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Summary: Many vision applications rely on local

features for image analysis, notably in the areas of ob-

ject recognition, image registration and camera cali-

bration. One important example in photogrammetry

are fully automatic algorithms for relative image ori-

entation. Such applications rely on a matching algo-

rithm to extract a sufficient number of correct feature

correspondences at acceptable outlier rates, which is

most often based on the similarity of feature descrip-

tions. When the number of detected features is low,

it is advisable to use multiple feature detectors with

complementary properties. When feature similarity

is not sufficient for matching, spatial feature relation-

ships provide valuable information. In this work, a

highly generic matching algorithm is proposed which

is based on a trainable Markov random field (MRF).

It is able to incorporate almost arbitrary combinations

of features, similarity measures and pairwise spatial

relationships, and has a clear statistical interpretation.

A major novelty is its ability to compensate for weak-

nesses in one information cue by implicitely exploit-

ing the strengths of others.

Zusammenfassung: Ein trainierbares Markoff-
Zufallsfeld für die Zuordnung lokaler Bildmerkmale
unter Berücksichtigung ihrer räumlichen Beziehun-
gen. Viele Anwendungen im Bereich des maschi-

nellen Sehens nutzen lokale Merkmale für die Bild-

analyse, insbesondere in den Bereichen Objekter-

kennung, Bildregistrierung und Kamerakalibrierung.

Ein wichtiges Beispiel in der Photogrammetrie sind

vollautomatische Algorithmen für die relative Ka-

meraorientierung. Dazu muss aus den Bildmerkma-

len verschiedener Bilder anhand eines Matchingal-

gorithmus eine ausreichende Anzahl von Zuordnun-

gen mit vertretbarem Ausreißeranteil gewonnen wer-

den. Die Suche nach Zuordnungen basiert dabei meist

auf der Ähnlichkeit von Merkmalsbeschreibungen.

Wenn die Anzahl der extrahierten Merkmale gering

ist, macht es Sinn, mehrere möglichst komplementäre

Merkmalsdetektoren gleichzeitig einzusetzen. Ist die

Ähnlichkeit von Bildmerkmalen kein ausreichendes

Kriterium für die Zuordnung, liefern räumliche Be-

ziehungen von Merkmalen zusätzlich wertvolle In-

formation. In dieser Arbeit stellen wir ein allge-

meines Matchingverfahren vor, das auf einem trai-

nierbaren Markoff-Zufallsfeld basiert. Es ermöglicht

die gleichzeitige Berücksichtigung nahezu beliebiger

Arten von Bildmerkmalen, Ähnlichkeitsmaßen und

paarweisen räumlichen Beziehungen, und lässt sich

statistisch klar interpretieren. Eine Besonderheit die-

ses Verfahrens ist seine Eigenschaft, Schwachpunkte

einer Informationsquelle durch die Stärken einer an-

deren implizit auszugleichen.

1 Introduction

Many vision applications use local image fea-

tures as a sparse representation of image con-

tent. In photogrammetry, local image fea-

tures have been used successfully to build au-

tomatic algorithms for relative image orienta-

tion (POLLEFEYS et al. 2000, MAYER 2005,

LÄBE & FÖRSTNER 2006, SNAVELY et al.

2006). In general, bundle adjustment benefits

from feature matching for automatic extraction

of tie points, if outliers are handled in a reliable

way.
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Fig. 1: Set of complementary image features
covering an indoor scene. The plot includes
junctions (FÖRSTNER et al. 2009) represented
by crosses, blobs (LOWE 2004) represented by
circles and straight line segments (FÖRSTNER
1994).

Typical image features used as tie points in-

clude corners, junctions, dark and bright blobs

or line segments Fig. 1. Selecting an appropri-

ate detector is crucial, because the importance

of properties like repeatability, localization ac-

curacy, coverage or computational complexity

depends on the task at hand. If the amount of

detected features is too small, it becomes nec-

essary to combine multiple detectors. In such a

case, complementarity of features is an impor-

tant aspect (DICKSCHEID et al. 2010).

An image feature defines a local image

patch with a particular location, orientation,

shape and size. In many applications, feature

correspondences can be reliably determined

by analysing the similarity of those patches

(appearance-based matching, see section 2).

Feature detection and matching have to reflect

the expected range of image poses. We assume

the general case of arbitrary mutual rotation and

possibly large scale differences, referring to all

close range applications or cases where no prior

knowledge on the exterior orientation is avail-

able.

Feature appearance alone is not sufficient for

reliable matching if many features have simi-

lar appearance, or if the descriptors have poor

distinctiveness. In such cases the use of spatial

feature relationships is known to improve the

matching results. For example, consider the il-

lustration in Fig. 2. Here, the blob feature patch

p1 in the left image has very similar appearance

to p′
1 in the right image if one allows for arbi-

trary rotations, but this is obviously not the right

candidate. However, as p1 is left of p2 in I, but

I

p1
p2

I′

p′
2

p′
1

Fig. 2: Feature similarity and spatial appearance:
p′
1 in image I′ has high similarity to p1 in image

I, although it is not the right candidate. Incon-
sistency of the spatial relationship “is left of” with
(p2,p

′
2) indicates this.

p′
1 is right of p′

2 in I ′, the spatial alignment

gives us evidence about a possible misassign-

ment.

A number of sophisticated methods for in-

cluding spatial relationships into the matching

process have been proposed, but most of them

are tailored to a specific type of spatial rela-

tionship, feature type, or image data. They

are therefore difficult to adapt to new matching

problems.

