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Summary: Accurate land use / land cover classifi-
cation (LU/LC) of agricultural crops still repre-
sents a major challenge for multispectral remote
sensing. In order to obtain reliable classification
accuracies on the basis of multispectral satellite
data, merging crop classes in rather broad classes is
often necessary. With regard to the rising availabil-
ity and the improving spatial resolution of satellite
data, multitemporal analyses become increasingly
important for remote sensing investigations. For
the separation of spectrally similar crops, multi-
date satellite images include different growth char-
acteristics during the phenological period. The pre-
sent study aims at investigating a way to perform
highly accurate classifications with numerous agri-
cultural classes using multitemporal RapidEye
data. The Jeffries-Matusita separability (JM) was
used for applying a pre-procedure in order to find
the best multitemporal setting of all available im-
ages within one crop cycle, consisting of two culti-
vation periods P1 with 16 agricultural classes and
P2 with 27 agricultural classes. Only one critical
class pairing occurred for both P1 and P2 taking
into account the best multitemporal dataset. The
maximum likelihood (ML) classifier and the sup-
port vector machine (SVM) were compared using
the most suitable multitemporal images. Both algo-
rithms achieved very high overall accuracies
(OAA) of over 90%. SVM was slightly better with
a classification accuracy of P1-OAA = 96.13% and
P2-OAA = 94.01%. ML provided a result of OAA =
94.83% correctly classified pixels for P1 and OAA
= 93.28% for P2. The processing time of ML, how-
ever, was significantly shorter compared to SVM,
in fact by a factor of five.

Zusammenfassung: Identifikation landwirtschaft-
licher Kulturen in Nordisrael mittels multitempora-
ler RapidEye-Daten. Eine hochgenaue Landnut-
zungsklassifizierung (LU/LC) landwirtschaftlicher
Kulturen auf Basis von multispektralen Fernerkun-
dungsdaten stellt noch immer eine große Heraus-
forderung dar. Oftmals müssen unterschiedliche
landwirtschaftliche Kulturen zu Oberklassen zu-
sammengefasst werden, damit die Klassifizierung
auf Grundlage multispektraler Satellitendaten ak-
zeptable Genauigkeiten erreichen. Mit der steigen-
den Verfügbarkeit und gleichzeitig verbesserten
räumlichen Auflösung von Satellitendaten kommt
der multitemporalen Analyse von Fernerkundungs-
daten immer mehr Bedeutung zu. Dabei wird der
Sachverhalt genutzt, dass verschiedene Pflanzen
einen unterschiedlichen phänologischen Verlauf
besitzen. Ziel der vorliegenden Studie ist eine hoch-
genaue Klassifizierung landwirtschaftlicher Flä-
chen mit hoher Klassenanzahl durch die multitem-
porale Analyse multispektraler RapidEye-Daten.
Das Trennbarkeitsmaß Jeffries-Matusita Separabi-
lity (JM) wurde als Vorverarbeitungsschritt ver-
wendet, um den besten multitemporalen Datensatz
aus den verfügbaren einzelnen Aufnahmeterminen
eines kompletten Fruchtwechsels, bestehend aus
zwei Anbauperioden P1 mit 16 und P2 mit 27 land-
wirtschaftlichen Klassen, zu finden. Die spektrale
Trennbarkeit der vorhandenen Klassen ergab für
den ermittelten multitemporalen Datensatz für P1
und P2 nur eine kritische Klassenpaarung. Für die
Klassifizierung wurden die Klassifizierungsalgo-
rithmen Maximum Likelihood (ML) und Support
Vector Machine (SVM) vergleichend gegenüberge-
stellt. Beide Algorithmen lieferten Gesamtklassifi-
zierungsgenauigkeiten von über 90%. Die SVM
erwies sich dabei mit Klassifizierungsgenauigkei-
ten OAA = 96,13% für P1 und OAA = 94,01% für
P2 zwar als geringfügig genauer, jedoch war die
ML-Klassifizierung (P1-OAA = 94,83%; P2-OAA
= 93,28%) deutlich, d.h. um den Faktor 5, schneller.
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dle the above-mentioned challenging tasks in
LU/LC classifications, phenological informa-
tion has been investigated by the remote sens-
ing community as an additional dimension in
crop identification. As a consequence, numer-
ous studies combined several multispectral
Landsat (WONDRADE et al. 2014, DEMIR et al.
2013, OETTER et al. 2001, LUNETTA & BALOGH
1999) or SPOT datasets (CHUST et al. 2004,
MURAKAMI et al. 2001) from one growing pe-
riod and treated them as one single multitem-
poral scene. Furthermore, the synergism of
SAR and multispectral optical satellite data
has been evaluated (VICENTE-GUIJALBA et al.
2014, ASKNE et al. 2013, WASKE & VAN DER LIN-
DEN 2008, HUANG et al. 2007, BRISCO & BROWN
1995). OETTER et al. (2001), for instance, ob-
tained classification accuracies close to 90%,
using five Landsat-5 TM images within one
year. The considered classes included agricul-
tural crops, orchards, forest and natural cover
types as well as urban areas. The subclasses of
agriculture finally classified in this study were
aggregated to five broader classes instead of
the 15 original mapped agricultural catego-
ries.
An additional objective in LU/LC classifi-

