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Gipuma: Massively Parallel Multi-view Stereo Reconstruction 

SILVANO GALLIANI1, KATRIN LASINGER1 & KONRAD SCHINDLER1 

Abstract: We describe a method for dense multi-view matching and 3D point cloud 
reconstruction, which has been developed at the Institute of Geodesy and Photogrammetry of 
ETH Zurich. The method generates high-quality point clouds from oriented images very 
efficiently, by massively parallel processing on graphics processing units (GPUs). It is 
available as open-source code. Technically, the method is an extension of the PatchMatch 
Stereo algorithm: 3D depth values and surface normal vectors are iteratively propagated 
across the image and refined, in order to find a maximally photo-consistent depth map and 
normal field for each view. Photo-consistency is computed in a slanted tangent plane, such 
that the reconstruction does not suffer from fronto-parallel bias. We extend PatchMatch to 
3D scene space, such that photo-consistency can be aggregated over multiple views, which 
allows for more robust and more accurate depth estimation. Moreover, the sequential 
propagation is replaced by a local, diffusion-like scheme, such that the computation can be 
massively parallelised. All computations are local, thus computation time is linear in the 
image size and inversely proportional to the number of parallel threads. Moreover, memory 
requirements are also modest, since only four values per pixel must be stored. Experiments 
on benchmark datasets show that our method delivers point clouds (respectively, surfaces) 
with high accuracy and completeness, across a range of applications. 
 

1 Introduction 

In this work we present a method to reconstruct dense, accurate 3D point clouds from oriented 
images. 3D shape reconstruction is a fundamental task of photogrammetry. Given that automatic 
camera orientation and point triangulation are essentially solved - at least for images taken in 
such a way that they are suitable for dense surface reconstruction - the most challenging step is 
to find a dense set of corresponding points between different images. The majority of the 
literature deals with the basic two-view stereo setup (e.g. INTILLE & BOBICK 1994; SCHARSTEIN 

& SZELISKI 2002; RANFTL et al. 2012; RHEMANN et al. 2011), but obviously using more than two 
views affords redundancy and is thus beneficial in terms of both accuracy and robustness. More 
viewpoints also mitigate the occlusion problem and typically yield more complete 
reconstructions (e.g. CAMPBELL et al. 2008; FURUKAWA & PONCE 2010).  
The proposed method is a variant of the PatchMatch Stereo algorithm (BLEYER et al. 2011). On 
one hand, we adapt PatchMatch to operate in 3D scene space, such that the method can directly 
establish correspondence across multiple viewpoints. On the other hand, we modify the 
algorithm in such a way that it can be parallelised into thousands of computational threads on 
graphics processing units (GPUs). 
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Fig. 1: Example reconstruction. Top left: Ground truth point cloud. Top right: reconstructed point cloud 

with texture. Bottom left: colour-coded surface normal. Bottom right: reconstructed surface.  

1.1 Background and Related Work 

Dense image matching seeks to establish correspondence densely for all pixels by maximizing 
photo-consistency. There are two main schools: local methods, which derive correspondences 
only from information in a local neighbourhood, and global methods, which formulate an 
objective function over all pixels. The simplest local method is naive block matching with a 
window around each pixel. Starting from there, various ideas have been developed to mitigate 
problems induced by the larger neighbourhood window, in particular the bias towards fronto-
parallel surfaces (BLEYER et al. 2011; BURT et al. 1995; DEVERNAY & FAUGERAS 1994; EINECKE 

