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Summary: Urban spatial patterns are usually af-
fected by different factors in urbanization process-
es. Scientific interpretations of the effects of under-
lying determinants of spatial patterns are important 
for a better understanding of urban developments. 
However, only few studies have quantitatively ex-
amined the spatiotemporal relationships between 
spatial patterns and driving factors. This study ex-
plores the use of remote sensing (RS), spatial met-
rics and geographically weighted regression 
(GWR), with a case study in Xuzhou city, China, to 
analyse the spatial patterns of urban growth as well 
as their spatiotemporally varying relationships 
with three driving factors (1) slope, (2) distance to 
major urban centres, and (3) distance to major 
roads. The historical urban growth from 1990 to 
2010 was derived from multi-temporal remote 
sensing images. Spatial metrics were used to quan-
tify the urban growth patterns for different periods. 
The effects of the factors on urban growth patterns 
were further investigated using GWR. The results 
indicate that the spatial patterns of Xuzhou have 
significantly changed along the urbanization pro-
cess. GWR performs better than ordinary least 
squares (OLS) in interpreting the relationships in-
dicated by higher adjusted R2, lower corrected 
Akaike information criterion (AICc) values and 
reduced spatial autocorrelations of residuals. The 
parameters of the driving factors obtained from 
GWR indicate that their effects on spatial patterns 
are spatiotemporally varying. The findings help in 
better understanding the effects of the considered 
factors on spatial patterns, as well as to provide 
support for urban planning and management.

Zusammenfassung: Raumzeitliche Beziehungen 
zwischen Einflussfaktoren und Stadtwachstum in 
Xuzhou City, China. Unterschiedliche Faktoren be-
einflussen städtische Flächennutzungsmuster im 
Urbanisierungsprozess. Gesicherte Erkenntnisse 
über Einflussfaktoren der Flächeninanspruchnah-
me sind wichtig für die Stadtentwicklungsplanung. 
Unser Beitrag beschreibt die Klassifizierung der 
Flächennutzung der chinesischen Stadt Xuzhou in 
fünf Flächennutzungsarten anhand der Landsat-
Bilder für die drei Zeitpunkte 1990, 2001 und 2010, 
die anschließende Berechnung von raumstruktu-
rellen Indizes (Class Area, Number of Patches, 
Mean Shape Index, Largest Patch Index, Area 
Weighted Mean Euclidean Nearest Neighbour Dis-
tance, Edge Density) und die Untersuchung der 
raumzeitlichen Beziehungen zwischen den drei 
ersten Kennzahlen und drei treibenden Faktoren 
der Flächennutzungsänderungen: (1) Steigung, (2) 
Entfernung zu urbanen Zentren, und (3) Entfer-
nung zu Hauptstraßen. Die Herausarbeitung der 
raumzeitlichen Beziehungen erfolgt unter Einsatz 
der geografisch gewichteten Regression (Geogra-
phically Weighted Regression, GWR) und der Me-
thode der kleinsten Quadrate (Ordinary Least 
Squares, OLS), wobei GWR die Zusammenhänge 
zwischen den genannten Faktoren und Indizes bes-
ser erklärt als OLS. Die GWR-Ergebnisse belegen, 
dass der Einfluss der Faktoren auf das Raummuster 
räumlich und zeitlich variiert. Dies gilt es bei künf-
tigen Stadtentwicklungen zu beachten.
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account the spatiotemporal dynamics of driv-
ing factors.

Satellite imagery is the most common data 
source for detection, quantification and map-
ping of land cover change patterns (Yuan et al. 
2005). It provides a cost and time effective tool 
for obtaining great amounts of multi-temporal 
information on the geographic distribution of 
land cover (Dewan & Yamaguchi 2009). Spa-
tial metrics are widely used to quantify the 
pattern of an urban area by computing them 
directly from thematic maps (Herold et al. 
2005). The temporal variations of spatial met-
rics have a potential to improve the levels of 
interpretation and assessment of urbanization 
processes and thus to contribute to a better un-
derstanding of spatial pattern changes, as well 
as of potential impacts on the environment 
and ecosystem (Dietzel et al. 2005).

Geographically weighted regression (GWR) 
has been developed and widely used to ex-
plore spatially varying relationships (Bruns­
don et al. 1996, Fotheringham et al. 2001). Lo-
cal rather than global parameters can be esti-
mated for analyzing the spatial dynamics of 
effects of driving factors on urban patterns.

This study aims at enhancing the under-
standing of urban growth patterns and the spa-
tiotemporally varying effects of the driving 
factors on urban growth patterns through the 
integration of remote sensing, spatial metrics, 
and GWR, with a case study of Xuzhou city in 
China. For this purpose multi-temporal land 
cover data is derived from remote sensing im-
ages. A set of selected spatial metrics is com-
puted for the detailed analysis of urban growth 
patterns and to improve the representation of 
urban spatial characteristics. GWR methods 
have been developed to investigate spatiotem-
porally varying relationships between urban 
growth patterns and their related factors.

