# Geometrische Validierung von Landnutzungsobjekten

#### Markus Möller & Cornelia Gläßer



Martin-Luther-Universität Halle-Wittenberg Institut für Geowissenschaften und Geographie Fachgebiet Geofernerkundung und Kartographie Von-Seckendorff-Platz 4, 06120 Halle (Saale)



Möller & Gläßer | Universität Halle | Fachgebiet Geofernerkundung

# Gliederung

- Genauigkeit thematischer Kartenwerke
  - Thematische Genauigkeit
  - Positionsgenauigkeit
- Lagegenauigkeit
  - "The problem of matching objects"
  - Flächenübereinstimmung
  - Positionsübereinstimmung
  - Gesamtlagegenauigkeit

### 3 Beispiel

- Untersuchungsgebiet
- Ergebnisse



#### Zusammenfassung



# Gliederung

- Genauigkeit thematischer Kartenwerke
  - Thematische Genauigkeit
  - Positionsgenauigkeit

#### Lagegenauigkeit

- "The problem of matching objects"
- Flächenübereinstimmung
- Positionsübereinstimmung
- Gesamtlagegenauigkeit

### 3 Beispie

- Untersuchungsgebiet
- Ergebnisse
- Zusammenfassung



| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit |  |
|--------------------------------------|-----------------|--|
| • <b>0</b> 00                        |                 |  |
| Thematische Genauigkeit              |                 |  |

- Genauigkeit quantitativer Attribute
- Richtigkeit nichtquantitativer Attribute
- Richtigkeit der Klassifikation

Vergleich der den Objekten oder ihren Attributen zugewiesenen Klassen mit einer allgemein anerkannten Aussage oder mit einem Referenzdatenbestand



#### ISO 19138 (2006).

#### Geographic information: Data Quality Measures.

Technical report, International Organization for Standardization, Geneve, Switzerland.



PAS 1071 (2007).

Qualitätsmodell für die Beschreibung von Geodaten. Technical report, DIN Deutsches Institut für Normung e.V., Berlin.



| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit |  |
|--------------------------------------|-----------------|--|
| 0000                                 |                 |  |
| Thematische Genauigkeit              |                 |  |

- Genauigkeit quantitativer Attribute
- Richtigkeit nichtquantitativer Attribute
- Richtigkeit der Klassifikation Vergleich der den Objekten oder ihren Attributen zugewiesenen Klassen mit einer allgemein anerkannten Aussage oder mit einem Referenzdatenbestand



#### ISO 19138 (2006).

#### Geographic information: Data Quality Measures.

Technical report, International Organization for Standardization, Geneve, Switzerland.



PAS 1071 (2007).

Qualitätsmodell für die Beschreibung von Geodaten. Technical report, DIN Deutsches Institut für Normung e.V., Berlin.

### Konfusionsmatrix



Die grau hervorgehobenen Elemente der Hauptdiagonalen repräsentieren die Fälle, wo Referenz und Klassifikationsergebnis inhaltlich übereinstimmen. Die übrigen Fälle außerhalb der Diagonalen enthalten dagegen die Fälle, wo Referenz und Klassifikationsergebnis keine Übereinstimmung aufweisen.



#### Foody, G.M. (2002).

Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80, 185 – 201.

