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Summary: This paper shows how to use different
remote sensing sensors and methods to obtain pa-
rameters about the urban built-up areas. Within the
cooperative research project HiReSens a hyper-
spectral scanner, an airborne laser scanner, a ther-
mal camera, and a RGB-camera were employed on
a small aircraft to determine roof material and geo-
metric parameters as well as heat bridges within the
city of Oldenburg, Lower Saxony, Germany.

HiReSens aims to combine various geometrical
highly resolved data (50 cm) in order to survey the
state of the roof areas. Thermal data were used to
obtain the temperature distribution of single roof
tops. The hyperspectral data provide information
on the roofing materials. Support vector machines
(SVM) were used to classify these roof materials.
Five out of six roofing materials were clearly de-
tected.

From airborne laser scanning (ALS) data a digi-
tal surface model and a digital terrain model were
calculated. These models in combination with hy-
perspectral data form the basis to locate the build-
ings with the best orientations for solar panels. A
decision tree algorithm gives satisfactory results in
this case.

The combination of the different datasets offers
the opportunity to use synergies between different
sensor systems. The central goals were the develop-
ment of tools for the detection of thermal bridges by
means of thermal data, spectral differentiation of
roof parameters on the basis of hyperspectral data
as well as 3D-capture of buildings from ALS data.

Zusammenfassung: Ableitung von stddtischen Pa-
rametern der Stadt Oldenburg durch Hyperspek-
tral-, Thermal- und Airborne Laser Scanning Da-
ten. Im Rahmen des kooperativen Forschungspro-
jektes HiReSens, gefordert vom BMBF, wird ein
Hyperspektralscanner, ein Airborne Laser Scan-
ner, eine Thermalkamera und eine RGB-Kamera
auf einem kleinem Flugzeug, einer Cessna 207,
eingesetzt, woraus Parameter der stdadtischen Be-
bauung, wie Dachmaterial- und Geometrieparame-
ter sowie Temperaturverteilungen von Déchern,
abgeleitet werden.

HiReSens zielt darauf ab, verschiedene geome-
trisch hochauflésende (50 cm) Daten der Stadt Ol-
denburg in Niedersachsen zu kombinieren, um
Synergien zwischen den unterschiedlich arbeiten-
den Sensorsystemen zu nutzen. Aus dem digitalen
Geldndemodell in Kombination mit den Hyper-
spektraldaten wird eine Dachmaske mittels Ent-
scheidungsbaum-Klassifikation generiert. Aus den
Thermaldaten ldsst sich die Temperaturverteilung
innerhalb einzelner Hausdicher bestimmen, wel-
che Indizien auf mégliche Warmebriicken geben.
Die Hyperspektraldaten liefern spektrale Informa-
tionen tiber Dachmaterialien. Sie werden mit Hilfe
eines Support Vector Machine (SVM) Klassifizie-
rungsalgorithmus ermittelt. Fiinf von sechs Dach-
materialien sind klar differenzierbar.

Die digitalen Héhenmodelle, abgeleitet aus Air-
borne Laser Scanner Daten, dienen in Kombination
mit den Hyperspektraldaten der Ermittlung von
Dachern, die eine optimale Ausrichtung fiir die In-
stallation von Solaranlagen aufweisen.

Die zentralen Ziele des Projektes sind die Ent-
wicklung von Werkzeugen zum Erkennen von
Temperaturverteilungen, spektrale Unterscheidung
verschiedener Dachparameter auf Basis der Hyper-
spektraldaten sowie die 3D-Erfassung von Gebéu-
den aus den Airborne Laser Scanner Daten.
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1 Introduction

Urban development plays an important role in
modern times. Questions related to the limit-
ed availability of natural resources and energy
consumption develop in all parts of the world.
The steady progress of urban sealing has in-
fluence on the local climate and hence on our
well-being. Remote sensing techniques may
assist in obtaining the information required to
support decision-making processes to sustain
or even improve the quality of our environ-
ment. In order to address these issues from a
planning point of view, 3D data having a high
spatial and spectral resolution are very help-
ful. Airborne data are mostly suitable for these
purposes as a trade-off between expansion of
the area and acquisition of small details. Es-
pecially when using more than one sensor in
a flight, airborne methods become fairly cost
efficient and can cover larger areas compared
to on-site inspections.