2	 Material and Methods

2.1	 Study Area and Data

Xuzhou city in China is located in eastern part 
of China (Fig. 1), in the plains of Yellow River 
and Huaihe River, with an administrative area 
of 11,258 km2. It is regarded as a medium-
sized metropolitan area in comparison to oth-

1	 Introduction

Urbanization has been a universal and impor-
tant social and economic phenomenon tak-
ing place all around the world (Deng et al. 
2009). During the past decades, urban growth 
has been accelerating with the significant in-
crease in urban population, and this process is 
expected to continue to be one of the crucial 
issues of global change in the future, espe-
cially in less developed regions (Sui & Zeng 
2001). Urbanization alters the spatial struc-
ture of land use within a region (Jenerette & 
Wu 2001), which has resulted in a series of 
environmental problems such as the loss of 
natural vegetation, loss of open spaces, ap-
pearance of heat island effect, and general de-
cline in the spatial extent and connectivity of 
wetlands and wildlife habitat, which threaten 
sustainable urban development (Gao & Liu 
2010).

Recently, the efforts to understand spatial 
patterns and mechanisms, and the effects of 
urbanization have been highlighted. Here 
the analysis of spatial patterns can help to 
better understand the urban growth process 
and to make policy decisions (Dietzel 2005, 
Schwarz 2010, Thinh et al. 2002). Studies on 
the qualitative relationships between urbani-
zation and spatial growth patterns have dem-
onstrated that human induced factors play an 
important role in urban growth patterns (Deng 
et al. 2009, Kong & Nakagoshi 2006, Weng 
2007). Most of them, however, only focused 
on describing the characteristics of spatial 
patterns and their relationships with under-
lying determinants for the whole study area, 
and failed to address the spatial heterogenei-
ties in the effects of driving factors on spatial 
patterns in response to urbanization. In addi-
tion, analyzing the change of spatial patterns 
for one period would overlook the fact that an 
area experiencing the most intense urbaniza-
tion is not necessarily static, but could shift 
its location within the urbanization process, 
so that the characteristics of urbanization pro-
cess cannot be fully captured. In order to ad-
dress these gaps in previous studies and to ef-
fectively capture and analyze the urbanization 
process, it is necessary to explore the quan-
titative relationships between urban growth 
patterns and driving factors while taking into 
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noises in analyzing the urban spatial patterns. 
By employing the medium resolution Landsat 
data, this noise can be avoided. Therefore, the 
spatial resolution of Landsat data seems quite 
suitable to analyze the urban spatial patterns 
in this study.

Before the classification process, an at-
mospheric correction technique called cosine 
of the sun zenith angle (COST) was applied 
(Chavez 1988). After the atmospheric correc-
tion, all images were georeferenced using well 
distributed ground control points (GCPs) and 
topographic maps. A second order polynomi-
al was applied, resulting in root-mean-square 
errors (RMSE) less than 0.75 pixels. The im-
ages were resampled to a pixel size of 30 m 
× 30 m using the nearest neighbour algorithm 
to maintain the radiometric properties of the 
original data. The image processing was per-
formed using ERDAS IMAGINE 2011 soft-
ware.

A digital elevation model (DEM) at a spa-
tial resolution of 30 m, acquired from the 
global land cover facility (GLCF), was used 
to represent topography. Slope gradients were 
derived from the elevation surface. The ma-
jor road networks (1990, 2000, and 2010) were 
collected from Xuzhou Urban Planning Bu-
reau for the further analysis.

er cities in China. Xuzhou city is composed of 
five districts (Quanshan, Gulou, Yunlong, Ji-
awang and Tongshan), in which the first three 
districts are viewed as the city core. Main land 
cover types are built-up land, farmland, veg-
etation, and water body. The study area covers 
the main urban area of Xuzhou city and subur-
ban fringe, with the area of around 2,897 km2 
and the population of over 3 million inhabit-
ants in 2010.

In this research Landsat images for 1990, 
2001 and 2010 were obtained from the U.S. 
Geological Survey (USGS) and used for land 
cover classification. It is widely acknowledged 
that spatial pattern analysis is sensitive to the 
spatial resolution of the image data used for 
mapping (Weng 2007, Wu 2004). In this study, 
small urban patches (smaller than 900 m2) 
could not be recognized in Landsat data with 
the spatial resolution of 30 m. This leads to 
the underestimation of the amount of urban 
patches and total areas. In addition, the mixed 
pixel problem, caused by medium resolution, 
contributes to the low accuracy of the clas-
sification results, hereby, affecting the spa-
tial metrics values. However, the settlements 
in urban fringes of Xuzhou city are typically 
small-sized but numerous. These settlements 
are not important to study, but could cause 

Fig. 1: The study area.
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generated by TCT. In addition, a 3×3 majority 
filter was applied to remove salt and pepper 
appearances in the images.