& EGGERT 2013; GALLUP et al. 2007), and the fattening of foreground objects along their 
silhouettes (FUSIELLO et al. 1997; KANADE & OKUTOMI 1994; YOON & KWON 2006). With local 
methods, smoothness of the reconstructed surface is accounted for only implicitly through the 
overlap of nearby support windows, or by local filtering of the depth map. Explicit models of 
smoothness lead to global methods: the correlations between nearby pixels give rise to global 
objective functions defined over the entire image domain, which can be (approximately) 
maximised either by discrete labeling (e.g., FELZELSZWALB & HUTTENLOCHER 2006; 
HIRSCHMÜLLER 2008; KOLMOGOROV & ZABIH 2001) or by variational inference, (e.g. RANFTL et 
al. 2012). The size of modern digital images calls for matching algorithms with low 
computational complexity (ideally at most linear in the number of pixels) and low memory 
footprint, especially in the multi-view case. This has lead to a renewed interest in local methods, 
and on benchmark datasets like DTU (JENSEN et al. 2014) or KITTI (GEIGER et al. 2012) local 
matchers have reached competitive results (BLEYER et al. 2011; FURUKAWA & PONCE 2010; 
RHEMANN et al. 2011). 
Multi-view matching goes back to at least (OKUTOMI & KANADE 1993), where matching costs 
(deviations from photo-consistency) are accumulated over different stereo pairs. Another way to 
exploit multiple views is to iteratively grow a 3D point cloud from reliable seed points (e.g., 
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FURUKAWA & PONCE 2010). Computationally efficient multi-view methods are often based on 
plane sweeping, i.e. moving a plane through 3D object space along its normal and exhaustively 
comparing the photo-consistency across multiple views for all possible plane positions (e.g. 
COLLINS 1996; GALLUP et al. 2007; HU & MORDOHAI 2012).  
Another way to classify multi-view stereo methods is by the representation they are based on 
(SEITZ et al. 2006). The 3D scene can be represented by voxels, level-sets, polygon meshes, or 
depth maps. We point out that depth maps are a point-wise representation, in the sense that they 
define a 2.5D point cloud, similar to those generated with scanning devices. The remaining three 
representations additionally solve (at least implicitly) the step from discrete points to surfaces. 
Here we aim to reconstruct depth maps and fuse them into 3D point clouds, whereas surface 
fitting is seen as a post-processing step. If needed, we found that the generic Poisson surface 
reconstruction method (KAZHDAN & HOPPE 2013) works well with our point clouds, which by 
construction already include per-point surface normals. 

2 Gipuma – Depth Map Computation from Multiple Views 

The proposed multi-view matcher is based on the PatchMatch (BARNES et al. 2009) principle, 
which employs iterative propagation and refinement of randomly drawn initial values to quickly 
find a good solution in a large search space without having to test all possibilities. The resulting 
low memory footprint makes PatchMatch Stereo well-suited for large images or memory-
constrained environments, including GPUs (BAILER et al. 2012; BAO et al. 2014; HEISE et al. 
2013; Zheng et al. 2014). On the contrary a large portion of the computation time and/or memory 
footprint of many stereo algorithms is due to the fact that they exhaustively compute, and then 
compare, the cost for every putative disparity value (e.g. FELZENSZWALB & HUTTENLOCHER 
2006; HIRSCHMÜLLER 2008; RHEMANN et al. 2011).  

2.1 PatchMatch Stereo 

We first briefly describe the original PatchMatch Stereo algorithm. That method parameterizes 
the 3D scene by a local tangent plane per pixel, i.e. at every pixel one stores not only a disparity 
(horizontal parallax), but also a surface normal. These values are initialised randomly for each 
pixel. Starting at the top left corner one then loops through the image and tests whether it makes 
sense to extend the local tangent plane to the lower or right neighbour pixel. If propagating the 
plane lowers the matching cost, then the corresponding disparity and normal replace the previous 
values. After the update the plane parameters are refined with fast bisection search. Having 
reached the lower right corner, the propagation is repeated in the opposite direction. Empirically, 
only two to three such iterations are needed to converge to a good result. 
PatchMatch Stereo computes the photo-consistency in the tangent plane in disparity space, 
defined by the local disparity and normal, to avoid fronto-parallel bias. The method is compatible 
with different photo-consistency measures. In difficult lighting conditions the Hamming distance 
between Census signatures (ZABIH & WOODFILL 1994) is often the best choice. For more 
controlled lighting we found that the measure recommended in the original PatchMatch Stereo 
paper works very well, namely a linear combination of the absolute intensity difference and the 
absolute difference in gradient magnitude. The weighted average of these two quantities 
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(truncated for robustness) is computed separately per pixel and summed over the support 
window, using individual weights per pixel. These weights reflect the intensity difference to the 
central pixel of the window, assuming that discontinuities in intensity are likely to coincide with 
surface discontinuities. 
Empirically we found that one can speed up the computation without loss in performance by 
using only every other row and column in the cost computation, as recommended in the context 
of the “sparse Census transform” (ZINNER et al. 2008). This is particularly valuable because 
PatchMatch needs larger support windows (typically between 11×11 and 25×25 pixels) than 
some other stereo methods, in order to reliably estimate the surface normal.  