Hyperspectral data can be used to differ-
entiate various urban surface cover types
(HEeLDEN et al. 2010, YanG 2011). Due to the
strong heterogeneity of urban areas, data of a
high geometrical resolution are required. For
many applications a resolution (ground sam-
pling distance, GSD) of 50 cm or better is de-
sirable. At a coarser resolution (GSD > 1 m),
mixed pixels do no longer allow to separate
small details. Roessner et al. (2001) used a
spectral unmixing algorithm to reduce the
problem with DAIS hyperspectral data having
a GSD of 7 m, leading to improved classifica-
tion results compared to standard procedures.

Mor1 et al. (2008) classified and analysed
roof materials in Japan based on a handheld
spectrometer using the reflectance between
350 nm — 2,500 nm as a basis. However, only
single spots can be handled by this meth-
od. BAHR et al. (2005) and LEmp & WEIDNER
(2004) developed an automatic procedure to
determine roof parameters from hyperspec-
tral and airborne laser scanner (ALS) data
based on segmentation. They distinguish five
roof classes. For the classification a partly ob-
ject-oriented approach was implemented. The
classification was based solely on hyperspec-
tral data. New aspects of segmentation and
classification were implemented by Lemp &
WEIDNER (2005). Additionally, they used slope

information to improve the results of roof
classification. Braun et al. (2012) implement-
ed a method for the fusion of hyperspectral
and ALS data to improve SVM classification
by kernel composition, modifying the one-
against-one cascade and taking into account
human knowledge on roof geometries.

Building detection and reconstruction have
been important topics of photogrammetric
research for many years. For instance, Kok-
Kas & Dowman (2006) introduced a semiau-
tomatic technique for building reconstruction
by fusing aerial digital imagery and ALS data.
ReNnTscH & KRrzystek (2009) used ALS data
for a 3D reconstruction of roof ridge lines and
roof planes. ROTTENSTEINER et al. (2012) com-
pare and evaluate different methods of build-
ing detection and 3D reconstruction from air-
borne image and laserscanning data. KLARLE
(2009) used ALS data to infer the optimal lo-
cations for photo-voltaic solar panels. HILLING
& pE LANGE (2010) show a web-based applica-
tion for deriving the solar potential from ALS
data.

For the project HiReSens hyperspectral
data in the visible to near infrared spectral
range were collected to derive roof parameters
of the city of Oldenburg. The hyperspectral
data have a spatial resolution of 0.5 m. In ad-
dition, thermal and ALS data are gathered to
address energy-related issues. Furthermore,
aerial images (RGB) are used to enable a pre-
cise georeferencing and fusion of all data.

Merging of all these different kinds of data
results in a vast pool from which useful infor-
mation can be extracted. Generally one can
say that the accuracy of classification results
increases considerably by synergy effects
since certain classes can be separated more
accurately using additional information un-
less the features are strongly correlated. For
the classification a decision tree (QUINLAN
1986) and the support vector machine (SVM,
STEINWART & CHRISTMANN 2008) algorithm are
used. The innovative core of this project is the
challenging data acquisition:
® high spectral and spatial resolution data,
® a georeferencing accuracy of a few

decimetres,
® the fusion of these different data.

The products may serve as additional input
data for 3D city models as well as GIS databases.
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This paper presents a setup of four different
airborne sensors for high spatial resolution re-
mote sensing over urban areas. The data pro-
cessing is discussed as well as the challenges
of combining these high resolution data. From
this pool of information some derived prod-
ucts are shown: roof temperature variation,
solar potential, and roof material classifica-
tion.

Two different classification algorithms are
applied to derive parameters related to the
buildings in a scene. SVM are used to clas-
sify up to six different roof materials, whereas
a decision tree helps to derive the roof align-
ment in order to assess the potential of solar
energy.

In our study, hyperspectral data are com-
bined with ALS data. In this way we do not
only identify roof surfaces which are theoreti-
cally suitable for solar power generation, but
we identify the surfaces that are really usa-
ble for that purpose. These surfaces are often
smaller due to tree overhangs. The tempera-
ture distribution of roof surfaces which can be
an indicator of heat bridges is also visualised.