cation from remote sensing data is the selec-
tion of appropriate classification algorithms.
WASKE & VAN DER LINDEN (2008) emphasized
the shift from statistical approaches to more
powerful and flexible machine learning algo-
rithms for data classification as a recent de-
velopment in remote sensing. In the past
few years many authors compared newly de-
veloped and widely established classifiers
(ALGANCI et al. 2013, MOUNTRAKIS et al. 2011,
MATHUR & FOODY 2008, HUANG et al. 2002 &
2007). However, recent developments of clas-
sification algorithms are also associated with
an increasing need of computational perfor-
mance. Considering this assumption, the non-
parametric classifier support vector machine
(SVM) and the well-known parametric maxi-
mum likelihood (ML) classifier were selected
and compared regarding the obtained LU/LC
classification with respect to overall classifica-
tion accuracy (OAA) and performance.
Most multitemporal studies classified all

possible dataset combinations in order to find
the best multitemporal setting/stack. Con-
sidering the enormous computational costs

1 Introduction

Information on land use / land cover (LU/LC)
forms a crucial data basis in numerous appli-
cations for planning, resources management,
and identification of environmental changes
or ecological forecasting (KHAN et al. 2012).
Crop identification and monitoring belong to
this category (VICENTE-GUIJALBA et al. 2014,
GUERSCHMAN et al. 2003, BRISCO & BROWN
1995). Thematic maps of crop types at agricul-
tural field level can provide important infor-
mation, e.g. to support agricultural policies, to
verify the farmers’ applications for public sub-
sidies, or assist in the practice of precision ag-
riculture (ALGANCI et al. 2013). Accurate and
up-to-date maps also may form the basis for
yield estimates or environmental and land use
planning at local, regional, and national lev-
els. Large area mapping of LU/LC from ter-
restrial survey is, however, very expensive as
well as time-intensive. Hence, LU/LC derived
from remote sensing data is of utmost impor-
tance. Cropland classification is still a major
challenge, considering issues like data availa-
bility, classification accuracy, operational pro-
cessing or acquisition costs (MULLA 2013, LU
&WENG 2007). Advantages of satellite images
include large area coverage, mainly operation-
al processing and availability of low cost data
(ARAÚJO et al. 2011). As a consequence, a mul-
titude of studies on crop type identification
using multispectral data have been performed
in the past decades (e.g. MARIOTTO et al. 2013,
CRUZ-RAMÍREZ et al. 2012, MATHUR & FOODY
2008, BRISCO & BROWN 1995, BUECHEL et al.
1989, BAUER & CIPRA 1973). The main prob-
lem for detecting crop types using one single
multispectral dataset has been the discrimina-
tion uncertainty which is caused by variations
of many factors, e.g. different phenological
stages or varying fractional vegetation cover,
shapes and textures (ALGANCI et al. 2013, LIU
et al. 2002). Different vegetation types fre-
quently show very similar spectral behaviour
and inner-field spectral variations are often
higher than observed between different crop
types (THENKABAIL et al. 2011, GUERSCHMAN
et al. 2003). Therefore, most studies used
only a few classes or merged crops classes
in broader categories (e.g. GUERSCHMAN et al.
2003, BRISCO & BROWN 1995). In order to han-
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the pluvial period and moderate temperatures
during the winter season. Dominant class-
es were grains (rye and oat) and chickpeas.
Smaller fields were mainly cultivated with
peas, tomato, different types of cabbage and
salads. In total 16 different classes were iden-
tified. During the second field survey, crops
of P2 were mapped in June 2013 (in total 826
fields). The beginning of P2 coincided with
the end of the rainy season. Arid conditions
increased during this period from April to Au-
gust (IMS 2014). As a consequence, farmers
have to store and provide water for irrigation.
During this cultivation period cotton, water-
melon, maize and sorghum were the dominant
crops. Compared to P1 much more diverse
crop plants were cultivated in P2, such as
beetroot, leek, zucchini, pumpkin, muskmel-
on or different sorts of cabbages and salads.
Additionally, non-cultivated fields like fallow,
green fallow and grain residues were also con-
sidered. Altogether 27 different classes were
mapped. After the end of August the weath-
er conditions were not suitable for cultivation
any longer except for fruit trees, e.g. avocados,
oranges, peaches, or olives.