Lagegenauigkeit 00000 Beispiel

Thematische Genauigkeit

### Thematische Genauigkeitsmaße

| No. | Name                                               | Formula                                                                                                                               | References                  |
|-----|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1.  | User's accuracy                                    | $ua_i = p_{ii}/p_{i+}$                                                                                                                | Story and Congalton (1986)  |
| 2.  | Producer's accuracy                                | $pa_i = p_{ii}/p_{+i}$                                                                                                                | Story and Congalton (1986)  |
| 3.  | Average of user's and producer's accuracy          | $aup_i=(ua_i+pa_i)/2$                                                                                                                 |                             |
| 4.  | Individual classification success index            | $ICSI_i = ua_i + pa_i - 1$                                                                                                            | Koukoulas and Blackburn     |
|     |                                                    |                                                                                                                                       | (2001), Türk (2002)         |
| 5.  | Hellden's mean accuracy                            | $mah_i=2/(1/ua_i+1/pa_i)=2p_{ii}/(p_{i+}+p_{+i})$                                                                                     | Hellden (1980), Rosenfield  |
|     |                                                    |                                                                                                                                       | and Fitzpatrick-Lins (1986) |
| 6.  | Short's mapping accuracy                           | $mas_i = p_{ii}/(p_{i+}+p_{+i}-p_{ii})$                                                                                               | Short (1982), Rosenfield    |
|     |                                                    |                                                                                                                                       | and Fitzpatrick-Lins (1986) |
| 7.  | Conditional kappa (user's)                         | $cku_i = (ua_i - p_{+i})/(1 - p_{+i}) = (p_{ii} - p_{i+}p_{+i})/(p_{i+} - p_{i+}p_{+i})$                                              | Rosenfield and              |
|     |                                                    |                                                                                                                                       | Fitzpatrick-Lins (1986)     |
| 8.  | Conditional kappa (producer's)                     | $ckp_i = (pa_i - p_{i+})/(1 - p_{i+}) = (p_{i+} - p_{i+}p_{+i})/(p_{+i} - p_{i+}p_{+i})$                                              | Rosenfield and              |
|     |                                                    |                                                                                                                                       | Fitzpatrick-Lins (1986)     |
| 9.  | Modified conditional kappa (user's)                | $mcku_i = (ua_i - 1/m)/(1 - 1/m)$                                                                                                     | Stehman (1997)              |
| 10. | Modified conditional kappa (producer's)            | $mckp_i = (pa_i - 1/m)/(1 - 1/m)$                                                                                                     | Stehman (1997)              |
| 11. | Category-level normalized accuracy                 | cnma <sub>i</sub> (Normalizing error matrix by forcing the marginal                                                                   | Congalton (1991)            |
|     |                                                    | total of individual category to 1)                                                                                                    |                             |
| 12. | Ground truth index                                 | $GT_i = (p_{ii} - R_i)/(1 - R_i)$ where $R_i$ is lucky guesses (chance agreement),                                                    | Türk (1979), Rosenfield     |
|     |                                                    | which can be calculated using Türk's (1979) algorithm.                                                                                | and Fitzpatrick-Lins (1986) |
| 13. | Relative change of entropy given a category on map | $ecnu_i = (H(A) - H(A b_i))/H(A)$ where,                                                                                              | Finn (1993)                 |
|     |                                                    | $H(A) = -\sum_{i=1}^{m} p_{+j} \log(p_{+j}), H(A b_i) = -\sum_{i=1}^{m} \frac{p_{ij}}{p_{ij}} \log\left(\frac{p_{ij}}{p_{ij}}\right)$ |                             |
| 14  | Relative change of entropy given a category on     | $p_{j=1}^{j=1} = p_{l+} (P_{l+})$<br>$p_{j=1}^{j=1} P_{l+} (P_{l+})$                                                                  | Finn (1993)                 |
|     | around truthing                                    | $m = p_{ii} (p_{ii})$                                                                                                                 |                             |
|     | ground addning                                     | where, $H(B) = -\sum_{i=1}^{N} p_{i+}\log(p_{i+}), H(B a_j) = -\sum_{i=1}^{N} \frac{Py}{p_{+j}}\log\left(\frac{Py}{p_{+j}}\right)$    |                             |



Liu, C., Frazier, P. & Kumar, L. (2007).

Comparative assessment of the measures of thematic classification accuracy. *Remote Sensing of Environment*, 107, 606 – 616.



| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit |  |
|--------------------------------------|-----------------|--|
| 00 <b>00</b>                         |                 |  |
| Positionsgenauigkeit                 |                 |  |

- Relative Genauigkeit
- Rasterdatengenauigkeit
- Absolute Genauigkeit

Maß der Übereinstimmung des festgestellten Koordinatenwertes mit dem wahren oder als wahr angenommenen Koordinatenwert



#### ISO 19138 (2006).

Geographic information: Data Quality Measures.

Technical report, International Organization for Standardization, Geneve, Switzerland.