2 Observations

Different weather conditions are required for
data acquisition using airborne hyperspectral,
thermal and ALS sensors. For hyperspectral
and RGB data acquisition, clear skies and a
high sun elevation are desirable. For collecting
thermal data the most suitable weather condi-
tions are encountered at night, or in the morn-
ing when temperatures are low, without snow
or dew, and under a uniform cloud cover. An
ALS can be operated under most weather con-
ditions apart from rain, snow, or fog. Also dew
prevents a successful data acquisition.

Considering these constraints three flights
at different times were performed over the city
of Oldenburg, Germany. The total project area
size was 3.8 km x 1.8 km. Within this area the
work was focused on a core test site of 1.8 km
% 1.0 km which hosted the broadest diversity
of urban features.

More than 60 GBytes of hyperspectral,
thermal and ALS raw data were collected.
They were captured using the Cessna 207 air-
craft of Milan Geoservice. A system descrip-

tion is given in detail by BANNEHR et al. (20006).
The RGB images were taken by Alpha Luft-
bild using an Aquila A210.

2.1 Hyperspectral Observations

The imaging spectrometer AISA+ is a non-
cooled system. It serves for monitoring and
detection of environmental damage, determi-
nation of water constituents of lakes and riv-
ers, forest state examination, and atmospheric
research. Up to 244 spectral channels with a
bandwidth of 2.5 nm in wavelength can be de-
fined within the spectral range from 400 nm
to 980 nm. For the project HiReSens 107 spec-
tral channels with a bandwidth of about 5 nm
are used as a trade-off between noise, expo-
sure time and channel bandwidth.

The AISA+ system was radiometrically cal-
ibrated by the manufacturer Specim, Finland.
According to Specim the calibration accuracy
over the spectral range of the imaging spec-
trometer is about 10 %. This accuracy is not
critical for the current investigation because
the airborne reference spectra are compared
with ground truth spectra. Eleven strips were
flown on 16 June 2010 to cover the whole pro-
ject area. The altitude of 600 m resulted in a
GSD of 50 cm.

2.2 IR Measurements

The infrared camera, a FLIR SC3000, enables
the detection of small differences in tempera-
ture. Thus, it is most suitable to detect ther-
mal bridges and energy losses of buildings
by looking at temperature variations within
house roofs. The infrared camera has a detec-
tor size of 320 x 240 pixels. Its spectral re-
sponse is between 8 um and 9 pm. Up to 50
images per second can be taken. For the pre-
sent project the data acquisition rate was set to
10 Hz. This high sampling rate assures a high
overlap in the flight direction and hence min-
imizes the angular effect of emissivity. Dur-
ing the measurement the standard temperature
range of the IR camera was set to the range
from —20 °C to 80 °C. This temperature range
is resolved with 14 bit, which results in a tem-
perature resolution of 30 mK.
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The observations were carried out just be-
fore sunrise at an altitude of approximately
500 m on 28 April 2010 (GSD: 55 cm). Fifteen
flight strips were needed to cover the total pro-
ject area, nine of which cover the core test site.

The thermal camera was calibrated geomet-
rically in the laboratory with a 3D test field
(LunMaNN et al. 2011).

2.3 Airborne Laser Scanning

For the second research flight the Riegl LMS
Q560 laser scanner and the thermal cam-
era FLIR SC3000 were on the same aircraft.
The resulting ALS point density was about 23
points/m?. These data were rasterized at a spa-
tial resolution of 25 cm.

2.4 RGB Observations

Alpha Luftbild provided the RGB camera
Rollei AIC P45 with 39 megapixels and per-
formed the measurement flight on 25 March
2010. Due to their high spatial resolution, the
RGB data are used as a reference for the co-
registration of the other sensors, in particu-
lar for the hyperspectral and the thermal data.
Furthermore, the RGB data served as refer-
ence information for defining the training are-
as in the SVM-based classification. The flight
altitude of 580 m resulted in a GSD of about
8.5 cm. The forward and side laps were 68 %
and 80 %, respectively.

