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Spectral Mobile Mapping for Rapid Soil Diagnostics – 
 Results of a Laboratory Based Feasibility Test 

ANDRÁS JUNG1 & MICHAEL VOHLAND1 

Zusammenfassung: Die Anwendungsmöglichkeiten der VIS-NIR Feldspektroskopie in der 
spektralen Bodendetektion sind bereits durch zahlreiche existierende Studien aufgezeigt 
worden. Die jeweils erzielten Ergebnisse (z.B. Schätzgenauigkeiten für verschiedene Boden-
konstituenten) sind unter anderem vom eingesetzten Spektrometer und der gewählten Mess-
konfiguration abhängig.  
Neben den traditionellen Instrumenten („ground truthing“ mit Feldspektroradiometern, Sen-
soren auf Flugzeug- und Satellitenplattformen) gibt es in der Gelände- bzw. bodennahen 
Spektroskopie eine Reihe von Neuentwicklungen. So ist eine handgehaltene und bildgebende 
Spektralkamera ein fehlendes Element in der Spektraldatenkette. Eine solche Kamera kann 
Spektraldaten für eine Höhe von 100, 10 und 1 m generieren und somit zum Up- und Down-
scaling von Modellen (Klassifikationen und Schätzmodellen) genutzt werden. 
In diesem Paper wird der Einsatz einer nicht-scannenden Hyperspektralkamera (nomineller 
Spektralbereich 400-1000 nm) für ein “rapid soil sensing” beschrieben. Die Spektralbilder 
wurden mit Punktspektren und nasschemischen Ergebnissen verglichen. Quantitativ 
bestimmt (PLSR und PLSR mit CARS-Variablenselektion) wurden die folgenden Zielgrößen: 
organischer Kohlenstoff (OC), heißwasserlöslicher Kohlenstoff (HWE-C) und Stickstoff (N). 

1 Introduction  

Field reflectance spectroscopy has been widely used in proximal soil sensing for a long time 
(BEN-DOR & BANIN, 1995; SUDDUTH ET AL., 1989; UDELHOVEN ET AL. 2003; VISCARRA ROSSEL 
& MCBRATNEY, 1998). Typically, field reflectance spectra are collected by portable field 
spectrometers, which are often complemented by air- or spaceborne imaging spectrometers in 
upscaling missions. It is a complex and critical process to link spatial-spectral data at different 
scales since a field spectrometer collects 1D high-resolution spectra while an imaging spectro-
meter provides 2D data with less resolved spectra. Ground truthing (1D-diffuse reflectance 
spectroscopy) has always been an essential tool to link ground spectra to remotely sensed images 
(GOETZ 2009). The need on “point-pixel-image”-scaling is growing. SCHAEPMAN ET AL. (2009) 
reported that imaging spectroscopy has undergone an exponential growth in the last decades and 
there is a global hyperspectral data deficit and demand on converging mission concepts to 
provide more accurate hyperspectral data to the scientific communities. Behind the traditional 
instrument concepts (ground truthing field spectrometers, air- and spaceborne scanners), there 
are alternative developments in the ground-based and near-ground spectroscopy. However, 
ground-based imaging line-scanners are currently less widespread in ground truthing then 
portable field spectrometers. Even the VIS-NIR (400-1000 nm) spectral imaging is not preferred 
to rapid 1D-diffuse reflectance spectrometers. One reason for this is the time factor as operating 
a field line scanner on a tripod set-up is very time consuming compared to the use of a 1D-field 
spectrometer. One of the concepts to overcome this limitation is non-scanning hyperspectral 
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imaging, which enables rapid (1ms) hyperspectral imaging in a hand-held mode (JUNG ET AL. 
2013). This technique provides a missing part in the spectral data chain as it generates spectral 
imaging data in an altitude of less then 100, 10 or 1 m.  
Due to the novelty there are no available references for non-scanning spectral cameras used in 
proximal soil sensing. We started some experiments in this field (with the UHD 285 
hyperspectral frame camera) at the University of Leipzig in 2013 (JUNG ET AL. 2013). Although, 
there is a comprehensive list of studies and works conducted with line-scanners in soil spec-
troscopy. Recently, STEFFENS & BUDDENBAUM (2013) utilized a hyperspectral line-scanner from 
400 to 1000 nm to determine the concentrations of carbon, nitrogen, aluminum, iron and man-
ganese of a stagnic Luvisol profile under laboratory conditions. At airborne and spaceborne 
scales hyperspectral imaging sensors have been often used to analyze soil, vegetated and other 
kind of earth surfaces (STEVENS ET AL. 2010). Ground-based imaging spectroscopy has also been 
used in numerous studies using line-by-line-scanning principles (KURZ ET AL. 2012, VIGNEAU ET 
AL. 2011)  
This paper describes how the non-scanning hyperspectral frame-camera technique may be 
utilized for rapid and real-time soil sensing. The studied sample set consisted of 40 soil samples, 
which were analyzed in the VIS-NIR spectral range up to 930 nm for their contents of organic 
carbon (OC), hot-water extractable carbon (HWE-C) and nitrogen (N). 