In order to check whether the results are 
suitable for the spatial pattern analysis, an er-
ror matrix was calculated to assess the accu-
racy of the classification. The set of necessary 
reference data included topographic maps and 
field survey data. A total of 300 random points 
generated by stratified random sampling 
method were adopted to assess classification 
accuracy. Finally, the classified data and refer-
ence data were compared and statistically rep-
resented in the error matrix.

2.3	 Spatial Patterns Analysis

Tab. 1 provides a description of the spatial 
metrics used in the study. The selection of the 
metrics was based on the research objective 
and their values in representing specific spatial 
characteristics as explored in previous studies 
on urban areas (Herold et al. 2005, Luck & 
Wu 2002, Schwarz 2010). SHAPE_AM was 

2.2	 Land Cover Classification

A maximum likelihood classifier (MLC) was 
selected to classify the Landsat images into 
four categories: built-up land, farmland, veg-
etation and water body. Post classification re-
finement was used to improve the accuracy of 
the classification. For this study, farmland was 
not expected to be found in areas with slopes 
higher than 10 degree. Therefore, the farm-
land pixels with slopes higher than 10 degree 
were reclassified as vegetation. The tasseled 
cap transformation (TCT) is a conversion of 
the original bands of an image into a new set 
of bands with defined interpretations that are 
useful for vegetation mapping (Dymond et 
al. 2002, Li & Thinh 2013). The built-up and 
bare soil areas have higher values compared 
with other classes in the brightness band. In 
the greenness band the built-up land has low-
er values, whereas the areas covered by green 
vegetation have higher values. In the wet-
ness band the water bodies have higher val-
ues. Therefore, we defined specific thresholds 
to distinguish different classes in each band 

Tab. 1: Description of the spatial metrics used in this study (McGarigal et al. 2012).

Spatial metrics Abbreviation Description

Class area CA The sum area (m²) of all urban land use patches, 
divided by 10,000.

Number of patches NP Total number of urban patches.

Largest patch index LPI The percentage of the area of the largest urban patch 
to the total area of the investigation.

Edge density ED The ratio of total edge of urban patches to total 
landscape area. 

Shape index
(Area weighted mean shape 
index/Mean shape index)

SHAPE
(SHAPE_AM/
SHAPE_MN)

The index describes the complexity of the patch 
shape.  It uses patch area as a weighting factor. It 
equals 1 if the patch has a square shape and 
increases as the irregularity of the shape increases.
SHAPE_AM averages the shape index of the 
patches by weighting patch area so that larger 
patches weigh more than smaller patches. 
SHAPE_MN equals the sum of shape index of the 
patches divided by the number of patches of the 
same type. 

Euclidean nearest-neighbour 
distance
(Area weighted mean 
Euclidean nearest-neighbour 
distance)

ENN
(ENN_AM)

ENN equals the distance (m) to the nearest 
neighbouring patch of the same type, based on 
shortest edge-edge distance. 
ENN_AM averages the ENN index of the patches 
by weighting with the patch area size. 
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considered as a major factor in several studies 
on land use change (Aspinall 2004, Dubovyk 
et al. 2011, He et al. 2006, Hu & Lo 2007, Li 
et al. 2013, Sui & Zeng 2001). Slope can speed 
up or slow down the process of urban develop-
ment as the costs of land development can in-
crease as the slope increases (Aspinall 2004). 
Socioeconomic development is one of the 
most important driving factor of urban growth 
patterns and can best be characterized by the 
access that a location has to important facili-
ties (He et al. 2006, Li et al. 2013, Verburg et 
al. 2004). The significant effects of distance to 
major urban centres on urban growth patterns 
have been confirmed by several studies (Aspi­
nall 2004, Batisani & Yarnal, 2009, Cheng 
& Masser 2003, Dubovyk et al. 2011, Hu & Lo 
2007, Li et al. 2013, Long et al. 2012, Reilly 
et al. 2009, Sui & Zeng 2001, Verburg et al. 
2004). Transportation plays an indispensable 
part in urban patterns because a good trans-
portation increases the accessibility of land 
and decreases the cost of construction (Reilly 
et al. 2009). Therefore, distance to major roads 
has been used as a driving factor by many re-
searchers (Cheng & Masser 2003, Dubovyk et 
al. 2011, He et al. 2006, Hu & Lo 2007, Li et 
al. 2013, Long et al. 2012, Reilly et al. 2009, 
Sui & Zeng 2001, Verburg et al. 2004). In this 
study, distance to major urban centres (ab-
breviation: Dis2urban) and distance to major 
roads (abbreviation: Dis2road) were used to 
represent socioeconomic factors. The gross 
domestic product (GDP) and population were 
not considered as their spatial resolutions are 
much coarser than that of other variables used 
in this study.