3 Pre-processing

The AISA+ hyperspectral system and the
Riegl airborne laser scanner LMS-Q560 were
connected to an IGI CCNS4 and an AERO-
control GNSS/INS. This system samples the
aircraft motion data (roll, pitch, yaw) with
256 Hz and the GNSS data with 10 Hz. The
GNSS data is post processed using SAPOS
correction data. For the ALS data an accuracy
of 0.2 m is achieved both in planimetry and
height. After the geometrical co-registration,
which will be explained in the subsequent sec-
tions, all data were transformed into UTM
32N, WGS 84.

3.1 Rollei AIC-P45

The 56 images of the core region were orient-
ed using 18 manhole covers as ground con-
trol points (GCPs). The GCPs were collected
using DGPS. More than 700 tie points were
used. Two to three points were picked manu-
ally for each image. The rest were picked au-
tomatically. A digital surface model (DSM)
derived from the ALS data (section 3.4) was
used to generate an orthophoto mosaic of the
whole project area (GSD: 10 cm). This mosaic,
which contained double mappings, was used
for precise georeferencing of the hyperspec-
tral data. We also generated a DSM of the core
area by semi-global matching (HIRSCHMULLER
2008) from the RGB images. The software
also delivers a true orthophoto (GSD: 8.5 cm),
which we used to generate the reference for
the SVM-based classification (section 4.4).

3.2 FLIR SC3000

The surface temperature range during the field
experiment was between 3.5 °C and 9.5 °C.
This agrees with in-situ measurements of
the collected temperature data. The thermal
camera was not connected to a GNSS/INS.
Therefore, the data were georeferenced by
aerotriangulation using ground control and tie
points. Because of the very high image over-
lap, only every fourth image was used. The re-
sult is a thermal image mosaic based on the
ALS data with a GSD of 50 cm (Fig. 1). Build-
ings are generally cooler (dark purple) than
the surrounding roads and non-built-up areas.
The white areas correspond to water. One also
can see temperature variations both between
and within individual buildings. For a more
in-depth analysis it is necessary to extract the
thermal features in detail.

The interpretation of thermal images must
be done carefully because the measured tem-
peratures depend on the emissivity € of the
roof materials, which are different in general.
Variations of € between 0.80—0.94 and more
are very common. This can result in a tem-
perature difference of several Kelvin, depend-
ing on the temperature level itself. Without
any further information about a building, it is
not possible to decide whether the temperature
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9.5°C

Fig.1: A 500 m x 500 m subset of the thermal
infrared orthorectified image section of Olden-
burg (GSD: 50 cm).

distribution is due to the variation of the emis-
sivity or arises from different surface temper-
atures. In section 4.1, a method to highlight
the temperature distribution within the indi-
vidual buildings is presented.

The spectral band used by the infrared
camera (8 um—9 um) is within an atmospher-
ic window (8 um—14 um). The influence of
the atmosphere on the signal is expected to
be rather low. Nevertheless, radiative transfer

calculations using MODTRAN (BErk et al.
2006) were carried out for a flight altitude of
500 m assuming a standard continental aero-
sol size distribution and a subarctic summer
atmospheric profile. It was found that neglect-
ing the atmospheric effect may lead to an er-
ror of 0.5 K. As this error is rather small and
because it is constant over the entire area it
was disregarded. It has to be noted that we are
mainly interested in the relative temperature
distribution, not in the absolute one.
Ground-based in-situ temperature meas-
urements on three different roof locations
agree with the temperatures derived from the
airborne sensor data within -0.7 K and -4.7 K.
Fig.2 shows the positions where the temper-
atures were compared; the measurements
are shown in Tab. 1. Note that no emissivity
was taken into account and the differences in
Tab. 1 are mostly due to emissivity of the ma-
terial and the minor atmospheric effect. The
measurements were carried out during the
overpass of the aircraft. In addition, continu-
ous air temperature data were recorded. These
data show the current air temperature (be-
tween 6 °C and 7 °C) from 3 am to 7 am Cen-
tral European Summer Time. The flight mis-
sion took place between about 6 am and 7 am.