#### PAS 1071 (2007).

Qualitätsmodell für die Beschreibung von Geodaten. Technical report, DIN Deutsches Institut für Normung e.V., Berlin.



| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit |  |
|--------------------------------------|-----------------|--|
| 0000                                 |                 |  |
| Positionsgenauigkeit                 |                 |  |

- Relative Genauigkeit
- Rasterdatengenauigkeit
- Absolute Genauigkeit

Maß der Übereinstimmung des festgestellten Koordinatenwertes mit dem wahren oder als wahr angenommenen Koordinatenwert



#### ISO 19138 (2006).

Geographic information: Data Quality Measures.

Technical report, International Organization for Standardization, Geneve, Switzerland.



#### PAS 1071 (2007).

Qualitätsmodell für die Beschreibung von Geodaten. Technical report, DIN Deutsches Institut für Normung e.V., Berlin.



#### Wang, Z., Jensen, J.R. & Im, J. (2010).

An automatic region-based image segmentation algorithm for remote sensing applications.

Environmental Modelling & Software, 25, 1149 - 1165.



| Genauigkeit thematischer Kartenwerke |       |          |  |
|--------------------------------------|-------|----------|--|
| 0000                                 | 00000 | 00000000 |  |
| Positionsgenauigkeit                 |       |          |  |

- Relative Genauigkeit
- Rasterdatengenauigkeit
- Absolute Genauigkeit
   Maß der Übereinstimmung des festgestellten Koordinatenwertes mit dem wahren oder als wahr angenommenen Koordinatenwert

#### ISO 19138 (2006).

Geographic information: Data Quality Measures. Technical report, International Organization for Standardization, Geneve, Switzerland.



#### PAS 1071 (2007).

Qualitätsmodell für die Beschreibung von Geodaten. Technical report, DIN Deutsches Institut für Normung e.V., Berlin.

# Lagegenauigkeit

Absolute Positionsgenauigkeit von zweidimensionalen flächenhaften Objekten

- Flächenübereinstimmung
- Positionsübereinstimmung



# Gliederung

- Genauigkeit thematischer Kartenwerke
  - Thematische Genauigkeit
  - Positionsgenauigkeit

### Lagegenauigkeit

- "The problem of matching objects"
- Flächenübereinstimmung
- Positionsübereinstimmung
- Gesamtlagegenauigkeit

#### 3 Beispie

- Untersuchungsgebiet
- Ergebnisse
- Zusammenfassung



| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit<br>●○○○○ | Beispiel | Zusammenfassung |
|--------------------------------------|--------------------------|----------|-----------------|
| "The problem of matching objects"    |                          |          |                 |
| R<br>the<br>P                        | P R                      | R<br>+   | P<br>+<br>R     |

Übereinstimmungsgrad (orange) von geometrischen Prüf- (grün) und Referenzobjekten (blau)



Zhan, Q., Molenaar, M., Tempfli & K., Shi, W. (2005).

Quality assessment for geo-spatial objects derived from remotely sensed data. International Journal Remote Sensing, 26, 2953–2974.





DGPF-AK Auswertung von Fernerkundungsdaten | Halle (Saale) | 26.10.2011

| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit<br>●○○○○ | Beispiel<br>00000000 |        |
|--------------------------------------|--------------------------|----------------------|--------|
| "The problem of matching objects"    |                          |                      |        |
| R                                    | R<br>+<br>+              | R<br>+               | P<br>+ |

Übereinstimmungsgrad (orange) von geometrischen Prüf- (grün) und Referenzobjekten (blau)

### Prinzipien

- Integrative Betrachtung von Positions- und Flächendifferenzen
- Hierarchischer und zweiseitiger Vergleich von Pr
  üf- und Referenzobjekten



Zhan, Q., Molenaar, M., Tempfli & K., Shi, W. (2005).

Quality assessment for geo-spatial objects derived from remotely sensed data. International Journal Remote Sensing, 26, 2953–2974.



| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit<br>○●○○○ | Beispiel<br>00000000 |  |
|--------------------------------------|--------------------------|----------------------|--|
| Flächenübereinstimmung               |                          |                      |  |



#### **Relative Area**

$$RA_R = rac{A_I}{A_R}$$

$$RA_P = rac{A_I}{A_P}$$
 $RA = rac{RA_R + RA_P}{2}$ 

л



Möller, M., Lymburner, L. & Volk, M. (2007).