2 Materials and Methods 

2.1 Study site and field sampling 
The soil sampling area is situated in the Northwest Saxon Basin (Geopark Muldenland), which is 
characterized by Permian bedrock geology (rhyolites and ignimbrites), Cretaceous-Tertiary 
weathering products (like Kaolin) and quaternary sediments (loess, Pleistocene terrace gravel).  
 
Tab. 1: Soil texture of three selected soil samples (from loess and sandy moraine material)  

 Sand (%) Silt (%) Clay (%) 

Soil from loess 5 79 16 

Soil from sandy loess 31 56 13 

Soils over sandy moraine 82 9 6 

 
Within the study area 40 randomly selected soil samples were taken on different agricultural 
fields from the very top layer. For the wet-chemical analysis, soil samples were sieved ≤ 2 mm, 
homogenised, air-dried and, for organic matter analyses, subsequently pulverized by grinding 
using an agate mortar. The total contents of OC and N were measured by gas chromatography 
after dry combustion at 1100°C with a EuroEA elemental analyser (HekaTech, Wegberg, 
Germany). Soil samples with possible free carbonate contents (pH values equal to or greater than 
6.5) were pretreated to remove carbonate-C. Determination of HWE-C followed the method of 
KÖRSCHENS ET AL. (1998). 
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Tab. 2: Wet-chemical parameters of the studied soil samples   

 Mean Min Max SD 

SOC (%) 1.54 0.62 4.31 0.74 

HWE-C (μg g-1) 652 306 1568 265 

N (%) 0.145 0.048 0.377 0.068 

Quotient C × N-1 10.9 8.5 18.0 2.2 

  

2.2 1D- and 2D spectral data acquisition 
For the acquisition of image data we used the UHD 285 hyperspectral frame camera. It provides 
125 channels in a spectral range from 450 nm to 950 nm (sampling interval 4 nm). The aperture 
number (F) of the lens system is 13 with a focal length of 25 mm. A silicon CCD chip with a 
sensor resolution of 970 × 970 pixel captures the full frame images. The dynamic image 
resolution is 14 bit. At normal sun light illumination, the integration time of taking one 
hyperspectral data cube is 1 ms. The camera is able to capture more than 15 spectral data cubes 
per second (cps) which facilitates hyperspectral video recording. The high-resolution imaging 
spectrometer coupled with the camera chip was designed and developed by ILM (Institute of 
Laser Technologies in Medicine and Metrology) at the University of Ulm and the Cubert GmbH.  
1D-measurements were performed with an ASD (Analytical Spectral Devices, Boulder, Colora-
do) FieldSpec 4 Wide-Res spectroradiometer with an available spectral range from 350 to 
2500 nm. The spectral resolution of this instrument is 3 nm at 700 nm and 30 nm at 
1400/2100 nm. 
The size of the calibrated reference panel (Zenith Polymer®) was 30 cm × 30 cm. For imaging 
and non-imaging measurements, the same white reference panel was used to keep the referencing 
process standardized.  

 
Fig. 1: Experimental set-up for 1D- and 2D spectral measurements in the lab 
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The soil samples were prepared at three different degrees of fineness (raw, sieved ≤ 2 mm and 
grinded) in order to minimize micro-shadowing and to maximize the spectral significance of the 
soil chemical components. The distance between sensor and soil sample was set to 35 cm in the 
nadir position, the illumination zenith angle was 45°. All samples were prepared on a reflection 
neutral plate (spectrally tested before) and covered, prior to the spectroscopic measurement, by a 
black passepartout (reflectance under 5 % over the entire spectral range from 400 to 2500°nm) 
with a window of 20°cm°×°20°cm. The illumination source was an ASD Pro-Lamp model, that 
is tripod mountable for in-door laboratory diffuse reflectance measurements over the 350-
2500 nm region.  
For the data collection both spectrometers were mounted on a single tripod. After each measure-
ment the sample was rotated by 90°, so that each sample was archived with 4 spectra. The 
spectra were pre-processed by ViewSpec (ASD software) and exported as mean spectra for the 
subsequent statistical analysis. The same measurement scheme was followed for the 2D-
reflectance measurements. The native hyperspectral data cube was converted into bsq format and 
processed by the image analysis software ENVI (Exelis Visual Information Solutions).  
2D-reflectance data (hyperspectral data cube) was calculated by an image mean operator that 
transformed the pixel spectra data into one mean spectrum. The mean image spectra were then 
exported as ASCII files for further statistical analysis. 