3.3 AISA+

The processing of the hyperspectral data in-
cludes the boresight calibration, radiometric

Fig. 2: In-situ temperature measurement points, thermal image on the left side, RGB ortho image
on the right. The numbers indicate the measurement points.
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Tab. 1: Temperatures at the in-situ measure-
ment points (Fig. 2).

Position | Thermal | In-situ measure- | Delta
image (K) ment (K) (K)
1 2757 276.5 -0.8
2 278.7 282.1 3.4
3 279.4 284.1 -4.7
4 275.8 276.5 -0.7

correction, rectification, georeferencing, or-
thorectification, and mosaicking.

Due to partial cloudy weather conditions
it was decided to use the FODIS ratio (Ho-
MoLova et al. 2009) to represent the reflec-
tance rather than the reflectance derived from
the atmospheric correction model. The FODIS
ratio is the ratio of the down welling irradi-
ance, measured by the FODIS detector, which
is part of the AISA system and mounted on top
of the aircraft, and upwelling radiance, meas-
ured by the AISA sensor without any atmos-
pheric correction.

Under partial cloudiness the FODIS ratio
provides better results than the reflectance de-
rived from an atmospheric correction model,
which is based on a radiative transfer model.
This is due to the fact that atmospheric cor-
rection algorithms always assume clear skies
with no clouds. In the case of the AISA+ sys-
tem operated below clouds, the reflected ra-
diation as well as the downwelling radiation
drops rapidly. However, the FODIS ratio will
stay almost as constant when having the same
surface characteristics. Applying an atmo-
spheric correction model for the reflectance
calculation would result in unrealistically
small reflectance values.

In order to achieve a high geometric ac-
curacy, the hyperspectral sensor AISA was
calibrated using a new procedure developed
by the project group (PiEcHEL et al. 2011). It
turned out that the results from this calibration
cannot be used in the CaliGeo (SPECIM 2010)
tool, which is the default processing software
delivered with the sensor system. Despite of
the fact that the documentation describes the
possibility to use a factor for radial distortion,
it turned out that the software is not able to
calculate useful results when using this fac-
tor. The lens distortion error is about 4 pixels

for the outermost pixel of the sensor and still
remains in the georeferenced image. Fig.3
shows the pre-processed FODIS ratio CIR col-
our image generated from the AISA+ data.
Some dark and bright spots within the image
are caused by the cloudiness.

To verify the spectral measured data, in-
situ measurements with a field spectrometer
were carried out. The reflectance of different
roof tops was collected using a RAMSES VIS
SAM-8103 field spectrometer. Some example
reflectance curves and FODIS ratio curves
are shown in Fig. 4. It has to be noted that the
portable spectrometer measurements only had
non-calibrated white Teflon as a white refer-
ence, and that some of the measurements were
taken at a time different from the time the im-
agery was acquired. Taking into account the
diversities of the instrumentation of the meas-
uring setups and of the illumination, a com-
parison by visual examination indicates a suf-
ficiently good agreement between airborne
and reference spectra.

Direct georeferencing of the hyperspectral
data resulted in discrepancies between 0.0 m
and 2.0 m. At this time, the reasons for the
larger discrepancies are subject to specula-
tion. It is likely that residual boresight errors

Fig.3: A 500 m x 500 m subset of the pre-pro-
cessed CIR reflectance image generated from
three AISA+ strips. The spatial resolution is
50 cm. Note the sunny part of the lower strip
compared to the other strips.
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Fig.4: AISA FODIS ratios (dark) and portable
spectrometer reflectance (bright colours). The
names indicate the places where the field
spectrometer measurements took place.

or time drifts of the AISA+ system may cause
the disagreement. In order to compensate
these errors the hyperspectral data were co-
registered to the RGB ortho-mosaic and rec-
tified by a fourth-degree polynomial rubber-
sheeting using hundreds of manually picked
control points. The rectified image with a
GSD of 50 cm was used as a basis for generat-
ing an image corresponding to the normalised
difference vegetation index (NDVI), which
was one of the inputs for building classifica-
tion (section 4).