2.3 Satellite Data

The acquisition of RapidEye data was enabled
within the RESA project (RESA 597). The
data was provided in preprocessing level 3A.
Level 3A data include orthorectification with
radiometric, geometric and terrain correction
(WEICHELT et al. 2013). Subsequently, atmos-
pheric correction was conducted with the ge-
neric processing chain CATENA developed
at DLR (KRAUSS et al. 2013). Two individu-
al image datasets were available for each cul-
tivation phase (P1: Jan13, Mar13, P2: Jun13,
Aug13, Tab. 1). Furthermore, two additional
datasets were acquired in October 2012 and
April 2013. The October dataset represented
the end of the prior arid non-agricultural pe-
riod and at the same time the beginning of the
ongoing first cultivation phase P1. April is the
transition period between P1 and P2. Each
dataset was a mosaic from two RapidEye tiles
(in total 1,000 km2 per mosaic).

of classifying large-area datasets with many
classes and complex algorithms such as SVM,
there is a need to perform a pre-classification
approach/procedure to accelerate this selec-
tion process.
Given the above described background, the

major goals of this study were:
1) to investigate the potential of multitemporal
RapidEye data for large-scale identifica-
tion of crops with particular emphasis on
accurate spectral separability of numer-
ous different crop types and agricultural
classes and

2) to perform a pre-classification procedure
in order to find the best multitemporal data
setting avoiding long processing times.

2 Study Site and Data

2.1 Study Site

The study site (32.5° N, 35.0° E / 32.9° N,
35.3° E) is located in northern Israel and ex-
tends from the bay of Haifa to the plain of Jes-
reel covering an area of 2,500 km2. The region
between Haifa, Nazareth and the Sea of Gali-
lee is one of the main agricultural production
areas in Israel. The region is characterized by
Mediterranean climate with hot and dry sum-
mers as well as rainy cool winters (SINGER
2007). Rainfall is limited from September
to May with a mean annual precipitation of
539 mm (IMS 2014). Natural conditions in the
investigated area allow crop cultivation dur-
ing two cultivation periods within one year.
The first cultivation period (P1) considered for
this research lasted from October 2012 to late
March 2013. After the crops were harvested,
the second cultivation period (P2) started in
April and ended in August 2013. During the
dry and hot months in summer (May to Au-
gust) irrigation is quite common.