2.3 Preprocessing of the spectral data 
The spectral resolution of both datasets was adjusted prior to the statistical comparisons. In 
detail, both sets were reduced to 458-930 nm and spectrally resampled to the 4 nm resolution of 
the native image spectra. From this, 119 spectral dimension resulted for both the 1D reflectance 
vectors and the 2D image pixels. Additionally, spectra were transformed to absorbance spectra 
by log(reflectance-1) and then transformed by the standard normal variate approach which is 
assumed to effectively remove the multiplicative interferences of scatter and particle size. 
 

 
Fig. 2: 1D- and 2D reflectance curves after spectral resampling for raw, sieved and grinded soil samples 
captured by the hyperspectral camera (2D) and the ASD field spectrometer (1D) 
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2.4 Statistical methods 
WOLD ET AL. (2001) published a comprehensive paper on the Partial Least Squares Regression 
(PLSR) which is mostly used in the field of chemometrics. PLSR is similar to principal 
component regression (PCR), as both employ statistical rotations to overcome the problems of 
high-dimensionality and multicollinearity. Different from PCR, PLSR maximises the covariance 
between the spectral matrix (X) and the chemical concentration matrix (Y) by accomplishing 
eigendecomposition of both matrices; the objective is to predict the information in Y as precisely 
as possible. To calibrate a PLSR model for each constituent, the optimum number of latent 
variables was identified by performing a leave-one-out cross-validation; the minimum root mean 
squared error (RMSE) in the cross-validation was used as decision criterion (with a predefined 
maximum of ten latent variables). 
Many studies have shown that more accurate calibration models may be achieved by selecting 
the most informative spectral variables instead of using the full spectrum. For this purpose, we 
used the CARS (competitive adaptive reweighted sampling) approach, which was combined with 
PLSR to CARS-PLSR. For a detailed description of the CARS procedure please refer to LI ET 
AL. 2009. Briefly, it uses two successive steps of wavelength selection in a series of Monte Carlo 
sampling runs: In a first step, an exponentially decreasing function is used for an enforced 
removal of wavelengths with relatively small PLS regression coefficients. In a second step, an 
adaptive reweighted sampling of variables is employed to further eliminate wavelengths in a 
competitive way. In this step, random numbers are generated to pick variables; the probability of 
each spectral variable to be kept depends on its weight (calculated from the respective PLS 
regression coefficient).  
To assess the accuracy of the multivariate calibration, we used the residual prediction deviation 
(RPD, defined as the ratio of standard deviation of the reference values to standard error of the 
cross-validated estimates), the coefficient of determination (R2), the root mean squared error 
(RMSE) and the percentage RMSE (pRMSE = RMSE × measured arithmetic mean-1). Obtained 
accuracies (cross-validated values) were evaluated following the guideline of SAEYS ET AL. 
(2005) (Tab. 3): RPD and R² values greater than 3.0 or 0.90, respectively, are considered to be 
indicative of an excellent prediction, whereas values from 2.5 to 3.0 (RPD) and 0.82 to 0.90 (R²) 
denote a good prediction. Approximate quantitative predictions are indicated by RPD values bet-
ween 2.0 and 2.5 and R² values in the range from 0.66 to 0.81. The possibility to distinguish 
between high and low values is revealed by values between 1.5 and 2.0 (RPD) and 0.50 and 0.65 
(R²). Unsuccessful predictions have RPD or R² values lower than 1.5 or 0.50, respectively. 
 
Tab. 3: Prediction accuracies after SAEYS ET AL. (2005)  

 

 

 

 

 

Goodness RPD R2 

Excellent > 3.0 > 0.90 

Good > 2.5-3.0 0.82-0.90 

Approximative quantitative > 2.0-2.5 0.66-0.81 

Possibility do distinguish between high and low values 1.5-2.0 0.50-0.65 

Not suitable < 1.5 < 0.50 
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3 Results 