3.4 Airborne Laser Scanner LMS
Q560

For airborne laser scanning the positions and
orientations are based on GNSS/INS meas-
urements. The accuracy of the airborne laser
scanning data strongly depends on an accurate
processing of the GNSS/INS data. In order to
achieve the highest possible internal precision
of the laser data in position and height a num-
ber of requirements have to be considered:
a) Accurate determination of the calibration
values, i.e. installation offset parameters

and boresight angles between scanner and

IMU, if possible for each flight session.

b) Use of exact lever arms between GNSS an-
tenna and IMU as well as between IMU
and laser scanner.

c) Precise internal calibration of the instru-
ment.

The LMS Q560 allows for collecting full
waveform laser data. For the current project
only the first/last pulses are needed. The Riegl
software enables to extract the first/last pulse
data from the full waveform data (PETRIE
2011). To derive digital elevation models from
airborne laser data a number of processing
steps are necessary. At first morphological fil-
tering is carried out automatically using the
software package TerraScan (TERRASOLID
2010). The results were visually verified and a
locally optimized filter parameter is applied in
an iterative process to improve the results. As
final products a digital surface model (DSM)
and a digital terrain model (DTM) are gen-
erated as raster models with a grid width of
25 cm. Homogeneous regions are easier to be
classified than city centres. The accuracy also
depends on the laser point density, which is
about 23 points/m? in our test. From the DSM
and the DTM, products such as contour lines
and cross sections can be inferred.

In addition to the DSM and the DTM, the
original point cloud is also available. Fig.5
shows a shaded relief of the DSM.

Fig.5: A shaded relief of a 500 m x 500 m sub-
set of the DSM.
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4 Products and Analysis

After pre-processing, various products are de-
rived in the ways described in the subsequent
sections.

4.1 Temperature Distribution within
Buildings

In most cases, the relative differences of the
roof temperatures are sufficient to indicate
heat bridges or heat losses.

As we were only interested in the tempera-
ture distribution on buildings, we first detected
buildings by a simple decision tree algorithm.
For that purpose, we used the NDVI generated
from the hyperspectral data and a normalized
DSM (nDSM). The nDSM was calculated by
subtracting the DTM from the DSM (nDSM
= DSM — DTM). Pixels were considered to
correspond to building pixels if the NDVI is
smaller than 0.35 and if the nDSM height is
greater than 7 m. These thresholds were found
empirically. The non-building pixels corre-
spond to the black areas in Fig. 6.

Finally, we visualised the temperature dis-
tribution inside the areas detected as buildings
using a lookup table with a colour scale with
steps of 1 K (Fig. 6). Thus, the potential heat
loss can be visualized far more efficiently than
with a continuous presentation. One can see
that the temperature is not evenly distributed
over the buildings. This is caused by emissiv-
ity changes of different roof materials or by
heat bridges. Generally one speaks of a heat
bridge if the temperature differences within
an object of constant emissivity are more than
5 K. Fig. 6 shows the temperature distribution
within the selected area.

4.2 Solar Potential

To assess the solar potential it is important to
know the alignment of roofs within a city. In
order to estimate the potential of solar energy
in general the number of flat roofs and roofs
with a certain inclination and orientation as
well as the total area of such roofs has to be
known.

Fig.6: Building temperature distribution in a
500 m x 500 m subset of our test site.

B f1at roofs
slope 20° - 60°, o
orientation 135° - 225°

- not suitable

Fig.7: Potential for the use of solar panels of
Oldenburg, 500 m x 500 m subset.

If an offset of + 10 % from the optimal
alignment is acceptable then inclinations of
20° to 60° with an azimuth between 135° and
225° (DGS 2012) can be regarded as favour-
able. These data are valid for Germany and
vary slightly depending on the local climate.

The roof orientations were derived from
nDSM data. The computations were based on
the building mask derived as described in sec-
tion 4.1. The slopes are computed for all pixels
marked as “building” in this mask. The com-
putation is based on a local quadratic surface
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fitting of the DSM, taking into account 3 x 3
pixels. Again, a decision tree was used to de-
cide whether a pixel is in an area favourable
for solar panels. If the slope was less than 10°,
the pixel was regarded as being on a flat roof,
and therefore marked in blue. If the slope was
between 20° and 60° and the orientation of the
roof was between 135° and 225°, the pixel was
marked in green. This indicates that it is in an
area with favourable conditions for installing
solar panels. The pixels marked in red indicate
areas that are not suitable. The results of the
decision tree classification are presented in
Fig. 7. In the inner city only a small number of
houses, shown in green, is ideal for installing
solar panels. Additionally, buildings with flat
roofs, marked in blue, are suitable for panels
mounted on stilts.