2.2 Multi-view Extension 

Disparity is only defined between two images rectified to the photogrammetric normal case. We 
aim to adapt PatchMatch to the multi-view setting. We therefore define the tangent planes per 
pixel of the reference image in Euclidean scene space rather than in disparity space. This not 
only avoids epipolar rectification (which is a rather awkward procedure for more than two 
views), but also ensures that the estimated normal reside in 3D scene space, and can be used for 
later processing steps such as surface reconstruction (KAZHDAN & HOPPE 2013). Most 
importantly, working in scene space makes it possible to aggregate matching costs directly 
across multiple views, by warping all support windows with the same 3D tangent plane with the 
corresponding plane-induced homographies, see Figure 2. For a given reference image we 
always accumulate the pairwise matching costs to all stereo partners. 

 
Fig. 2: Multi-view geometry of Gipuma: a tangent plane π in 3D scene space defines a planar 

homography between the reference view Cr and every other view Ci.  

A small technical complication when working in scene space is to sample unbiased random 
normals as initialization. A fast method to pick random vectors that are uniformly distributed 
over a sphere can be found in (MARSAGLIA 1972). If the sampled normal points away from the 
camera, we reverse its sign. Moreover, it is better to sample uniformly from the range of possible 
disparities and convert the result to depth, rather than sampling depth values directly. This will 
account for the anisotropic depth resolution of stereo reconstruction and provide a finer sampling 
of depth values in the near field, where they make a difference; and a sparser sampling in the far 
field, where small variations do not produce an observable difference. 
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2.3 Surface Normal Diffusion 

The original PatchMatch propagation scheme described above is inherently sequential. It has 
been proposed to alternate between row-wise and column-wise propagation (BAILER et al. 2012; 
BAO et al. 2014; HEISE et al. 2013; ZHENG et al. 2014), still one does not play to the strengths of 
modern multi-core GPU. Instead, we employ a diffusion-like propagation scheme. The reference 
image is partitioned into a checkerboard pattern of “red” and “black” pixels, see Figure 3. In this 
way, one can update all “black” pixels at once by propagating from nearby “red” ones, and vice 
versa. The red-black scheme is a standard trick to parallelize message-passing and related 
schemes, c.f. red-black Gauss-Seidel for linear equation solving. Even with this more “local” 
propagation scheme we find that 6-8 iterations are sufficient for the depth map to converge.  

 
Fig. 3: Red-black scheme for massively parallel propagation. All black pixels are updated in parallel, by 

propagating tangent planes from the red pixels. Center: standard pattern. Right: reduced pattern 
optimised for speed.  