In this work, a highly generic matching algo-

rithm is proposed which is based on a trainable

Markov random field (MRF). It is able to in-

corporate almost arbitrary combinations of fea-

tures, feature descriptions, similarity measures

and pairwise spatial relationships. The solution

has a clear interpretation as the maximum a pos-

teriori estimate of a binary classification prob-

lem, which consists in choosing a good sub-

set from a coarse initial preselection of puta-

tive matches. A major novelty of this algorithm

is its ability to compensate for weaknesses in

one information cue by implicitly exploiting the

strength of others.

Notation

We assume that we are given two images I and

I ′. Feature detection and description gives us

two sets P and P ′ of features. Each feature

pi ∈ P is itself a set {(xi, yi), σi, αi,di, λi},

where (xi, yi) is its location in the image given

in pixels, usually referring to the centre of the

local patch, σi is the scale given in pixels, which

we assume to be proportional to the (mean) di-

ameter of the local patch, αi is its dominant ori-

entation in radians, di is the descriptor for the

local patch, and λi denotes the type of detec-

tor used. The features also carry uncertainty in-

formation for their elements. We will discuss
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this aspect in section 3.2. A feature correspon-

dence is a pair vn = (pi,p
′
j) where pi ∈ P

and p′
j ∈ P ′. Dissimilarity is one property of

a correspondence, expressed by a distance mea-

sure sn = d(di,d
′
j) on the descriptors.

2 Appearance-Based Feature
Matching

In appearance-based feature matching, one usu-

ally assumes that two features are likely to cor-

respond if (1) the similarity of their patches

is high and (2) the similarity to other patches

is significantly smaller, which directly corre-

sponds to the criteria “similarity” and “exclu-

sion” that ULLMAN (1979) already identified

for a good visual mapping. To measure similar-

ity, robust and distinctive descriptors are com-

puted from the local patches. Corresponding

image features can then be found by nearest

neighbour search in the space of these descrip-

tors. A de-facto standard, often denoted as best
matching, works as follows:

1. Determine for each descriptor in one view

its two nearest neighbours belonging to the

other image.

2. Select the nearest neighbour as a correspon-

dence only if the ratio between the two dis-

tances is significantly different from 1.

A more general formulation of this algorithm

leads to the BESTMATCH-K algorithm: Instead

of evaluating the ratio of distances to the best

and second best neighbour (BESTMATCH-2),

one may consider the distances to the (k−1)-th
and k-th best neighbours. In the special case of

k = 1, the nearest neighbour is always selected.

3 Spatial Relationships for Feature
Matching

3.1 Related Work

In their early work, BARNARD & THOMPSON

(1980) use an iterative relaxation labelling tech-

nique to select matches with locally similar

image disparities. FÖRSTNER (1986) accepts

only matches that are consistent under a global

affine transformation, assuming that the scene

can be reasonably approximated by a tilted

plane. In the relational matching approach

of (SHAPIRO & HARALICK 1987), an optimal

matching is found by minimizing the number

of arbitrary spatial relationships that are not

preserved by a final assignment. AGUILAR et

al. (2009) proposed an iterative algorithm that

constructs a consistent set of matches in terms

of spatial nearest neighbourhood relationships.

BAY et al. (2005) match straight line segments

by first selecting the three most similar candi-

dates per feature, and then iteratively removing

matches that cause the highest number of sid-

edness violations (section 3.3). A remarkable

feature of their algorithm is the boosting step,

where previously discarded candidates are ex-

plicitly reintroduced in a post processing man-

ner in case they become spatially consistent af-

ter the initial filtering. Most of these methods

treat spatial consistency as a hard constraint,

and tend to eliminate a significant amount of in-

liers.

To exploit appearance and spatial layout si-

multaneously, DELPONTE et al. (2006) exploit

the properties of a singular value decomposi-
tion (SVD) to amplify the values of favourable

matches in a proximity matrix G ∈ R
|P|×|P′|,

which captures the proximity and similarity

of all pairs of features. TELL & CARLSSON

(2002) proposed an interesting feature descrip-

tor that itself captures aspects of spatial layout.

Some recent methods cast spatial inconsistency

and feature dissimilarity into a combined en-

ergy function to find the best matching as the

one with minimum energy (SCHELLEWALD &

SCHNÖRR 2005, CHOI & KWEON 2009, TOR-

RESANI et al. 2008).

These algorithms provide no straightforward

way to bring larger sets of relationships and fea-

ture dissimilarity measures with possibly sig-

nificantly different strengths into such a joint

formulation. Furthermore, the relative weight-

ing of appearance and spatial consistency is not

intuitive in most of these works.

3.2 Homogeneous Point and Line
Representations

To derive spatial relationships for different

types of features, we assume that we can al-

ways construct the normalized 2D homoge-

neous point xi = [xi, yi, 1]
T

with 3 × 3
covariance matrix Σxx representing the posi-

tion of an image feature pi. For line seg-

ments, we will use the midpoint for construct-
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Fig. 3: Computation of the pairwise orienta-
tion difference tαnm = min(|αnm − α′

nm|, 2π −
|αnm−α′

nm|) for two matches vn = (pi,p
′
j) and

vm = (pk,p
′
l).

ing xi, which usually has a strong localiza-

tion error along the line, and a small error per-

pendicular to it. In a similar manner, we as-

sume that the uncertain 2D homogeneous line

li = ± [cosαi, sinαi,−d]
T

with covariance

matrix Σll can be constructed from each feature

pi. For point-like features, we use the centroid

representation of straight line segments (MEI-

DOW et al. 2009, 3.1.2), where the centroid is

the image location of the original point feature,

and the direction is identified with the dominant

gradient orientation within the local patch, as

stored in the SIFT descriptor. As pointed out by

LOWE (2004, section 5), we must expect this

direction to have a standard deviation of about

three degrees. Using these conversions, we de-

fine explicit operators x(pi) and l(pi), which

return the uncertain homogeneous 2D point or

line representation for a feature pi.