Coefficients could be misleading, if the un-
derlying variables are measured in different 
units. For comparing the impacts of different 
variables on the urban spatial patterns, a lin-
ear membership function method was adopted 
to implement the standardization. The varia-
ble with the highest value was assigned 1, and 
the lowest value was assigned 0.

2.5	 Geographically Weighted 
Regression

GWR is an extension of global regression 
method such as OLS (ordinary least squares), 

used for the general description of the urbani-
zation pattern in order to improve the measure 
of class patch fragmentation as the structure 
of smaller patches is often determined more 
by the image pixel size than by characteristics 
of natural or manmade features found in the 
landscape (Milne 1991). The higher the value 
of the ENN (Euclidean nearest neighbour), the 
greater is the isolation of the patches. In order 
to consider the different influence of patches 
according to the areas, ENN_AM is calcu-
lated by incorporating patch area size weight-
ing. Since the study focuses on urban growth, 
the land cover maps were reclassified into two 
classes: urban and non-urban. Built-up was 
defined as urban land, while farmland, veg-
etation and water body were reclassified into 
non-urban land. The spatial metrics associ-
ated with sustainability were calculated using 
Fragstats 4 (McGarigal et al. 2012).

2.4	 Variables Calculation

Investigation of the relationships between ur-
ban growth patterns and their related factors 
were performed on a block basis. The square 
block, the most commonly used shape for spa-
tial pattern analysis (Luck & Wu 2002, Weng 
2007), was applied in this study. A prelimi-
nary test of the effects of block size on spa-
tial pattern analysis was carried out consid-
ering sizes of 1 km, 2 km, 3 km and 5 km. A 
block size of 2 km was chosen because it re-
tains more details of the spatial pattern than 
a larger block size does. A block size of 1 km 
could lead to the situation that no urban patch 
or only a few urban patches exist in some 
blocks, which generates noise in the spatial 
pattern analysis. Therefore, the study area was 
firstly divided into several square blocks of 
2 km × 2 km. The selected metrics (CA, NP, 
SHAPE_MN in Tab. 1) being suitable at local 
level, were then calculated for each block to 
measure the urbanization intensity, fragmen-
tation and irregularity of urban area. After ob-
taining metrics values for the 1990, 2001 and 
2010 data, the changes of metrics were calcu-
lated for each block.

Urban growth patterns are the result of the 
complex interaction of physical, environmen-
tal and socioeconomic factors. Slope has been 
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minimises the AICc value: the model with 
lowest AICc values suggests a stronger abil-
ity of a regression model in reflecting reality.

For the comparison purpose, we also em-
ployed OLS models to investigate the relation-
ships between spatial patterns and explanato-
ry factors. Three statistical parameters were 
used to compare the performance between 
GWR and OLS: adjusted R2, AICc, and Mo-
ran’s I. Adjusted R2 and AICc measures pro-
vide some indications of the goodness of fit of 
the corresponding model. Higher adjusted R2 
values indicate that more variances can be ex-
plained for dependent variables. Moran’s I is 
widely used as an indicator of spatial autocor-
relation (range: -1 to 1). Large absolute values 
of Moran’s I indicate that spatial autocorrela-
tion is more significant. Residuals are the dif-
ferences between observed and predicted val-
ues. We employed Moran’s I value to examine 
spatial autocorrelation in the residuals.

3	 Results 

3.1	 Spatial Patterns Analysis

The overall accuracies calculated for 1990, 
2001, and 2010 were 86.4%, 87.7%, and 88.3%, 
respectively (Tab. 2). Urban landscape is a 
complex combination of different land cov-
ers. In this study, mixed pixel problems were 
found between built-up land and vegetation 
categories. In addition, some farmlands with-
out crop were misclassified as built-up due to 
their spectral similarities. The producer’s and 
user’s accuracy of built-up land cover are con-
sistently high, ranging from 85.0% to 88.7% 
and meet the minimum USGS total accuracy 
set out by Anderson et al. (1976). Hence, the 
classified results are considered suitable as 
data source for spatial pattern analysis. The 
multi-temporal land cover classification maps 
for Xuzhou city are shown in Fig. 2.

Tab. 3 presents spatial metrics values from 
1990 to 2010. The CA value of Xuzhou city 
shows a rapid urbanization process between 
1990 and 2010 (see also Fig. 2). The alloca-
tion of urban area included both the develop-
ing outward from the original city core and 
the growth of new individual urban patches, 
which is illustrated by the increases in both 

and can be used to explore the spatially var-
ying relationships between explanatory vari-
ables and spatial patterns by generating a set 
of local-specific coefficients (Brunsdon et al. 
1996, Fotheringham et al. 1996, Fothering­
ham et al. 2001). In contrast to traditional re-
gression method, GWR is conducted using lo-
calized points within geographic space. Thus, 
instead of producing a single average parame-
ter for each relationship, GWR has a potential 
to produce a set of local parameters that can 
be mapped to get insight into hidden possible 
causes of this pattern.