The comparison index: A tool for assessing the accuracy of image segmentation.

International Journal of Applied Earth Observation and Geoinformation, 9, 311 – 321.



Möller & Gläßer | Universität Halle | Fachgebiet Geofernerkundung

DGPF-AK Auswertung von Fernerkundungsdaten | Halle (Saale) | 26.10.2011

| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit | Beispiel |  |
|--------------------------------------|-----------------|----------|--|
| 0000                                 | ○●○○○           | 00000000 |  |
| Flächenübereinstimmung               |                 |          |  |



#### **Relative Area**

$$RA_{R} = \frac{A_{I}}{A_{R}} = \frac{7 \text{ cm}^{2}}{8,6\text{cm}^{2}} = 0,82$$
$$RA_{P} = \frac{A_{I}}{A_{P}} = \frac{7 \text{ cm}^{2}}{32,5\text{cm}^{2}} = 0,12$$
$$RA = \frac{RA_{R} + RA_{P}}{2} = 0,52$$



Möller, M., Lymburner, L. & Volk, M. (2007).

The comparison index: A tool for assessing the accuracy of image segmentation.

International Journal of Applied Earth Observation and Geoinformation, 9, 311 – 321.



Möller & Gläßer | Universität Halle | Fachgebiet Geofernerkundung

| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit | Beispiel<br>00000000 |  |
|--------------------------------------|-----------------|----------------------|--|
| Positionaüboroinatimmung             |                 |                      |  |



 $d_r = dist(c_i, c_r)$ 

$$d_p = dist(c_i, c_p)$$

$$d_{r,max} = dist(c_i, c_{r,max})$$

$$d_{p,max} = dist(c_i, c_{p,max})$$



Möller, M., Lymburner, L. & Volk, M. (2007).

The comparison index: A tool for assessing the accuracy of image segmentation.

International Journal of Applied Earth Observation and Geoinformation, 9, 311 – 321.



Möller & Gläßer | Universität Halle | Fachgebiet Geofernerkundung

DGPF-AK Auswertung von Fernerkundungsdaten | Halle (Saale) | 26.10.2011

| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit<br>○○●○○ | Beispiel<br>00000000 |  |
|--------------------------------------|--------------------------|----------------------|--|
| Positionsübereinstimmung             |                          |                      |  |



$$d_r = dist(c_i, c_r) = 0, 3 \text{ cm}$$

$$d_p = dist(c_i, c_p) = 2, 2 \text{ cm}$$

$$d_{r,max} = dist(c_i, c_{r,max}) = 1, 6 \text{ cm}$$

$$d_{p,max} = dist(c_i, c_{p,max}) = 2, 2 \text{ cm}$$



The comparison index: A tool for assessing the accuracy of image segmentation.

International Journal of Applied Earth Observation and Geoinformation, 9, 311 – 321.



DGPF-AK Auswertung von Fernerkundungsdaten | Halle (Saale) | 26.10.2011

Geometrische Validierung von Landnutzungsobjekten

| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit | Beispiel |  |
|--------------------------------------|-----------------|----------|--|
| 0000                                 | ○○○●○           | 00000000 |  |
| Positionsübereinstimmung             |                 |          |  |



$$RP_R = 1 - \frac{d_r}{d_{r,max}}$$

$$RA_P = 1 - rac{d_p}{d_{p,max}}$$

$$RP = \frac{RP_R + RP_P}{2}$$



#### Möller, M., Lymburner, L. & Volk, M. (2007).

The comparison index: A tool for assessing the accuracy of image segmentation.

International Journal of Applied Earth Observation and Geoinformation, 9, 311 - 321.