3.3 Some Uncertain Spatial
Relationships

Here we give a short description of three dif-

ferent kinds of relationships, leading to statisti-

cally motivated soft constraints for the match-

ing.

Consistency of angles

Consider the angle between two oriented fea-

tures Fig. 3. We assume that the difference be-

tween these angles is rather small for valid pairs

of correspondences, so that large differences in-

dicate outliers. For two putative matches vn =
(pi,p

′
j) and vm = (pk,p

′
l), we compute the

enclosing angles

αnm = α(pk)− α(pi) mod 2π (1)

α′
nm = α(p′

l)− α(p′
j) mod 2π . (2)

The difference tαnm ∈ (0, π) of the angles

spanned in the two images is then given by

tαnm = min(|αnm−α′
nm|, 2π−|αnm−α′

nm|) .
(3)

In case that the uncertainty of feature orienta-

tions varies significantly, the distances should

additionally be normalized based on their stan-

dard deviations.

Consistency of distance

If two features are located close to each other in

one view, we also expect their correspondences

in another view to be close. This simple reason-

ing based on proximity was already suggested

by ULLMAN (1979). We measure the distance

between two feature locations, normalize it by

the length of the image diagonal, and compare it

to the same normalized distance of the two cor-

responding features in the second image, lead-

ing to the inconsistency measure

tdnm = td(vn, vm) = td(pi,p
′
j ,pk,p

′
l) (4)

=
|x(pi)− x(pk)|√
(Nx)2 + (Ny)2

−
|x(p′

j)− x(p′
l)|√

(N ′
x)2 + (N ′

y)2
,

using the vertical and horizontal dimensions

Nx, Ny of an image I in pixels, with td ∈
(−1, 1). Again, an additional benefit can be

gained by replacing the Euclidean distances

with the proper test statistic, i.e. by normalizing

the distances using their standard deviations.

Consistency of pairwise sidedness

Consider again the example in Fig. 2. As p1

is left of p2, while p′
1 is right of p′

2, the spa-

tial relationship “is left of” is inconsistent. This

relationship is often denoted as sidedness or or-
dering constraint. In most existing algorithms,

it is modelled as a hard constraint, based on a

tolerance of a few pixels. We propose to imple-

ment a statistical test instead, which takes the

orientation accuracy into account, leading to a

third, binary-valued inconsistency measure

tsnm ∈ {0, 1} . (5)

For example, in Fig. 4, we would obtain ts12 = 0
indicating that the sidedness relations of v1 and

v2 are identical in both images. Accordingly,
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the inconsistency of v1 and v3 would produce

ts13 = 1. How to determine the sidedness is

explained in more detail in DICKSCHEID (2010,

section 4.3.5).

4 A Trainable Markov Random
Field for Feature Matching

4.1 Feature Matching as a Labelling
Problem

Our goal is to find the most probable matching

under a number of reasonable assumptions. Our

method is based on the assumption that it is easy

to obtain an initial set V = {v1, · · · , vN} of

putative feature correspondences that contains

most of the true positives. This could be the set

V0 = {(pi,p
′
j) | pi ∈ P,p′

j ∈ P ′, λi = λ′
j}
(6)

of all correspondences between features of the

same type. In practice however, a significantly

smaller set V ⊂ V0 can be used which still

contains the majority of true correspondences.

It has been shown empirically in DICKSCHEID

(2010, section 2.4) that an effective way to do

so is to use the BESTMATCH-K algorithm, with

the matching rank k varying for each type of

detector and descriptor.

Feature matching can then be interpreted as

the selection of a good subset of V by assigning

a label l from the set L = {0, 1} to each ele-

ment in V . Then each element vn of V takes the

role of a binary random variable defined over

the set L. If ln = 1, we say that “match n is se-

lected”, otherwise “match n is discarded”. For

simplicity we use the notation vn for denoting

the particular event vn = ln. A labelling

l = f(V) = {v1, · · · , vN} (7)

of all variables is a configuration. The principle

of interpreting feature matching as a labelling

problem is illustrated by an artificial example

in Fig. 4.

4.2 Statistical Model with Pairwise
Spatial Relationships

Appearance-based matching with descriptors,

as described in section 2, computes for each

putative match vn ∈ V the dissimilarity

v1
�

v2
�

v3
E

Fig. 4: Two artificial images of a scene with a
cube, overlaid by three features represented by
black ellipses and arrows. The features may
lead to a set of three putative matches V =
{v1, v2, v3}. The task is then to select an optimal
subset of V by labelling each putative match. In
this example, the labelling f(V) = {v1 = 1, v2 =
1, v3 = 0} is the desired solution, eliminating the
spatially inconsistent match v3.

sn ∈ R, which we collect in the vector s =
[s1, · · · , sN ]. It then treats the decision about

a match vn without taking any spatial relations

into account. In the following, we use the in-

dex set N = {1, · · · , N} over V and consider

pairs of correspondences defined by index pairs

C2 ⊆ N ×N .

At this point, and without loss of general-

ity, we will ignore that features and descriptors

might be of different type. We will come back

to this aspect again in section 5.

Considering the set T 2 = {tnm|(n,m) ∈
C2} of pairwise spatial inconsistencies reveals

statistical dependencies between the variables.