2.2 Mapping Land Use / Land Cover

For each cultivation period a field campaign
was conducted. During the first field campaign
in March 2013 crops of P1 for 425 agricultural
fields were mapped. P1 was characterized by



24 Photogrammetrie • Fernerkundung • Geoinformation 1/2015

ing two classes, JM shows a saturating behav-
iour asymptotically to 2.0, with 0 implying
complete similarity and 2 indicating complete
separability.
In order to compare each class with each

other, the number of possible parings N can
be calculated as

( ) !
2 2!( 2)!

nnN
n

= =
−

(1)

where n is the number of classes.
A well-established operationally-used al-

gorithm ML and a modern machine-learning
algorithm SVM were compared regarding
their accuracy and performance classifying
the crop types. ML and SVM were applied to
the datasets which provided best separabil-
ity results in separability analysis. ML is the
most commonly classifier in practice, because
of its robustness (KHAN et al. 2012, HALL et
al. 1995), but often produces ‘noisy’ results
for complex landscapes (LU & WENG 2007).
SVMs are based on statistical learning theory
that optimizes separating boundaries between
two classes (SESNIE et al. 2010, VAPNIK 1999)
without requirements such as normal distri-
bution. In the presented study, a radial basis
function (with γ = 0.067 and C = 100.00) was
selected for SVM parameterization.
In order to assess the performance of both

classifiers OAA was calculated. Furthermore,
the kappa coefficient κ was determined. κ
ranges between 0 and 1, whereas 1 indicates
100% pixels correctly classified.

3 Methods

Four agricultural areas representing different
natural settings (coastal plain, hilly terrain)
in rural and sub-urban environment were se-
lected for mapping. These areas included large
scale agriculture as well as small fields with
very heterogeneous crop types. A GIS vector
layer was created to extract mapped agricul-
tural fields from satellite images. All individu-
al fields were buffered to mask boundary pix-
els which might represent mixed land use and
hence, should be excluded from further pro-
cessing. The fields mapped during both cam-
paigns (P1 and P2) were divided into a train-
ing and a validation dataset. Fields represent-
ing in the mean about 25% of the sampled area
were used for independent validation. How-
ever, depending on availability, the size of the
area considered for validation varied by class
(about 16% of the area in the minimum (P1:
chickpea; P2: leek) and 41% in the maximum
(P1: cabbage; P2: zucchini)).
A pre-classification procedure was applied

to the mono- and multitemporal RapidEye
data to prove which dataset provided the best
class separability. In this context, Jeffries-
Matusita separability (JM) was calculated for
each class pair of P1 and P2. JM is based on
a distance calculation between a pair of prob-
ability distributions (THOMAS et al. 1987). The
considered classes had to be normal distribut-
ed and hence, small classes such as napa cab-
bage should be interpreted carefully. Regard-

Tab. 1: Datasets used for separability testing.

Cultivation
period

Stack
names

Acquisition
months

Number of
datasets (bands)

P1

Oct12 Oct 2012 1 (5)

Jan13 Jan 2013 1 (5)

Mar13 Mar 2013 1 (5)

P1-stack-1 Jan + Mar 2013 2 (10)

P1-stack-2 Oct 2012 + Jan + Mar 2013 3 (15)

P2

Jun13 Jun 2013 1 (5)

Aug13 Aug 2013 1 (5)

P2-stack-1 Jun + Aug 2013 2 (10)

P2-stack-2 Oct 2012 + Jun + Aug 2013 3 (15)