4.3 Building Classification

The roof classification aims to separate differ-
ent roof surface materials. The classification
consists of two parts. One part is the binary
classification of the roofs. The other part is a
classification of the surface material of these
roofs.

The first step, the roof classification, is
based on the rasterized ALS data, the NDVI
calculated from the hyperspectral data and
the plane normals calculated from the origi-
nal point cloud. The plane normal is calculated
using the robust least median of squares tech-
nique for plane fitting using all ALS points
within 1 x 1 m? cells. These raster cells are
resampled to 50 cm to match the other data.

Fig.8: From left to right: raw segmentation
(yellow = segment boundary), initial classifica-
tion (roofs = red), classification after rule set
and merging; the background is the nDSM im-
age.

The nDSM and three raster images rep-
resenting the components of the normals
are used for a segmentation using eCogni-
tion’s multiresolution segmentation (Baatz &
ScHAPE 2000). The parameters of the segmen-
tation algorithm were set to achieve an over-
segmentation in order to make sure that all the
building boundaries are represented by seg-
ment boundaries. A larger segment size (high-
er scale parameter in eCognition) results in a
higher risk to miss a building boundary. The
left image of Fig. 8 shows the initial segmen-
tation.

Then, the roof segments were classified
via thresholds, using the nDSM height (high-
er than 2.5 m) and NDVI (less than 0.42) as
shown in the centre part of Fig. 8. The thresh-
old values used here are different from the
ones used before because we are now working
on the basis of segments and not on the basis
of pixels.

The classification was followed by some
refinements using a set of rules for the im-
age segments, e.g. to delete small objects and
remove objects with a shape not typical for
buildings, e.g. very thin objects with a high
percentage of borders to non-roof objects. The
resulting building mask is shown in the right
part of Fig. 8.

For accuracy assessment, all roofs in an
area of 900 m x 300 m were digitized manual-
ly from the RGB true orthophoto generated on
the basis of a DSM from image matching (sec-
tion 3.1). The total roof area used for a man-

Tab.2: Classification accuracy of the binary
roof classification.

Ground truth Background Roof

classification (*0) (%)

Background 96.29 8.03
Roof 3.71 91.97

Tab. 3: Producer’s and user’s accuracy of the
binary roof classification.

Ground truth Producer's User's

classification acc(})l/z;\ y acc(tl/ga y

Background 96.29 97.63
Roof 91.97 87.83
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Fig.9: Classified roofs (red) and digitized
building outlines (yellow).

ual accuracy assessment is about 74,000 m?.
About 92 % of all roof pixels were found cor-
rectly (for details, see Tabs. 2 and 3). The over-
all accuracy is 95.3 % and the kappa coeffi-
cient is 0.87. Errors result from some complete-
ly missed roofs, e.g. low garage-like buildings
with heights near the nDSM threshold (2.5 m)
and some roofs that are partly hidden by trees.
Fig. 9 shows an example area with typical er-
rors. It can be seen that some small buildings
and building parts are missing. Errors in the
reference also contribute to the overall error
budget, but these errors are much lower than
the actual classification errors.

4.4 Roof Material Classification

For the roof material classification a pixel-
based and a segmentation-based approach
were combined.

Reference data were generated by visual
classification based on the true orthophoto
mosaic, the manually digitized roof outlines
used as a reference for the evaluation in sec-

Tab. 4: Training area size and subset size.

tion 4.3 (yellow lines in Fig. 9) and terrestrial
photographs of roofs. Only roofs with mostly
homogenous material were considered to be
suitable as a reference. Thus, we selected as
a reference only roofs consisting of only one
material and a few (< 15 % in area) disturb-
ing objects like dormers and chimneys as a
reference. Within each reference roof, 4 to 20
pixels were manually selected as training pix-
els so that they completely correspond to the
main roof material, to ensure that training pix-
els represent the correct material.