The GWR model can be expressed as:

0 ( , ) ( , )i i i k i i ik i
k

y a a xµ ν µ ν ε= + +∑ 	 (1)

Where (μi, νi) represents the coordinate lo-
cation of the ith point. a0(μi, νi) and ak(μi, νi) 
express the intercept and local parameter es-
timate for an independent variable xik at loca-
tion i, respectively. εi is the random error term 
for location i.

In GWR, the parameters for each observa-
tion at location i can be estimated by weight-
ing all observations around a specific point i 
according to their spatial proximity, which is 
calculated by the Euclidean distance in this 
study. The observations which are spatial-
ly closer to the location i will have a greater 
impact on the local parameters for the loca-
tion than those which originate at more distant 
points. Gaussian distance decay can be used to 
express the weighting function:

2

2exp ij
ij

d
w

h
 

=  
 

	 (2)

Where wij represents the weight of observa-
tion j for location i. dij is the Euclidean dis-
tance between points i and j. h is a kernel 
bandwidth that affects the distance-decay of 
the weighting function. There are three choic-
es of the bandwidth method: corrected Akaike 
information criterion (AICc), cross validation 
(CV) and bandwidth parameter. If the band-
width is known a priori, bandwidth parameter 
could be applied. If it is unknown, the first two 
types allow for using an automatic method to 
find the optimum bandwidth. In this study, the 
AICc method was used for the GWR model. 
The AICc method finds the bandwidth which 
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Tab. 2: Summary of Landsat classification accuracies (%) for 1990, 2001, and 2010.

Land cover class
1990 2001 2010

Producer’s User’s Producer’s User’s Producer’s User’s

Built-up 85.0 87.9 87.1 85.7 88.7 87.5

Farmland 89.0 85.8 90.2 87.5 89.1 89.8

Vegetation 79.2 82.4 81.8 88.2 81.1 86.0

Water body 88.2 90.0 88.2 90.0 93.6 88.0

Overall accuracy 86.4 87.7 88.3

Tab. 3: Spatial metrics derived from the land cover classification maps.

Date CA NP LPI ED SHAPE_AM ENN_AM

1990 27636 2345 1.8253 12.7665 3.4157 297.0055

2001 38559 2412 3.7846 15.4546 5.2129 275.0119

2010 54938 2509 7.0688 19.5735 8.4627 246.3587

Fig. 2: Multiple temporal land cover classification maps.
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between urban patches. As the increasing rap-
id urbanization process, Xuzhou’s irregular 
and fragmented growth is illustrated by the 
continuous increasing of SHAPE_AM, NP, 
and ED.

Changes of spatial metrics across the study 
area are shown in Fig. 3. The variations of spa-
tial metrics show spatiotemporal heterogenei-

metrics: LPI and NP. The development of new 
individual urban patches created more edges, 
which leads to the increase in ED value. Some 
individual urban patches continued to grow 
together to form larger patches, the connec-
tion of individual urban patches increased, ac-
cording to the decreasing ENN_AM value. It 
also implies the significant loss of open space 

Fig. 3: Changes of spatial metrics selected in this study for 1990 – 2001 (left column) and 2001 – 
2010 (right column) (CA = class area, NP = number of patches, SHAPE_MN = mean shape index).
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3.2	 Comparison between OLS and 
GWR Models

OLS models only provide one statistical aver-
age parameter for the whole study area, where-
as the GWR results show variables chang-
es throughout the study area. The adjusted 
R2 and AICc values generated by GWR and 

ties. Moreover, the variations of spatial pat-
terns can, in considerable parts, be explained 
by selected factors. For example, most of the 
blocks with significant growth of CA values 
are found around the city core, and the signifi-
cant decrease of NP values are also observed 
around the city core.

Tab. 4: Comparison of adjusted R2 between GWR and OLS for two periods.

 

1990 – 2001 2001 – 2010

CA NP SHAPE_MN CA NP SHAPE_MN

Dis2urban
Adjusted R2G 0.523 0.443 0.470 0.474 0.466 0.449

Adjusted R2O 0.136 0.175 0.101 0.119 0.079 0.047

Dis2road
Adjusted R2G 0.560 0.566 0.525 0.463 0.444 0.427

Adjusted R2O 0.099 0.057 0.075 0.002 0.007 0.001

slope
Adjusted R2G 0.509 0.349 0.581 0.461 0.474 0.423

Adjusted R2O 0.114 0.017 0.107 0.050 0.012 0.025

R2G is the R² for GWR model; R2O is the R² for OLS model.