P2-stack-3 Oct 2012 + Apr + Jun + Aug 2013 4 (20)
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expected that this stage is most appropriate
for crop differentiation. Results of the sepa-
rability analysis confirmed this assumption
but the results still show 41 critical pairings
(Tab. 2). Tab. 3 (upper part) illustrates the ten
worst parings for P1. Considering the spatial
resolution of RapidEye with one pixel cover-
ing an area of 25 m2, most of these not clear-
ly separable classes showed a mixed signal of
soil and vegetation, which is especially true
for green fallow, onions, orchards, fennel and
leek. These crops reach their maximum cov-
erage at various times. Therefore, separability
of these classes was not satisfying. Obviously
separating the different crops just by use of
monotemporal multispectral RapidEye image
is hardly possible.
As a next step, multitemporal datasets were

tested for P1 regarding their feasibility to sep-
arate LU/LC classes. Multi-temporal datasets
allow considering different growth stages of
crops and additional spectral information for
class separation. Stacking of two datasets (P1-
stack-1: Jan13 and Mar13) including 10 spec-
tral bands already had a tremendous effect
on the improvement of spectral separability
(Tab. 2) reducing the number of critical pair-
ings to ten. Only the worst pairing (onions and
green fallow) showed a JM value of less than
1.7 (1.57, see Tab. 3). The increasing spectral
information representing additional temporal
information was the essential factor for the
improvement.

4 Results and Discussion

4.1 Spectral Separability

First, spectral separability was investigated
on the basis of the mono- and multitemporal
datasets for all classes from P1 and P2. Ac-
cording to (1) there are 120 pairings in P1 and
351 pairings in P2. Pairings are considered to
be critical if the JM value was less than 1.9
(RICHARDS 2005). Tab. 2 illustrates the im-
provement of class separability with increas-
ing temporal and hence, spectral dimension.
The dataset from October 2012 (Oct12) pro-

vided the worst separability for P1 with 90
critical pairings of 120 pairings in total. Ag-
ricultural fields were fallow at this time, crops
mainly not germinated and discrimination be-
tween the different land use types, except for
different orchard species, was impossible. The
second dataset Jan13 represented the mid-po-
sition of the phenological development of P1.
Many crops were well developed while oth-
ers were still in early growth stages. Due to
the very similar spectral behaviour, the dif-
ferentiation of several crops was not possible.
Hence, 61 of 120 class pairings received JM
values below 1.9 indicating limited separa-
bility. The third single date was from March
2013 (Mar13) when the mapping campaign
was conducted. At this time root crops were
already mature and grain crops were at the
phenological stage of ears emergence. It was

Tab. 2: Spectral separability of training data for both cultivation period P1 (above), 16 classes, 120
pairings and P2 (below), 27 classes, 351 pairings.

Cultivation
period Stacks Number

datasets
Number
classes

Number
critical Pairs

Worst
pairing (JM)

P1

Oct12 1 16 90 0.3

Jan13 1 16 61 0.55

Mar13 1 16 41 0.61

P1-stack-1 2 16 10 1.57

P1-stack-2 3 16 1 1.89

P2

Jun13 1 27 126 0.71

Aug13 1 27 176 0.69

P2-stack-1 2 27 26 0.51

P2-stack-2 3 27 9 1.77

P2-stack-3 4 27 1 1.89



26 Photogrammetrie • Fernerkundung • Geoinformation 1/2015

classes was made up by mixed pixels contain-
ing a high portion of soil reflectance due to the
onions planted in lines leaving uncovered soil
in between on one hand and the successional
character of green fallow resulting in a very
heterogeneous soil-influenced spectral behav-
iour on the other hand. Tab. 3 illustrates the
improvement of separability with stacking ad-
ditional datasets but it is clearly visible, that
only the soil information yielded JM-values
over 1.9, except for onions and green fallow.
Monotemporal datasets separability analy-

sis for P2 (Tab. 2) provided more critical pair-
ings compared to P1. The main reason was the
much higher number of classes during this
cultivation period. The monotemporal data-
set Jun13 represented the month in which the

Further on, the Oct12 RapidEye image was
included which provided additional spectral
information of soils and fallows. Due to strip
farming or coarse seeding of many crops,
the spectral reflectance was characterized
by mixed pixels containing information of
soil and plant spectral reflectance, even dur-
ing the flowering. P1-stack-2 had 15 spectral
bands and combined the spectral informa-
tion of soils from Oct12 with the spectral in-
formation of developed plants from Jan13 and
Mar13. The additional information on soil re-
flectance – not included in P1-stack-1 – im-
proved the separability substantially. Only
one critical pairing (onions and green fallow,
JM = 1.884) remained with a JM value close
to 1.9. The typical spectral reflectance of both

Tab. 3: The ten worst parings with JM values (bad separability < 1.8 (red); 1.8 – 1.9 moderate
separability (yellow); good separability > 1.9 (green), 2 complete separability) for all mono- and
multitemporal datasets in P1 and P2.