Note that |tnm| = G is the number of differ-

ent spatial relationships used. For example, the

inconsistency ts13 referring to “sidedness” be-

tween v1 and v3 is high for the two putative

correspondences v1 and v3 in Fig. 4. We must

therefore expect that one of them is an outlier,

even though the descriptor dissimilarities s1, s2
and s3 might be small. In other words, after

observing the spatial inconsistency, it would be

naive to make independent decisions for each

putative match.

In a statistical treatment, we would say that

the random variable v1 is now dependent on

v2. It also depends on its directly related ob-

servations, s1 and ts12. This can be expressed

by an undirected graphical model as shown by

the factor graph in Fig. 5. Each white node of

this graph represents one putative feature cor-

respondence, while shaded nodes represent ob-
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v1v2

v3

s1s2

s3

tg12

tg23 tg13

G

G G

Fig. 5: Graph representing the information used
for feature matching corresponding to the illustra-
tion in Fig. 4. Both descriptor dissimilarities sn
and inconsistencies tnm of pairwise spatial rela-
tionships are taken into account. We follow the
notation in (2006): Observed values are
represented by shaded nodes, maximum cliques
(fully connected subgraphs) with more than two
nodes are represented by a common black rect-
angle (factor graphs), and plates are used to illus-
trate multiple independent spatial inconsistency
measures tgnm, with G being the number of dif-
ferent types of spatial relationships. The factor
node in the centre expresses the joint prior prob-
ability for all vn.

served dissimilarity measures. Here, values sn
refer to descriptor dissimilarities, which relate

to one correspondence, while values tnm re-

fer to spatial inconsistency measures, defined

over pairs of correspondences. Statistical de-

pendencies between entities are represented by

the edges of the graph. The black squares de-

note maximum cliques - fully connected sub-

graphs where all elements are conditionally de-

pendent on each other.

In general, we make the following condi-

tional independence assumptions:

1. All observations are mutually conditionally

independent, given the correspondences.

2. The label of a putative match vn does not

depend on observations sm or tm,o with

m, o �= n.

This model nicely supports our practical setup,

as its statistical dependencies can be derived

from training data.

We propose to solve the labelling problem by

computing the maximum a posteriori estimate

(MAP) of the variables in this model, given the

observed data. Referring to the simple example

in Fig. 4, this can be done by maximizing the

probability

p(v1, v2, v3, s1, s2, s3, t12, t13, t23) (8)

= P (v1, v2, v3)

[
3∏

n=1

p(sn|vn)
]

· p(t23|v2,v3)p(t13|v1,v3)p(t12|v1,v2)

= P (v1, v2, v3)

[
3∏

n=1

p(sn|vn)
]

·
G∏

g=1

p(tg12|v1,v2)p(t
g
13|v1,v3)p(t

g
23|v2,v3)

The first simplification is obtained by ex-

ploiting our conditional independence assump-

tions, using the fact that p(a|b, c) = p(a|b) in

case that a is conditionally independent of c.

The expansion of tnm in (8) also uses the as-

sumption that all observations are mutually in-

dependent.

For a general problem with |V| = N putative

matches, we will obtain a graph having N bi-

nary cliques (vn, sn) and G|C2| ternary cliques

(vn, vm, tgnm). The general joint probability of

the variables reads

p(l, s, T2) (9)

= p(v1, . . . ,vN, s1, . . . ,sN, t12, . . . ,t(N−1)N )

= P (l)

[ ∏
n∈N

p(sn|vn)
] ∏

(n,m)
∈C2

p(tnm|vn, vm).

The factor P (l) in (9) imposes a practical

problem: It depends directly on the number

of putative matches, which is unknown in ad-

vance. To make the formulation tractable for

practical problems, we therefore make the fol-

lowing assumption for the joint probability:

P (l) = P (v1, . . ., vN )
.
=

1

Z ′
∏

(n,m)
∈C2

P (vn, vm)

(10)

It leads to a significant simplification of the

model, which now reads

 
 
 BBISHOP
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p(l, s, T2) =
1

Z ′

[ ∏
n∈N

p(sn|vn)
]

(11)

·
∏

(n,m)
∈C2

p(tnm|vn, vm)P (vn, vm) .

As we will see later, we do not require specific

knowledge about the partition function Z ′, be-

cause it does not affect the final solution.

By going from (9) to (11), we make an
explicit model assumption. This leads to a

restricted stochastic model which still corre-

sponds to the original graphical model. The

model assumption effectively drops the higher

order cliques between putative matches vn
(i.e. the clique (v1, v2, v3) in Fig. 5) in favour

of a change of the pairwise potential functions

(last factor of (11)).

4.3 Global Minimization Problem

By maximizing the density function (11) we

realize a MAP estimate of the involved vari-

ables. This is equivalent to minimizing the en-

ergy function

E(l, s, T2) = −
∑
n∈N

log p(sn|vn) (12)

−
∑
(n,m)
∈C2

[
logP (vn, vm) + log p(tnm|vn, vm)

]

where we omit the term 1/Z ′ of the partition

function, as it does not affect the solution. It

is essentially a sum over functions of unary

and binary cliques over V , given the graphical

model, and can therefore be directly interpreted

as a Markov Random Field. Defining unary po-

tentials θ1
n;vn

and binary potentials θ2
nm;vnvm

as

θ1
n;vn

= − log p(sn|vn) (13)

θ2
nm;vnvm

= − log p(vn, vm) (14)

− log p(tnm|vn, vm) ,

λn = Blob̂P (sn | vn,λn)

0.00

0.04

0.08

0.12

0.16

0.20

vn = 0
vn = 1

p̂ (sn | vn,λn)

0

7

14

20

27

34

− log[ε+(1−ε)p̂ (sn | vn,λn)]