Tab. 5: Comparison of AICc between GWR and OLS for two periods.

1990 – 2001 2001 – 2010

CA NP SHAPE_MN CA NP SHAPE_MN

Dis2urban
AICcG 6182.2 3957.6 4735.5 7388.5 5128.9 6003.2

AICcO 6590.6 4064.8 4888.0 7804.5 5541.6 6317.0

Dis2road
AICcG 6170.3 3949.2 4771.1 7403.9 5144.4 6022.2

AICcO 6622.5 4051.4 4901.5 7804.0 5536.4 6360.5

slope
AICcG 6256.6 3981.7 4812.9 7408.5 5124.5 6030.0

AICcO 6703.4 4089.5 4901.7 7802.0 5532.3 6340.3

AICcG is the AICc for GWR model; AICcO is the AICc for OLS model.

Tab. 6: Comparison of Moran’s I of residuals between GWR and OLS for two periods.

 

1990 – 2001 2001 – 2010

CA NP SHAPE_MN CA NP SHAPE_MN

Dis2urban
Moran’s IG 0.175 0.071 0.189 0.054 0.044 0.012

Moran’s IO 0.402 0.258 0.396 0.517 0.550 0.436

Dis2road
Moran’s IG 0.095 0.012 0.119 0.069 0.081 0.013

Moran’s IO 0.578 0.390 0.560 0.518 0.544 0.435

slope
Moran’s IG 0.120 0.147 0.048 0.073 0.053 0.027

Moran’s IO 0.611 0.421 0.589 0.505 0.547 0.435

Moran’s IG is the Moran’s I for GWR model; Moran’s IO is the Moran’s I for OLS model.
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ban and Dis2road had positive effects on CA 
values in a larger area in 2001 – 2010. Further-
more, significant positive influence was found 
in the area around the city core and roads. 
This indicates that the rise in distance to cen-
tres and roads up to a certain extent can cause 

OLS models for different periods are shown 
in Tabs. 4 and 5. For all cases in the different 
periods, the GWR results are characterized by 
higher R2 and lower AICc values compared 
to the corresponding OLS models. The com-
parison of these two indicators suggests that 
GWR models perform better than OLS mod-
els in investigating the relationships between 
urban spatial patterns and related factors. The 
results obtained from GWR indicate that the 
variations of selected spatial metrics are sig-
nificantly associated with the explanatory fac-
tors.

Moreover, Tab. 6 summarizes the Moran’s I 
statistics on the models residuals from GWR 
and OLS. Significant positive spatial autocor-
relations are found in all OLS models, which 
are characterized by higher Moran’s I values 
ranging from 0.258 to 0.611. In contrast, the 
Moran’s I values of GWR models range from 
0.012 to 0.189. This indicates that GWR mod-
els can improve the expressiveness of relation-
ships by effectively reducing spatial autocor-
relations in residuals.

3.3	 Spatiotemporal Heterogeneity of 
Relationships between Spatial 
Patterns and Driving Factors

The GWR model generated a set of parame-
ters for the blocks for each period, which can 
be used to analyse the spatiotemporally var-
ying effects of the driving factors on urban 
growth patterns (Figs.  4 – 6).

Clear relationships between the variations 
of CA values and three driving factors can be 
identified (Fig. 4). Dis2urban and Dis2road 
showed significant negative correlations with 
the variations of CA near the city core and 
roads for the period of 1990 – 2001. It suggests 
that greater urbanization intensity was strong-
ly related to shorter distance to major urban 
centres and roads within a certain extent, with 
stronger explanatory power indicated by local 
R2. However, the effects of these factors de-
creased or transformed to positive influence 
when extending to a certain distance. Slope is 
also an important factor that can explain more 
than 30% of the variations of CA outside the 
city core, whilst it explained less in the city 
core. Compared to the former period, Dis2ur-

Fig. 4: Spatial distributions of the coefficients 
and local R2 for CA. Figures in the two upper 
rows show the results for 1990 – 2001 and fig-
ures in the two lower rows show the results for 
2001 – 2010 (CA = class area, NP = number of 
patches, SHAPE_MN = mean shape index).

Fig. 5: Spatial distributions of the coefficients 
and local R2 for NP. Figures in the two upper 
rows show the results for 1990 – 2001 and fig-
ures in the two lower rows show the results for 
2001 – 2010.
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significant impact from the factor of slope, 
where the effects of road and urban centres 
could almost be neglected.