Critical pairings Oct12 Jan13 Mar13 P1-
stack-1

P1-
stack-2

P1

1 Green fallow Onion 0.304 0.551 0.614 1.575 1.887

2 Green fallow Chickpeas 0.546 0.634 0.775 1.789 1.935

3 Green fallow Orchard 0.547 0.661 1.107 1.813 1.943

4 Chickpeas Orchard 0.604 0.831 1.125 1.848 1.948

5 Peas Pastureland 0.636 0.833 1.187 1.859 1.960

6 Chickpeas Onion 0.684 0.867 1.198 1.860 1.969

7 Peas Green fallow 0.699 1.049 1.281 1.880 1.972

8 Grain Millet 0.715 1.074 1.338 1.890 1.974

9 Leek Onion 0.734 1.177 1.375 1.890 1.977

10 Fennel Orchard 0.738 1.229 1.474 1.894 1.982

Jun13 Aug13 P2-
stack-1

P2-
stack-2

P2-
stack-3

P2

1 Green fallow Grain residues 0.705 0.690 1.514 1.773 1.890

2 Green fallow Orchard 0.792 0.708 1.552 1.812 1.928

3 Pumpkin Watermelon 0.801 0.708 1.664 1.838 1.949

4 Fallow Grain residues 0.883 0.748 1.700 1.844 1.951

5 Muskmelon Watermelon 0.925 0.791 1.709 1.847 1.975

6 Muskmelon Pumpkin 1.007 0.858 1.715 1.868 1.978

7 Maize Sorghum 1.020 0.862 1.724 1.873 1.979

8 Muskmelon Onion 1.115 0.868 1.725 1.875 1.982

9 Onion Pumpkin 1.139 0.914 1.729 1.888 1.988

10 Tomato Watermelon 1.142 0.968 1.732 1.919 1.989
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lar observation applies for maize and sorghum
which physiognomies are relatively homoge-
nous except for the blossoms and the corncob.
These crop types were only separable through
the temporal information. Green fallow and
grain residues as well as green fallow and
orchards appeared as the two worst parings
which can be explained by mixed pixels of soil
and plant signal. These classes are character-
ized by very heterogeneous inner-field varia-
tions and Tab. 3 indicates that the problem was
only solved by adding the soil information
from October 2012 (Oct 12).
In order to separate the nine remained pair-

ings, Apr13 was included as an additional
dataset for P2. The dataset was acquired on
24th April 2013. At this time harvesting dur-
ing P1 was completed and plant growth of
P2 started for allowing the detection of ini-
tial spectral signals of vegetation in the satel-
lite data. P2-stack-3 (Oct12, Apr13, Jun13 and
Aug13) including 20 spectral bands provided
the best separability for P2. Only green fallow
and grain residual remained as a critical pair-
ing. Nevertheless, the JM value of 1.89 still
suggested a very high quality of separability.

4.2 Classification

The stacks P1-stack-2 and P2-stack-3 showed
the best spectral separability for the cultiva-
tion periods. Therefore, these multitemporal
datasets were selected for both classifiers ML
and SVM. The training dataset was used to
calibrate ML and SVM and the classifications
were applied to the entire mosaics consisting
of two RapidEye tiles (1,000 km2). In order to
validate the results, the validation dataset was
used to determine OAA and κ. Tab. 4 illus-
trates the validation results for the performed
classifications. OAA and κ indicated very high
classification accuracies for both algorithms.
94.83% were classified correctly with ML in
P1 and a κ of 0.93 indicated a very robust and
highly accurate classification.
With an OAA of 96.13% and κ = 0.95 the