Möller & Gläßer | Universität Halle | Fachgebiet Geofernerkundung

| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit | Beispiel |  |
|--------------------------------------|-----------------|----------|--|
| 0000                                 | ○○○●○           | 00000000 |  |
|                                      |                 |          |  |



$$RP_R = 1 - \frac{d_r}{d_{r,max}} = 1 - \frac{0.3 \text{ cm}}{1.6 \text{ cm}} = 0.81$$

$$RA_P = 1 - \frac{d_p}{d_{p,max}} = 1 - \frac{2,2 \text{ cm}}{2,2 \text{ cm}} = 0$$

$$RP = \frac{RP_R + RP_P}{2} = 0,41$$



The comparison index: A tool for assessing the accuracy of image segmentation.

International Journal of Applied Earth Observation and Geoinformation, 9, 311 – 321.



| Genauigkeit |  |
|-------------|--|
|             |  |

Lagegenauigkeit

Beispiel 00000000 Zusammenfassung

Gesamtlagegenauigkeit









Clinton, N., Holt, A., Scarborough, J., Yan, L. Gong, P. (2010).

Accuracy assessment measures for object-based image segmentation goodness. Photogrammetric Engineering & Remote Sensing, 76, 289 - 299.

Möller & Gläßer | Universität Halle | Fachgebiet Geofernerkundung

| Genauigkeit thematische |  | Lagegenauigkeit<br>○○○○● |        | Beispiel<br>000000000 |  |
|-------------------------|--|--------------------------|--------|-----------------------|--|
| Gesamtlagegenauigkeit   |  |                          |        |                       |  |
|                         |  |                          |        |                       |  |
|                         |  |                          |        |                       |  |
|                         |  |                          | 0.50.0 |                       |  |





Möller & Gläßer | Universität Halle | Fachgebiet Geofernerkundung

| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit | Beispiel |  |
|--------------------------------------|-----------------|----------|--|
| 0000                                 | ○○○○●           | 00000000 |  |
| Gesamtlagegenauigkeit                |                 |          |  |



Möller & Gläßer | Universität Halle | Fachgebiet Geofernerkundung

# Gliederung

- Genauigkeit thematischer Kartenwerke
  - Thematische Genauigkeit
  - Positionsgenauigkeit

### Lagegenauigkeit

- "The problem of matching objects"
- Flächenübereinstimmung
- Positionsübereinstimmung
- Gesamtlagegenauigkeit

### 3 Beispiel

- Untersuchungsgebiet
- Ergebnisse

#### Zusammenfassung



| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit | Beispiel |  |
|--------------------------------------|-----------------|----------|--|
| 0000                                 | 00000           | ●OOOOOOO |  |
| Untersuchungsgehiet                  |                 |          |  |

#### Herne



Deutschland



Lagegenauigkeit 00000 Beispiel 00000000

#### Herne

Untersuchungsgebiet



# DeCover2 (www.decover.info)

- Aktualisierungskartierung
- Klasse Ackerland
- Basisdatensatz: RapidEye vom 24.05.2009 | 31.08.2008 | 15.10.2009
- 88 Referenzstichproben
- Thematische Gesamtgenauigkeit 70 %



| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit<br>00000 | Beispiel |  |
|--------------------------------------|--------------------------|----------|--|
| Furthering                           |                          |          |  |

#### Herne



Möller & Gläßer | Universität Halle | Fachgebiet Geofernerkundung

### Klassifikation (Prüfobjekt)



### Referenzobjekt



DGPF-AK Auswertung von Fernerkundungsdaten | Halle (Saale) | 26.10.2011

| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit<br>00000 | Beispiel<br>○○○●○○○○○ |  |
|--------------------------------------|--------------------------|-----------------------|--|
| Fraebnisse                           |                          |                       |  |

#### Verschneidung



 $\begin{array}{ll} RA_{R}=0,60 & RA_{P}=0,94 \\ RP_{R}=0,85 & RP_{P}=0,93 \\ RLG=0,73 & PLG=0,94 \\ & GLG=0,83 \end{array}$ 

## Klassifikation (Prüfobjekt)



### Referenzobjekt



| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit | Beispiel |  |
|--------------------------------------|-----------------|----------|--|
| Fraebnisse                           | 00000           | 00000000 |  |

### **Globale Bewertung**



| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit | Beispiel  |  |
|--------------------------------------|-----------------|-----------|--|
| 0000                                 | 00000           | ○○○○○●○○○ |  |
| Eraebnisse                           |                 |           |  |