The spatially varying relationships between 
the SHAPE_MN values and the three ex-
planatory factors were identified through the 
GWR model (Fig. 6). A more significant effect 
of Dis2urban on the variations of SHAPE_
MN value concentrated on the city core dur-
ing 1990 – 2001. The influence varied signifi-
cantly from positive to negative, if distance to 
urban centres increases. The roads around the 
city core also had a significant positive effect 
on the variations of SHAPE_MN and higher 
local R2. This implies that the irregularity pat-
tern received more significant impacts from 
these two factors in highly urbanized areas 
than in less-urbanized areas. Relatively weak 
correlation with slope and higher local R2 val-
ues can be observed in areas far from the city 
core, which suggests that the irregularity was 
more strongly influenced by slope outside of 
the city core. Compared to the previous peri-
od, the relationships between explanatory fac-
tors and the variations of SHAPE_MN value 
varied in 2001 – 2010. In particular, Dis2ur-
ban had a stronger influence in suburban ar-
eas than in the city core. The distance to major 
roads presented a significant negative effect 
on the variations of SHAPE_MN value in the 
eastern part of the city core with higher local 
R2. The decrease in distance to major roads in 
this area could cause more irregular patterns. 
The effects of slope in 2001 – 2010 also varied 
from positive to negative across space.

4	 Discussion and Conclusion

4.1	 Spatiotemporally Varying 
Relationships between Urban 
Growth Patterns and Explanatory 
Factors

The study suggests that the historical urban 
growth patterns in Xuzhou city can, in con-
siderable parts, be affected by distance to ur-
ban centres, distance to major roads and slope 
with relatively high levels of explanation of 
the spatial variability. This corresponds with 
the findings in literature related to other cities 
in the world (Braimoh & Onishi 2007, Clarke 

a considerable increase in urbanization inten-
sity. The effects of slope on the variations of 
CA were similar to the former period.

Fig. 5 exhibits both, the positive and nega-
tive correlation between the variations of NP 
and the explanatory factors. In 1990 – 2001, 
stronger effects of Dis2urban on the varia-
tions of NP as well as higher local R2 were lo-
cated around the city core, while negative and 
weaker relationships and lower local R2 values 
were found outside the city core. Dis2road had 
a similar effect on the variations of NP values. 
The results indicate that the increase in dis-
tance to urban centres and roads can lead to 
more fragmented pattern. Compared to other 
factors, slope had less significant influence on 
the fragmentation (lower adjusted R2 and local 
R2, Tab. 2). For the period 2001 – 2010, an in-
crease in distance to the new urban centre had 
a direct influence on the variations in NP val-
ues, whilst weaker correlations with Dis2ur-
ban were found around the former city core 
in 2001 – 2010. Dis2road had a weaker impact 
on the variations in NP values, according to 
the coefficients and local R2. In contrast to the 
weaker effect of slope in the former period, 
both significant positive and negative effects 
were observed in 2001 – 2010. The variations 
of NP in areas with higher slope received more 

Fig. 6: Spatial distributions of the coefficients 
and local R2 for SHAPE_MN. Figures in the 
two upper rows show the results for 1990 – 
2001 and figures in the two lower rows show 
the results for 2001 – 2010.
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auto-correlated (Gao & Li 2011). Therefore, 
the way of how causal factors affect the ur-
ban growth patterns differently across space 
should be addressed. However, many studies 
examined pattern-process relationships using 
the global relationship estimated over the en-
tire study area (Weng 2007, Batisani & Yar­
nal 2009). Consequently, spatially varying ef-
fects of driving factors on spatial patterns are 
lost. The use of GWR model includes a spatial 
component in its specifications. This indicates 
that the coefficients estimated for this regres-
sion vary according to the geographical loca-
tion. The results show that GWR models can 
provide detailed information about the differ-
ent roles of related factors in different parts of 
the study area, rather than generating an aver-
age coefficient for the entire area.

4.3	 Implications for Urban Planning 
and Management

The temporal analysis of spatial metrics in 
Xuzhou city throughout the study period re-
vealed that urbanization not only dramatical-
ly increased the size of the built-up areas, but 
that the urban area became also fragmented 
and irregular. Fragmented and irregular de-
velopment patterns are associated with eco-
logical and environmental problems, which 
threaten the sustainable development (Jenks 
et al. 1996). Therefore, some related plans and 
measures should be implemented to facilitate 
connectivity between built-up fragments in-
stead of random development. Furthermore, 
the positive effect of slope on urban expansion 
which has been found in some areas, suggests 
an increasing pressure for development in the 
mountainous areas which in turn are regarded 
as ecologically valuable zones. Therefore, the 
implementation of policies for protecting such 
ecologically valuable zones is required.

4.4	 Outlook

Although some successful results have been 
obtained, challenges lie ahead. Firstly, differ-
ent block shape and size can result in different 
explanatory ability of models. Notwithstand-
ing preliminary tests were conducted, further 

et al. 1997, Weng 2007). Our research extends 
these previous studies by investigating spati-
otemporally varying effects of related factors 
instead of global effects.