−4

−2

0

2

4

7

0.000 0.025 0.050 0.075 0.100

sn

Fig. 6: Top: Normalized histograms of dissimi-
larities sn for good (vn = 1) and bad (vn = 0)
blob feature correspondences, computed by nor-
malized Euclidean distances of SIFT descriptors.
Middle: Approximation of the histograms using
a Beta distribution, which is used as a paramet-
ric approximation p̂ (sn|vn,λn) of the likelihood
function. Bottom: Bounded negative log likeli-
hood derived from p̂ (sn|vn,λn), which we use
for the energy potentials. The observations re-
fer to the training dataset (section 6.1). Note
that the theoretical range of the observations is
(0, 1), and that the Beta distribution is defined
over the range [0, 1]. Here we only plot the rel-
evant range; the densities are practically zero
above sn 
 0.13. The bound ε within the log-
arithm theoretically prevents the log likelihoods
from reaching a limiting value for very rare values
sn > 0.13.

we can use the notation

E(f(V), s, T2;θ) (15)

=
∑
n∈N

θ1
n;vn

+
∑
(n,m)
∈C2

θ2
nm;vnvm ,

which is very common in MRF theory. Note

that we used l = f(V) according to (7). To

find a good solution for the matching problem,

given an initial set V of putative matches and

observations D = {s, T2}, we finally search

for a configuration with minimum energy (12),



276 Photogrammetrie • Fernerkundung • Geoinformation 4/2013

so we look for an optimal solution

f∗(V) = argmin
f(V)

E(f(V), s, T2;θ) . (16)

We actually apply the LP-S linear programming

relaxation going back to SCHLESINGER (1976)

to solve (16), which gives a very good approx-

imation of the global optimum (KUMAR et al.

2009). We use the commercial Mosek pack-

age (http://www.mosek.com) for solving the re-

laxed minimization problem, which provides an

efficient implementation of the interior point al-

gorithm for linear programs with up to thou-

sands of variables. The practical complexity is

polynomial with very good convergence prop-

erties. For sets V of putative correspondences

with N = |V| < 500, we usually solve

the matching problem in a few seconds on a

2.4 GHz CPU. For sparsely textured scenes, N
is typically smaller than 200, leading to negligi-

ble computation times for obtaining the optimal

solution.

5 Learning the Potential Functions

Ground truth labellings for the data are obtained

based on homographies (MIKOLAJCZYK et

al. 2005), manually, or using the surface-

based automatic annotation setup described in

DICKSCHEID (2010, section 5). The latter

one uses 3D point clouds from Laser scans as

ground truth for the surfaces, which requires

registration of the point clouds to the camera

coordinate systems. The methods are indicated

in the first row of Tab. 1.

For minimizing (15) one basically has to col-

lect the potentials (13) and (14) for each node

of the corresponding graph and feed them into

the software. They are composed of the like-

lihoods of observed values, given the unknown

labels and the prior probability P (vn, vm). We

will now derive some trainable parametric mod-

els for these potentials using the setup of de-

tectors and descriptors described in section 6.1

and the spatial relationships introduced in sec-

tion 3.3. We used 24 image pairs from indoor

and outdoor architectural scenes for the train-

ing (section 6.2), where ground truth labellings

of feature correspondences are computed using

the setup described in DICKSCHEID (2010, sec-

tion 5). For model fitting from ground truth data

̂P (vn, vm | λn,λm)

(0, 0) (0, 1) (1, 0) (1, 1)

0

0.5

1.0

λm

Segment Affine Blob Junction

Fig. 7: Empirical fraction of pairs of putative
matches, where the first match refers to straight
line segments (λn = Segment) for different la-
bellings ln, lm as observed on the training data.
We obtain four groups, referring to the events
(vn = 0, vm = 0), (vn = 1, vm = 0), (vn =
0, vm = 1) and (vn = 1, vm = 1). For example,
if we select two matched line segments and two
matched junction features from the set of putative
matches, chances are around 70 percent that the
line segment match is an outlier (label 0) accord-
ing to the group of bars shown on the right.

we used the Statistics module of the Boost C++

Library’s Math Toolkit (http://www.boost.org).

We also tried independent datasets of the same

image category and arrived at the same mod-

els with slightly different parameters. We did

not investigate the dependence of the models

on different image categories, so the potential

functions that we present here should be con-

sidered as one particular realization of the al-

gorithm with a focus on man-made scenes. We

will evaluate this realization in section 6.

Dependency on the feature type

Our main motivation is to combine complemen-

tary feature types, descriptor dissimilarity mea-

sures with significantly different properties, and

a whole range of spatial relationships simulta-

neously. Then the likelihoods depend formally

on the type of feature λF , the type of descriptor

λD, and the type of dissimilarity measure λM .

We collect these for each putative match vn
in a tuple λn = (λF

n , λ
D
n , λM

n ) . The like-

lihoods defining the unary and binary poten-

tials therefore actually read pn(sn|vn,λn) and

p(tnm|vn, vm,λn,λm). The prior becomes

P (vn, vm,λn,λm) accordingly.

5.1 Unary Potentials

Take a look at the normalized histogram on top

of Fig. 6. It shows the dissimilarities of good
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Tab. 1: Properties of the datasets used for our experiments.

Dataset CLASS BOAT GRAFFITI BLANK-12 BLANK-22 DRAGON

Ground Truth manual homography homography manual manual surface-based

Texture sparse strong strong very sparse very sparse sparse

3D structure multiplanar quasiplanar planar multiplanar multiplanar complex

Distortion affine rotation+scale strong affine affine affine affine

Overlap ∼ 60% ∼ 100% ∼ 100% ∼ 90% ∼ 90% ∼ 100%
# Images 8 6 6 12 22 6

Resolution 752× 500 213× 170 213× 170 1203× 800 752× 500 800× 600

Example

(vn = 1) and bad (vn = 0) blob feature corre-

spondences, referring to normalized Euclidean

distances of SIFT descriptors.