All cross-validated results are summarized in Tab. 4. In total, the highest accuracies were ob-
tained with 1D full range spectra, which is in accordance with the general soil spectroscopic 
approach that considers the SWIR domain (1300-2500 nm) to be essential for OC and N spectral 
mapping. Excellent results were obtained with CARS-PLSR for OC (raw samples) and N (raw 
and grinded samples); for HWE-C, which represents a comparatively small labile carbon pool, 
results were slightly worse (good predictions); for this C pool, indirect VIS-NIR responses 
triggered by OC seem to be probable. 
With a limited spectral range from 458 to 930 nm, accuracies obtained from the multivariate 
calibrations dropped distinctly. Best results (“good”) were obtained for OC (grinded samples, 
ASD and image spectra, both with CARS-PLSR) and HWE-C (grinded samples, from image 
spectra with CARS-PLSR). 
For sieved samples, which are a bit more similar to in-situ conditions than grinded samples, best 
results were retrieved for OC from ASD spectra (full and limited range, in both cases “good” 
related to R2) and N from full range ASD spectra (“good” related to R2).  
In contrast to a 1D-spectrometer, which performs spatially integrated measurements over the 
complete ground projected field of view, a frame camera captures micro-areas (pixels) that are 
much smaller in size. However, in our approach the spectral data cube was converted into a 1D-
measurement in the post-processing as we averaged the entire image. This approach was helpful 
to clarify the comparability to pruned 1D-spectra and to show the usability of the image spectra 
for the quantitative approach (in fact, results were comparable or slightly worse especially for 
grinded samples). Further analyses without averaging the image spectra will be conducted to see 
which parts of the image would possibly provide a better match with 1D-spectra. 
Grinded or sieved samples represent untypical situations for field surveys. Thus, further field 
measurements under natural solar conditions are needed to clarify the field suitability of the 
hyperspectral frame camera. 
With respect to the statistical approaches, the CARS procedure has been shown to work 
effectively with respect to the parsimony of the statistical models (i.e. a reduced number of latent 
variables) and the obtained estimation accuracies. However, these results were obtained in cross-
validations. The CARS procedure should thus be further examined with a larger number of soil 
samples using separate calibration and validation sets. 
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Tab. 4: Cross-validated results from field spectrometer data (1D) and image mean spectra (2D) for raw, sieved and grinded soils; l.v.: number of latent variables 
(for CARS-PLS averaged from 50 runs); cv: leave-one-out cross-validation 

 

Spectral 
dimension 

Soil preparation 
level Model 

OC N HWE-C 

l.v. R2
cv RPDcv pRMSEcv l.v. R2

cv RPDcv pRMSEcv l.v. R2
cv RPDcv pRMSEcv 

1D
 

40
2-

23
98

 n
m

 

50
0 

va
ria

bl
es

 

raw 
PLS 9 0.73 1.94 0.25 9 0.72 1.89 0.26 8 0.61 1.58 0.26 

CARS-PLS 8.2 0.93 3.85 0.13 8.0 0.91 3.30 0.15 7.2 0.86 2.73 0.15 

sieved 
PLS 6 0.65 1.66 0.29 6 0.64 1.66 0.29 7 0.51 1.37 0.30 

CARS-PLS 6.0 0.84 2.49 0.19 6.0 0.84 2.49 0.19 6.0 0.72 1.91 0.21 

grinded 
PLS 9 0.73 1.90 0.25 9 0.75 2.02 0.24 10 0.63 1.58 0.26 

CARS-PLS 6.7 0.88 2.93 0.16 7.3 0.92 3.53 0.14 8.2 0.88 2.86 0.14 

1D
 

45
8-

93
0 

nm
 

11
9 

va
ria

bl
es

 

raw 
PLS 7 0.41 1.28 0.37 10 0.34 1.19 0.41 7 0.43 1.28 0.32 

CARS-PLS 6.2 0.77 2.08 0.23 8.0 0.78 2.09 0.23 5.6 0.70 1.84 0.22 

sieved 
PLS 9 0.63 1.64 0.29 8 0.45 1.34 0.36 9 0.64 1.64 0.25 

CARS-PLS 8.4 0.82 2.37 0.20 8.0 0.77 2.09 0.23 7.8 0.77 2.14 0.19 

grinded 
PLS 10 0.66 1.73 0.28 10 0.49 1.38 0.35 9 0.56 1.49 0.27 

CARS-PLS 9.2 0.85 2.61 0.18 8.5 0.79 2.17 0.22 7.5 0.71 1.88 0.22 

2D
 

45
8-

93
0 

nm
 

11
9 

va
ria

bl
es

 

raw 
PLS 3 0.38 1.27 0.38 4 0.30 1.19 0.40 6 0.39 1.27 0.32 

CARS-PLS 3.5 0.49 1.42 0.34 3.0 0.42 1.33 0.36 4.1 0.58 1.56 0.26 

sieved 
PLS 7 0.59 1.57 0.31 7 0.54 1.47 0.33 7 0.54 1.45 0.28 

CARS-PLS 6.5 0.72 1.89 0.25 6.7 0.70 1.83 0.26 5.6 0.62 1.63 0.25 

grinded 
PLS 10 0.65 1.70 0.28 8 0.60 1.58 0.30 10 0.65 1.67 0.24 

CARS-PLS 8.4 0.84 2.49 0.19 7.1 0.75 2.01 0.24 8.9 0.83 2.45 0.17 
               

excellent good 
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