To reduce the training data and speed up
the computation, only a subset of pixels was
randomly selected as the final training pixels.
Tab. 4 shows the amount of training data se-
lected and used for classification.

In the literature SVM-based classification
proved to be very suitable for classifying hy-
perspectral data (MELGANI & Bruzzong 2004,
Praza et al. 2009, WaskE et al. 2009, BRAUN
et al. 2012). The reduced training subset was,
thus, used to train a SVM for classification,
using the software by Rage et al. (2009). A ra-
dial basis function (RBF) kernel with the pa-
rameter g = 1 was used. Both g and soft mar-
gin parameter C (= 100) were determined by a
3 fold cross validation. The SVM is applied to
classify each pixel independently.

To define a single material per roof, a ma-
jority voting is used to transfer the pixel-based
classification results to the roof objects. That
is, the material of each roof is determined as
the material of the majority of all pixels inside
that roof. The parts of Fig. 10 show an example
with the results from the SVM classification
and the final majority voting.

The confusion matrix in Tab.5 shows the
outcome of the classification and Tab. 6 shows
the user’s and producer’s accuracies. The re-

Material Manually selected training pixels Final training subset
Red roofing tiles 568 200
Black roofing tiles 648 200
Brown roofing tiles 18 18
Metal 62 50
Tar paper 271 150
White colour 31 31
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[ black roofing tiles  [Jll brown roofing tiles

| metal

- red roofing tiles - white color

roofing tar

Fig. 10: Roof material classification. Left: RGB
image (from hyperspectral data), centre: SVM
classification with background masked in grey,
right: results of material classification after ma-
jority voting.

sults for all materials except brown roofing
tiles are very promising. The poor results for
brown roofing tiles have to be analysed with
care because of the very low sample size and
seem to be caused by a high spectral overlap
with the black and red roofing tiles.

The SVM classification works well when
using a sufficient number of training data. The
training data need to cover all possible charac-
teristics of a roof material. In this way, one can
be certain to get the best support vectors for
defining the class boundaries. Additionally, it
can be confirmed that the SVM classification
works quite well with noisy data. The mean
signal-to-noise ratio of the hyperspectral data
was only about 100, averaged over all spectral
channels and all spatial pixels.

Tab. 6: Producer’s and user’s accuracies of the
roof material classification.

Producer’s User’s
accuracy accuracy
(“o) (%)
Red roofing tiles 97.1 98.6
Black roofing tiles 97.8 93.5
Brown roofing tiles 50.0 100.0
Roofing tar 89.3 96.2
White colour 100.0 100.0
Metal 100.0 100.0

5 Conclusions and Outlook

From different kinds of remote sensing data,
products such as temperature distributions of
roof tops and maps of the suitability of roofs
for installing solar panels were derived by first
detecting buildings based on a simple decision
tree and further analysis steps. From hyper-
spectral data the roof material characteristics
are inferred using a SVM-based classification.
The fusion of different datasets makes it pos-
sible to obtain more information by synergic
use of the derived products. It is important to
note that a precise georeference of all data is
the basis for reliable results.

Regarding the roof and material classifica-
tion, additional refinements could be done us-
ing the slope per roof plane as an additional
feature. This may help because roofing tiles
are only used on sloped roofs.

Tab. 5: Confusion matrix of the roof material classification. The numbers correspond to the num-

ber of roof polygons, not to pixels.

Ground truth Red Black Brown Tar White Metal Total
classification

Red roofing tiles 67 1 0 0 0 0 68
Black roofing tiles 2 87 1 3 0 0 93
Brown roofing tiles 0 0 1 0 0 0 1
Roofing tar 0 1 0 25 0 0 26
White colour 0 0 0 0 1 0 1
Metal 0 0 0 0 0 5 5
Total 69 89 2 28 1 5 194
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Some georeferencing errors remaining in
the hyperspectral data lead to misclassifica-
tions at the building boundaries. In addition,
some misclassifications are induced by differ-
ent solar illumination angles depending on the
roof alignment and on the recording time. The
reduction of these errors is a part of the ongo-
ing research.

A further goal is to combine the complete
roof mask with the SVM classification to ob-
tain the material per roof for the whole area.
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