Due to the normalization, the histogram

shapes can be reasonably approximated by a

Beta distribution Beta(sn|a, b). We estimate its

two parameters from training data (section 6.2)

separately for the inlier and outlier distribu-

tions to obtain estimates for the class condi-

tional likelihood functions p̂ (sn|vn = 0,λn)
and p̂ (sn|vn = 1,λn), as shown in the middle

of Fig. 6 for blob features.

The negative log likelihood

− log p̂ (sn|vn,λn) that we actually use

in the energy function (12) is shown in the

bottom plot of Fig. 6. Note that we intro-

duce a bound on the log likelihood by using

− log[ε + (1 − ε)p̂ (sn|vn,λn)] with a small

threshold ε = 0.001. In practice, the bound

only affects values sn very close to the limits

of the domain [0, 1], which occur very rarely in

practice.

We also model the dissimilarity likelihoods

for other features by Beta distributions, as de-

scribed in (DICKSCHEID 2010, section 4.3.3).

5.2 Binary Potentials

Priors

For each feature in one image, we preselect

the k most similar features in the other image

as its putative matches, where the parameter

k differs between feature types λ. For exam-

ple, we select more putative matches per fea-

ture for straight line segments than for blob fea-

tures, following the empirical investigations in

DICKSCHEID (2010, section 2.4). We must

therefore expect different prior probabilities

P (vn, vm,λn,λm). The relative frequencies

within the training data for pairs of matches,

where the first match is a line segment, are

shown in Fig. 7. Indeed we see the strong influ-

ence of different preselection criteria per feature

type on the prior: For pairs containing one line

segment match and one match of another type,

it is most likely that the line segment match is

an outlier. This reflects the fact that k is largest

for the line segments. As P (vn, vm,λn,λm) is

a discrete probability, we can model it as a bino-

mial distribution and use those relative frequen-

cies within the binary potentials θ2
nm;vnvm

.

Likelihoods for pairs of correspondences

As an example for the likelihood

p(tnm|vn, vm, λn, λm), we discuss the

inconsistency tα of angles spanned by two

features (section 3.3). It is obvious that

we can neither expect angles between pairs

of correct matches to be always equal, nor

angles between outliers to be always largely

different. When investigating the empirical

distribution of the consistency measures tα

on our training dataset, we see that they carry

valuable information for our problem, though.

The distribution for pairs of blob and junction

feature matches is shown in the top row of

Fig. 8. As in case of the unary potentials,

we modelled the likelihoods using a Beta

distribution, which corresponds strongly to the

empirical distributions.

The distribution indicates that for small in-

consistencies tα between feature correspon-
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̂P (tαnm | vn, vm,λn,λm)

0.00

0.16

0.33

0.49

0.65

0.82
(0, 0) (0, 1) (1, 0) (1, 1)

p̂ (tαnm | vn, vm,λn,λm)

0

5

10

14

19

24

− log[ε+(1−ε)p̂ (tαnmvn, vm,λn,λm)]

−3

−1

1

3

5

8

0.00 0.20 0.40 0.60 0.80
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Fig. 8: Top: Normalized histograms of obser-
vations tαnm between blob and junction feature
correspondences, denoting inconsistency of an-
gles between pairs of oriented features. We
obtain four distributions, referring to the events
(vn = 0, vm = 0), (vn = 1, vm = 0), (vn =
0, vm = 1) and (vn = 1, vm = 1). Middle:
Approximation of the histograms by Beta distri-
butions, used as an estimate for the likelihood
p(tαnm | vn, vm,λn,λm). Bottom: Bounded
negative log likelihood derived from p̂ (tαnm |
vn, vm,λn,λm), which we use for the energy
potentials. The observations refer to the training
dataset. Note that the theoretical range of the
observations is (0, 1), and that the Beta distribu-
tion is defined over the range [0, 1]. Here we only
plot the range of values that we observed on the
training dataset.

dences of this type, it is most likely that both

matches are inliers, referring to this observa-

tion only. Hence, stronger feature types will

implicitly motivate the selection of weaker ones

when the angular consistency is high. With in-

creasing inconsistency, it becomes more prob-

able that the blob correspondence is an outlier.

This corresponds strongly to our initial assump-

tions. For very high inconsistencies, the la-

belling (0, 0) is motivated, which means that

both correspondences are likely to be outliers.

Very similar observations can be made for

other combinations of feature types. The Beta

BestMatch-2

TopoMatch

MapMatch

Fig. 9: Visual matching results for an image pair
of the CLASS dataset for the three methods de-
scribed in section 6.1. Features depicted in white
are correctly matched, features in grey are out-
liers. We see that the simple BESTMATCH-2
approach gives quite many outliers, especially
among the line segments which have the weak-
est descriptors. Using a topological filter and
boost stage (TOPOMATCH) removes a significant
number of those. The results for our approach
(MAPMATCH) contain more inliers, and at the
same time the lowest outlier rate. Detailed results
from more image pairs of the dataset are listed in
Fig. 10.

distribution is a good continuous model for

all real-valued dissimilarity and inconsistency

measures that we investigated, however, other

measures might require a different model.