SVM provided a slightly higher accuracy, sug-
gesting that SVM was better suited to handle
higher dimensional data than ML. The same
tendency was observed for P2. Even with 27
classes, the SVM classification accuracy was

mapping campaign was conducted. The be-
ginning of June was very appropriate for map-
ping because root crops were almost mature
and easy to distinguish. The number of criti-
cal pairings in Jun13 (126) was lower than for
Aug13 (176). In Aug13 the crops were mostly
harvested, except late crops like maize, sor-
ghum, and cotton.
Tab. 2 indicates a substantial improvement

for P2-stack-1 (June and August 2013) in com-
parison to monotemporal analysis. From more
than 100 critical pairings for the monotempo-
ral datasets, critical pairings dropped to 26.
However, the worst pairing green fallow and
grain residues had still a very low JM val-
ue (0.51). Analogous to P1, the October 2012
dataset was used in P2-stack-2 as additional
spectral soil/fallow information. Separability
test for P2-stack-2 provided crucial improve-
ments. Of 351 parings only nine were critical
(Tab. 3) and even the worst pairing showed a
high JM value (1.77).
Tab. 3 (lower part) illustrates the ten worst

pairings of all 351 in P2. It is remarkable that
watermelons, muskmelons and pumpkins ap-
peared most frequently. All those classes be-
long to the same botanic family (Cucurbita-
ceae). At the beginning of plant development
the physiognomy of these crops is very simi-
lar. As a consequence, these crop types show
almost identical spectral reflectance and sep-
aration was not feasible. This is well in line
with TIGGES et al. (2013) who confirmed for
multispectral data, that only multitemporal
analyses allow distinguishing plants in deep-
er levels of the botanical taxonomy. A simi-

Tab. 4: Accuracy assessment of ML and SVM
for both cultivation periods (t(h) = processing
time in hours (OAA = overall accuracy in %)).

Cultivation period P1 P2

Stacks P1-stack-2 P2-stack-3

Class No. 16 27

ML

OAA 94.83 93.28

Κ 0.93 0.92

t(h) 5 14

SVM

OAA 96.13 94.01

Κ 0.95 0.93

t(h) 27 82
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Fig. 1 compares the mapping of P2 with ML
and SVM classifications from Jun13 and P2-
stack-3 (best multitemporal separability) for a
part of the study site. The Jun13 ML classifi-
cation provided an OAA of 66.94% (κ = 0.63)
while the monotemporal SVM classification at
least could classify the Jun13 dataset with an
OAA of 77.18% (κ = 0.74). Obviously, for both
classifiers a tremendous increase in classifica-
tion accuracy was achieved using multi- in-
stead of monotemporal datasets. GUERSCHMAN
et al. 2003 obtained similar results, but only
after merging nine agricultural classes to four
broader classes.
LU & WENG (2007) emphasized the ‘noisy’

results for ML classifications. This is clearly
visible for the monotemporal ML classifica-
tion in Fig. 1. Furthermore, a lot of additional
misidentified classes appear in both monotem-

far above 90% (94.01%) with κ of 0.93 point-
ing at very robust classification results (ML:
OAA = 93.28%; κ = 0.92). However, besides
the classification accuracy, the performance
of both classifiers was considered. In compar-
ison to ML the processing time (t in hours) in-
creased about a factor of 5 or 6 for SVM. As
a consequence, SVM classification of P2 took
3.5 days for the 27 classes. At least regarding
the presented study a slight increase in classi-
fication accuracy has to be weighed against a
substantial increase in processing time.
According to the separability tests, the

Jun13 dataset would allow the best classifi-
cation result of all monotemporal datasets in
P2. Consequently, ML and SVM classification
were applied additionally to this dataset to al-
low a comparison of mono- and multitemporal
datasets in the spatial domain.