Overall, significant correlations were found 
around the city core and around major roads. 
This can be linked with the attraction due to 
locations closer to the urban centres or roads 
offering more opportunities to access socio-
economic resources. In the city core, the land-
scape is dominated by a well-connected ma-
trix of built-up land, whereas the expanded 
built-up areas on the edge of town are always 
highly fragmented and complex in shape (So­
lon 2009, Weng 2007). Some unexpected lo-
cal relationships were also identified by GWR. 
For example, significant positive influence of 
slope on urban growth was observed around 
highly urbanized areas. This can be explained 
by the shortage of land for development 
around existing highly urbanized areas.

Furthermore, temporal changes of the ef-
fects of driving factors were also assessed in 
this study. The effects of Dis2urban on the 
variations of CA varied from negative to posi-
tive over the study period, which can be ex-
plained by the socioeconomic processes and 
the consequence of urban development pol-
icy. In the first period, urbanization mainly 
occurred in the city core. Due to the lack of 
space for further development in the city core, 
the edges of the town were those places where 
rapid urbanization occurred in 2001 – 2010. 
As a result, the influences of related factors 
on fragmentation and irregularity also var-
ied significantly over time in the city core, be-
cause the degree of landscape fragmentation 
and irregularity gradually decreased when ur-
ban use became dominant in city core. In ad-
dition, the urban growth was focused more on 
the development of new urban centres to form 
a polycentric development pattern in the pe-
riod of 2001 – 2010. 

4.2	 Methodological Implications

One of the crucial findings in the study is the 
use of GWR model, which enables to ana-
lyse the spatial variability of results. Urban 
growth patterns and the effects of their caus-
al factors are usually location-dependent and 



Cheng Li et al., Spatiotemporally Varying Relationships 547

China. – Landscape and Urban Planning 62 (4): 
199–217.

Clarke, K.C., Hoppen, S. & Gaydos, L., 1997: A 
self-modifying cellular automaton model of his-
torical urbanization in the San Francisco Bay 
area. – Environment and Planning B: Planning 
and Design 24 (2): 247–261.

Deng, J.S., Wang, K., Hong, Y. & Qi, J.G., 2009: 
Spatio-temporal dynamics and evolution of land 
use change and landscape pattern in response to 
rapid urbanization. – Landscape and Urban 
Planning 92 (3–4): 187–198.

Dewan, A.M. & Yamaguchi, Y., 2009: Land use and 
land cover change in Greater Dhaka, Bangla-
desh: Using remote sensing to promote sustain-
able urbanization. – Applied Geography 29 (3): 
390–401.

Dietzel, C., Herold, M., Hemphill, J.J. & Clarke, 
K.C., 2005: Spatio-temporal dynamics in Cali-
fornia’s Central Valley. – International Journal 
of Geographical Information Science 19 (2): 
175–195.

Dubovyk, O., Sliuzas, R. & Flacke, J., 2011: Spa-
tio-temporal modelling of informal settlement 
development in Sancaktepe district, Istanbul, 
Turkey. – ISPRS Journal of Photogrammetry 
and Remote Sensing 66 (2): 235–246.

Dymond, C.C., Mladenoff, D.J. & Radeloff, V.C., 
2002: Phenological differences in Tasseled Cap 
indices improve deciduous forest classification. 
– Remote Sensing of Environment 80 (3): 460–
472.

Fotheringham, A.S., Charlton, M.E. & Brunsdon, 
C., 1996: The geography of parameter space: an 
investigation of spatial non-stationarity. – Inter-
national Journal of Geographical Information 
System 10 (5): 605–627.

Fotheringham, A.S., Charlton, M.E. & Brunsdon, 
C., 2001: Spatial variations in school perfor-
mance: a local analysis using geographically 
weighted regression. – Geographical and Envi-
ronmental Modelling 5 (1): 43–66.

Gao, J. & Li, S., 2011: Detecting spatially non-sta-
tionary and scale-dependent relationships be-
tween urban landscape fragmentation and relat-
ed factors using Geographically Weighted Re-
gression. – Applied Geography 31 (1): 292–302.

Gao, J. & Liu, Y., 2010: Determination of land deg-
radation causes in Tongyu County, Northeast 
China via land cover change detection. – Inter-
national Journal of Applied Earth Observation 
and Geoinformation 12 (1): 9–16.

He, C., Okada, N., Zhang, Q., Shi, P. & Zhang, J., 
2006: Modeling urban expansion scenarios by 
coupling cellular automata model and system 
dynamic model in Beijing, China. – Applied 
Geography 26 (3–4): 323–345.

studies need to be carried out to consider the 
different block shape and size in order to ob-
tain insight into their effects on spatial pat-
tern analysis. Secondly, three spatial variables 
were incorporated to analyse the effects of 
driving factors in this study. The GWR mod-
el did not include other possible variables that 
may affect urban growth patterns, as it lacked 
input data. Although a good agreement be-
tween model results and actual maps was ob-
served, it is recommended to include further 
potential variables into future studies.
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