R functions determined in field experiments.



Daniel Fitzner et al., Rainfall Estimation 101

frequencies corresponding to slow, medium
and fast.
Fig. 7a shows the residuals, assumed true

rainfall – estimated rainfall, against the time
for a single car with manually operated wipers
and a linear model fitted to all samples using
OLS with the two predictor variables wiper
frequency and car speed. Different colours in-
dicate different time periods. Residuals within
a time period are separated by 1 min. Residu-
als of different time periods are separated by
an arbitrary time, e. g. hours, days or weeks.
The residual autocorrelation can be clear-

of no wiping in between the single wipes, the
wiper frequency increases with increasing car
speed, i.e. the interval in between single wipes
get shorter. Therefore, certain wiper frequen-
cies occur preferably or even only at certain
car speeds. This makes a fine-grained analysis
of the correlated predictor variables difficult.
In addition, it seriously affects the reliability
of the ordinary least squares estimates. This
has to be investigated further. This depend-
ence between car speed and wiper frequency
also provides the explanation why in Fig. 6b
are no discrete frequency classes, e. g. fixed

(a) Time ordered (left to right) residuals for a
single car with manually controlled wipers and
a fitted linear model with predictors speed and
wiper frequency. Serial correlation in the re-
siduals that are separated by 1 minute (con-
nected by grey lines) can be recognized.

(b) Positive residuals (red), corresponding to a
rainfall underestimation by the W-R functions,
and negative residuals (green), corresponding
to a rainfall overestimation by the W-R func-
tions. The data of all cars served as a basis
with W-R functions established for each car
individually. No spatial pattern can be recog-
nized.

(c) Residuals vs. wiper frequency for all cars.
No pattern can be recognized.

(d) Residuals vs. car speed for all cars. No pat-
tern can be recognized.

Fig. 7: Analyses of data collected in the field.
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ried out. For example, different weights could
be chosen for the samples, depending on the
proximity to the next stationary rain gauge. In
addition, other interpolators and the quality of
the interpolations will be investigated.
Further, computer simulations including

also real car trajectory data will have to prove
that the online calibration indeed provides im-
proved rainfall estimations by the cars. For
these experiments, different models, such as
autoregressive schemes or the Kalman filter,
will be investigated and a rigorous model for
the data will be developed. Further, it might
turn out that an interpolated rainfield is not
sufficient for assessing the benefit of the on-
line adjustment, due to the smoothing effect.
A different ground truth, such as radar data,
might be considered.
Another topic is the determination of suit-

able communication ranges between the sen-
sors. The communication ranges are deter-
mined by the devices, however, the inclusion
of a measured value has to be restricted by the
homogeneity of the current rainfield. An idea
is to quantify this homogeneity and in general
to detect patterns in the precipitation fields in
the geosensor network itself (SESTER 2009).
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