6 Experiments

We will show that the feature matching al-

gorithm with the parametric models derived

in section 5 allows for significantly better

matching results on sparsely textured scenes

than the standard best-matching approach

(BESTMATCH-2), which only takes descriptor

dissimilarities into account. We also want to

make sure that our results are comparable to

the results obtained with the method of (BAY et

al. 2005), which is specifically designed for

sparsely textured scenes. We search for a

matching algorithm that maximizes the number

  
����
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of correct correspondences while not exceed-

ing a critical outlier rate. Focussing on typical

image orientation algorithms with a RANSAC

scheme, the critical rate is at about 50%. So, if

one matching algorithm returns 20 correct cor-

respondences with no outliers, and another one

returns 50 correct correspondences with 15 out-

liers, we consider the latter one to be better.

6.1 Experimental Setup

Intentionally we select a set of popular feature

detection algorithms with high complementar-

ity, and use descriptors with different distinc-

tiveness and invariance properties in order to

demonstrate the potential of our method. By

keeping the set of detectors and descriptors to-

gether with their parameter settings fixed, all

methods shown here have to cope with the

same strengths and shortcomings of the fea-

tures. Nevertheless, our experiments must not

be understood as a comparison of detectors,

but as a comparison of wide baseline matching

methods.

Detectors

The classical LOWE blob detector (LOWE 2004)

is based on the Laplacian and known to have

very good scale and rotation invariance. We use

the original implementation kindly provided by

the author, starting with the original instead of

the double image resolution for building the

scale space pyramid. The FOP0 detector ex-

tracts junction points using the framework of

FÖRSTNER (1994). These features are not scale

invariant, and also sensitive to affine distortions.

We use the original implementation of the au-

thor, with a manually determined but fixed es-

timate of 0.015% for the standard deviation of

the image noise, related to an intensity range

of 1. The MSER detector of MATAS et al.

(2004) detects segmentation regions with com-

plex shape. We use the widely used imple-

mentation provided by MIKOLAJCZYK et al.

(2005), however approximate the local patches

by a circular shape covering an equally sized

area around the same centroid. As the affine

invariance that MSER itself is able to pro-

duce gets lost hereby, we denote the features as

MSER
◦ instead. The EDGE detector from the

framework of FÖRSTNER (1994) is included as

a typical straight line segment detector.

Descriptors

For all but the EDGE features, we use SIFT de-

scriptors computed using the original software

provided by LOWE (2004). The feature orienta-

tions are taken from the dominant gradient ori-

entation that is assigned to the descriptor. De-

scriptors for the FOP0 points are computed with

a fixed window size of 3s = 12(pixel). The

straight line segments are coupled with our own

implementation of the colour-histogram based

descriptors of BAY et al. (2005). These de-
scriptors are significantly less distinctive than
the SIFT descriptors. Our implementation has

been carefully compared to the implementation

of the authors and leads to very similar results.

Following BAY et al. (2005), the orientation of

the line segments is defined by choosing the

side with brighter image intensities to be left of

the segment.

Matching Strategies

We show results for three different wide base-

line stereo matching algorithms. The simplest

and most common one is a classical descriptor-

based best matching approach (BESTMATCH-

2) with a 70% threshold, as described in sec-

tion 2. Furthermore, we use a reimplementation

of the method proposed by BAY et al. (2005),

which will be denoted as TOPOMATCH in the

following. It includes both the three-point- and

the point-line topological filtering stages de-

scribed in the paper, as well as the boosting

step. Although we reimplemented the method
carefully, we cannot claim that the results apply
directly to the original implementation of the
authors. Our own method is denoted as MAP-

MATCH in the following.

6.2 Image Data

For training the likelihood functions and priors,

we use observations measured from 24 pairs of

images showing indoor and outdoor architec-

tural scenes, which remain constant across all

experiments. The training images are not part

of the evaluation, i.e. we do not perform image

specific training.

We show results based on five different

datasets. The properties of the datasets are sum-

marized in Tab. 1. The CLASS, BLANK-12
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Fig. 10: Matching results for all neighbouring image pairs of the CLASS dataset, computed with the
three wide baseline stereo matching algorithms described in section 6.1. Shown are the number of
correct correspondences and the percentage of outliers for each feature type. The annotation has
been done manually. We see that our approach (MAPMATCH) most often yields higher numbers of
inliers than the others at slightly higher but acceptable outlier rates.

and BLANK-22 datasets used a fisheye lens,

and have been corrected for radial distortion.

As the complexity of the TOPOMATCH and

MAPMATCH methods is too high for process-

ing high resolution images with strong texture,

we have downsampled the BOAT and GRAFFITI

datasets (MIKOLAJCZYK et al. 2005) to reduce

the amount of features in a mostly natural way.

6.3 Results

For investigating the success of a method refer-

ring directly to the extracted feature correspon-

dences, we report the number of good corre-

spondences (inliers) and the percentage of out-

liers for each matched image pair. Although we

report the statistics separately for each feature

type, the matching has been performed on all

feature types simultaneously.

Sparsely textured datasets

Referring to the datasets with sparse texture,

our approach MAPMATCH shows mostly su-

perior matching results. The image pair of

the CLASS dataset depicted in Fig. 9 provides

a visual impression of the matching results

for the different methods. The BESTMATCH-

2 approach, relying only on descriptors, can-

not compensate the weakness of the line seg-

ment descriptors, which results in many outliers

among the line segment correspondences. Us-

ing the topological filter in the TOPOMATCH

method filters many of those outliers, but does

not lead to a higher number of point feature

correspondences. The MAPMATCH approach

(bottom) achieves both effects quite well.

Fig. 10 shows detailed results for more im-

age pairs of the CLASS dataset. Our approach

yields a consistently higher number of inliers.