#### Lokale Bewertung



Möller & Gläßer | Universität Halle | Fachgebiet Geofernerkundung

| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit | Beispiel |  |
|--------------------------------------|-----------------|----------|--|
| 0000                                 | 00000           | ○○○○○●○○ |  |
| Eraebnisse                           |                 |          |  |

Toleranzen:  $GLG_{min} = 0, 5$  (52/88)



| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit | Beispiel  |  |
|--------------------------------------|-----------------|-----------|--|
| 0000                                 | 00000           | ○○○○○○○●○ |  |
| Eraebnisse                           |                 |           |  |

#### Toleranzen: $GLG_{min} = 0, 5 | GLG_V \pm 0, 1$ (35/88)



| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit<br>00000 | Beispiel<br>○○○○○○○● |  |
|--------------------------------------|--------------------------|----------------------|--|
| Eraebnisse                           |                          |                      |  |

#### Toleranzen: $GLG_{min} = 0, 5 | GLG_V \pm 0, 2 (45/88)$



Möller & Gläßer | Universität Halle | Fachgebiet Geofernerkundung

# Gliederung

- Genauigkeit thematischer Kartenwerke
  - Thematische Genauigkeit
  - Positionsgenauigkeit

### Lagegenauigkeit

- "The problem of matching objects"
- Flächenübereinstimmung
- Positionsübereinstimmung
- Gesamtlagegenauigkeit

### Beispie

- Untersuchungsgebiet
- Ergebnisse

### Zusammenfassung



| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit | Beispiel | Zusammenfassung |
|--------------------------------------|-----------------|----------|-----------------|
| 0000                                 | 00000           | 00000000 |                 |
|                                      |                 |          |                 |

#### ISO- und DIN-Richtlinien

- Im Zusammenhang mit den Bestrebungen zur Harmonisierung von Geodaten ergeben sich erhöhte Anforderungen an die Qualität von thematischen Kartenwerken.
- Während für die Kennzeichnung seit Jahrzehnten allgemein anerkannte Qualitätsstandards der thematischen Qualität bestehen, existieren keine Standardmaße zur Beschreibung der geometrischen Qualität von flächenhaften Landnutzungs- bzw. Landbedeckungsobjekten.



| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit<br>00000 | Beispiel<br>00000000 | Zusammenfassung |
|--------------------------------------|--------------------------|----------------------|-----------------|
|                                      |                          |                      |                 |

### Lagegenauigkeit

- Absolute Positionsgenauigkeit von zweidimensionalen flächenhaften Objekten
- Zweiseitiger Vergleich von Prüf- und Referenzobjeken
   ⇒ Hierarchische Qualitätsmaße
  - Flächenübereinstimmungsgrad
  - Positionsübereinstimmungsgrad
- Tiefenprüfung der thematischen Validierung

### Ausblick

- Objektausrichtung
- Toleranzmaße



| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit<br>00000 | Beispiel<br>00000000 | Zusammenfassung |
|--------------------------------------|--------------------------|----------------------|-----------------|
|                                      |                          |                      |                 |

### Lagegenauigkeit

- Absolute Positionsgenauigkeit von zweidimensionalen flächenhaften Objekten
- Zweiseitiger Vergleich von Prüf- und Referenzobjeken
   ⇒ Hierarchische Qualitätsmaße
  - Flächenübereinstimmungsgrad
  - Positionsübereinstimmungsgrad
- Tiefenprüfung der thematischen Validierung

### Ausblick

- Objektausrichtung
- Toleranzmaße



| Genauigkeit thematischer Kartenwerke | Lagegenauigkeit | Beispiel | Zusammenfassung |
|--------------------------------------|-----------------|----------|-----------------|
| 0000                                 | 00000           | 00000000 |                 |
|                                      |                 |          |                 |

#### Danke für Ihre Aufmerksamkeit!

 Markus Möller Martin-Luther-Universität Halle-Wittenberg Fachgruppe Thematische Kartographie und Geofernerkundung Von-Seckendorff-Platz 4 | 06120 Halle (Saale) mail: markus.moeller@geo-uni.halle.de Tel. 0345 552 60 23