Fig. 1: Comparison of ML and SVM Classification for a monotemporal dataset of June 2013
(Jun13) and a multitemporal dataset (P2-stack-3) for a part of the study site.
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residues. The classification of the watermelon
fields (Fig. 1 crème) was slightly better using
the SVM, because the ML identified some
pixels as pumpkin. Pumpkins and watermel-
ons are from the same botanic family (Cucur-
bitaceae) and have a similar appearance at the
beginning of the growing season. Especially
the ML classification for the monotemporal
image showed a strong mixture between these
root crops. The multitemporal classifications
contain almost no misidentified classes.

5 Conclusions and Outlook

The present study confirmed the assumption
that multispectral satellite data have great po-
tential for multitemporal LU/LC mapping of
numerous different agricultural classes with
high accuracies. RapidEye data are not only
convenient from the spatial point of view (5 m
GSD, 79 km swath width), but also from ra-
diometry the increased spectral information
of multi-date stacks play an important role for
crop differentiation. The JM separability was
proven as a very useful pre-testing method to
find the best stack combination for the spec-
tral separation of different LU/LC classes. For
the first cultivation period (P1) with 16 classes
and thus 120 class pairings a multi-date stack
of three datasets was used to separate almost
all classes. Only one pairing remained closely
under the threshold. However, the classifica-
tions provided accuracies over 90% for both
selected classifiers (ML 94.83% and SVM
96.13%). The same applies to the second peri-
od (P2). The class separability was incremen-
tally improved by stacking RapidEye tiles of
different dates during the growing season. 27
classes were separated with a multi-date data-
set of four stacked RapidEye images. Both
classification results supported the assump-
tion that multitemporal datasets provide high-
er potential in LU/LC classification with over-
all accuracies over 90% (ML 93.28%, SVM
94.01%). SVM showed its suitability for spec-
tral data with higher dimension while ML pro-
vided slightly lower classification accuracies
for both periods. However, considering the
performance, ML classified the entire dataset
with about 1,000 km2 much faster than SVM
(by a factor of 5).

poral classifications ML and SVM. These
classes occurred in the classification of the en-
tire study site but not in the presented subset
in Fig. 1. Regarding the large chickpeas field
(Fig. 1 rose) in the south, ML was not able to
distinguish between chickpeas, grain residues
or grains based on the monotemporal image.
The SVM in the monotemporal image mostly
identified this field as grain residues. In gener-
al, chickpeas fields have spectrally a very high
inner-field variation and in June the plants
were already dried out. Hence, the classifiers
could not differentiate between dried grains
and dried chickpeas in the single June dataset.
The multitemporal classifications, in contrast,
showed highly accurate classification results.
This refers to additional phenological infor-
mation, e.g. the signal of young plants in April
and the longer lasting growing period at the
end of P2, which was helpful to correctly iden-
tify chickpeas.
The same applies to the cotton fields in

Fig. 1 (pink), especially in the neighbourhood
of the already mentioned chickpea field. ML
on monotemporal data identified fennel, wa-
terlily, sunflower and other classes instead of
cotton. Due to the dry and hot climate condi-
tions in June (SINGER 2007) cotton fields need
to be irrigated. Furthermore, cotton was culti-
vated in stripes. Consequently a RapidEye pix-
el of 25 m2 contains a mixed signal of soil (dry
and irrigated) and plant (cotton). The result of
the SVM in this case was slightly better, but
only for the multitemporal dataset almost all
pixels of the cotton fields were classified cor-
rectly. Again, the multitemporal information
was the determining factor for crop differenti-
ation. The harvested fields with crop residues
(Fig. 1 brown) were classified very precisely
except for one field in the north. This field was
still covered by a lot of straw during field sur-
vey and hence, ML classified most pixels as
grains. In general, the P2 mapping contains
only a few fields with mature and dry grains.
Only the temporal information allowed the
separation between unharvested grains and
the field with a high amount of grain residues.
Considering only the two multitempo-

ral classifications in Fig. 1, results were very
similar, except one fallow in the south of the
water reservoirs. The ML of P2-stack-3 was
identifying a lot of pixels of this field as grain
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