The results for straight line segments are espe-

cially notable, as our algorithm also produces

the overall smallest outlier rates. For other fea-

ture types however, it tends to have higher out-

lier rates than other methods.

For the BLANK-12 dataset Fig. 11, one ob-

tains similar observations. The number of in-

liers is significantly higher for MAPMATCH

over all considered image pairs and feature

types, while the outlier rates are acceptable,

sometimes even better than for the other two

methods. In particular, MAPMATCH would

allow to compute the epipolar geometry of

the third pair 6/9 quite robustly, with a to-

tal of 36 correct point matches (ignoring the

line segments), while TOPOMATCH with 6

point matches is clearly at the borderline, and

BESTMATCH-2 with 21 point matches signif-

icantly weaker. The TOPOMATCH implemen-

tation does not yield significantly more in-

liers than BESTMATCH-2, but has lower out-

lier rates. This is intuitive, considering that it

removes matches with inconsistent spatial rela-

tionships.
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Fig. 11: Results for three image pairs with
increasing baseline taken from the BLANK-12
dataset. The number of inliers is significantly
higher for MAPMATCH, while the outlier rates are
still good, sometimes also better than for the
other two methods. In particular, MAPMATCH
would allow to compute the epipolar geometry of
the third pair 6/9 quite robustly, with a total of
36 correct point matches (ignoring the line seg-
ments), while TOPOMATCH with 6 point matches
is clearly at the borderline, and BESTMATCH-2
with 21 point matches significantly weaker.

Standard datasets

The results for the BOAT dataset Fig. 12 show

that our approach yields comparable results to

the classical BESTMATCH-2. Note that here

the image pairs are sorted by increasing scale

and rotation difference between the images. For

strong distortions, MAPMATCH yields more in-

liers than the BESTMATCH-2 approach, at the

cost of a slightly higher outlier rate. Never-

theless it has a tendency to extract too many

outliers at times, as can be seen in case of

the affine region features for image pairs 1/4

in Fig. 12, and in case of the blobs for pair

1/6. The TOPOMATCH approach yields very

similar results to BESTMATCH-2, with a ten-

dency to extract even less matches. Note that al-

though the line segments were used for match-

ing in all of our experiments, they are not listed

for the GRAFFITI and BOAT dataset, as the

homography-based annotation cannot evaluate

them automatically.

Results for straight line segments

The straight line features play a special role, as

the matching of lines is in general more dif-

ficult due to the uncertainty of the location of

the start-/endpoints, and in particular more dif-

ficult due to the weak descriptors used here.
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Fig. 12: Matching results for all image pairs con-
taining the first image of the BOAT dataset, com-
puted with the three wide baseline stereo match-
ing algorithms described in section 6.1. The an-
notation has been done based on plane homo-
graphies, which works only for point features.
The image scale and rotation difference per im-
age pairs increases significantly from left to right.
Due to the strong scale differences, the number
of FOP0 correspondences is so small for all meth-
ods that we don’t show them here.

On the investigated datasets, the MAPMATCH

approach shows better results than both other

methods referring to the line segments. At

the same time, the TOPOMATCH method of-

ten shows better results for matching lines than

BESTMATCH-2. We can therefore conclude

that the spatial relationships seem to play in-

deed an important role for matching features

with weak descriptors.

7 Conclusions and Future Work

It can be reasonable to use multiple comple-

mentary detectors in a vision system for in-

creasing the amount of detected features. If the

distinctiveness of feature descriptors is rather

weak, as in case of sparsely textured scenes, or

simple descriptors, spatial relationships provide

important additional information for matching.

We have developed and described a generic

method for modelling the matching problem

with different detectors, descriptors and pair-

wise spatial relationships, which takes the

structure of a binary classification problem and

is consistent with MRF theory. Its potential

functions have a clear statistical interpretation

and can be trained from data using simple para-

metric models. The method therefore adapts
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Fig. 13: Results for overlapping image pairs for the DRAGON dataset. The matching of EDGE features
seems to be particularly difficult here for all three methods. The MAPMATCH approach solves it
significantly better, though still not satisfyingly. For the other feature types, the MAPMATCH approach
shows consistently better results in terms of higher number of inliers at comparable and satisfying
outlier rates. Observe especially the affine blobs, where MAPMATCH extracts between 7 and 10
times more inliers, at a only slightly higher outlier rate.

very well to new matching problems and is

straightforward to implement. We have imple-

mented a particular instance of the algorithm

which is able to produce better matching results

on sparsely textured scenes compared to exist-

ing standard and specialized methods.

Simple descriptor-based matching is faster

than our approach and still effective in case that

many features are available. Therefore, we pro-

pose to fall back to this standard method when

the amount of detected features is high.

Preselecting putative matches based on de-

scriptor similarity is the most heuristic part of

the proposed algorithm, so an investigation of

more sophisticated criteria would be interest-

ing. One may also achieve better results when

choosing closer parametric approximations of

the empirical likelihood distributions, perhaps

by introducing mixture models. Finally, select-

ing more specific training images for particular

matching problems can potentially give more

accurate results. We have not yet investigated

the effect of different training sets.
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DELPONTE, E., ISGRÒ, F., ODONE, F. & VERRI,
A., 2006: SVD-matching using SIFT features. –
Graphical models 68 (5-6): 415–431.

DICKSCHEID, T., 2010: Robust Wide-Baseline
Stereo Matching for Sparsely Textured Scenes. –
PhD thesis, Department of Photogrammetry, In-
stitute of Geodesy and Geoinformation, Univer-
sity of Bonn.

DICKSCHEID, T., SCHINDLER, F. & FÖRSTNER,
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