3 Fusibile – 3D Point Cloud Generation 

Like most multi-view reconstruction methods, we first compute a separate depth map for each 
view by repeatedly running Gipuma. These depth maps are then fused into a 3D point cloud, 
using the redundancy to eliminate blunders and improve accuracy. Given multiple depth maps 
covering the same object surface, most mismatches can be detected: if a 3D point is wrong due to 
a lack of texture or due to occlusion, then it is unlikely that it is consistent with the measurement 
in another view (even if that measurement is wrong, too). To filter out such cases, we visit each 
depth map in turn, convert the depth measurements to 3D points and project those points back to 
the other views. If the projection is not consistent with the observed disparity and normal in at 
least two other views, the point is removed. For those points, which are retained, the 3D 
positions and normals are averaged over the consistent views to further suppress noise. 
The thresholds that determine whether a point’s reprojection is consistent enough to be added to 
the point cloud can be tuned, to achieve more accurate or more complete reconstructions. The 
right trade-off depends on the application, for example computer graphics typically needs 
complete models that “look correct”, whereas industrial metrology prefers high accuracy even at 
the cost of a sparser reconstruction. We test different options in the experiments. Since the fusion 
step always uses the same depth maps it is fast (≈15 seconds for 50 depth maps of size 1600 × 
1200), so one can even interactively explore different possibilities.  
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4 Experiments 

As a main dataset for quantitative evaluation we use the DTU large scale multi-view dataset 
(JENSEN et al. 2014). It consists of 80 different objects, each covered by 49-64 images of 
resolution 1600 × 1200 pixels. The scenes vary in reflectance, texture and geometry, see Figure 
4. The images have been acquired with a robot arm to accurately position the cameras. Ground 
truth is captured by a structured light scanner. The error metrics defined by the authors of the 
dataset are mean and median reconstruction errors, calculated once for the 3D point cloud and 
once for a surface mesh derived from the points. Accuracy is defined as the distance from the 
estimated surface to the ground truth, and completeness as the distance from the ground truth to 
the surface (both measured in mm). 
To find suitable stereo partners, we select images with reasonable angular baseline: for a given 
reference image, we chose all other views whose viewing directions differ by at least 10 and at 
most 30 degrees from the reference view. Gipuma in its high-accuracy setting achieves the best 
accuracy among the tested methods while at the same time delivering the second-highest 
completeness, see Table 1. When tuned for completeness, our method achieves the highest 
completeness at the second-highest accuracy. The runtime is ≈50 seconds per depth map with 9 
stereo partners. We also test an extreme setting tuned for high speed (window size 15 instead of 
25, 6 iterations instead of 8, at most 9 stereo partners per view). With these settings it takes ≈2.7 
seconds to compute a depth map, respectively 7 minutes for a complete reconstruction, 
(including disk I/O). Even this version is competitive with the state of the art, see Table 1. 

 
Fig. 4: Example objects from DTU dataset. Left: ground truth point cloud. Center: reconstructed point 

cloud. Right: reconstructed surface mesh.  

We further evaluate Gipuma on the popular Middlebury benchmark (//vision.middlebury.edu/), 
although we note that it is by now rather saturated, and somewhat outdated (only 2 objects, 
image size 640 × 480 pixels). Our results rank second for the “full” version (363 views) of 
“Dino” and fifth for the “full” version (312 views) of the “Temple”. For the smaller “ring” 
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(48/47 views) and “sparse” (16 views) versions of both objects we are also always in the top 8 
out of ca. 50 submitted results. To generate a depth map from 10 views our method needs 2.5 
seconds. Finally, we have also run Gipuma on oblique aerial images and on KITTI (cameras 
mounted in a vehicle), see qualitative examples in Figure 5. 

Table 1: Quantitative comparisons on DTU data. Mean and median errors in mm (lower is better). 

points accuracy completeness 
mean median mean median 

Gipuma acc. 0.273 0.196 0.687 0.260 
Gipuma comp. 0.379 0.234 0.400 0.188 
Gipuma fast 0.289 0.207 0.841 0.285 
TOLA et al. 2010 0.307 0.198 1.097 0.456 
FURUKAWA & PONCE 2010 0.605 0.321 0.842 0.431 
CAMPBELL et al. 2008 0.753 0.480 0.540 0.179 
     
surfaces accuracy completeness 

mean median mean median 
Gipuma acc. 0.363 0.215 0.766 0.329 
Gipuma comp. 0.631 0.262 0.519 0.309 
Gipuma fast 0.358 0.221 0.939 0.350 
TOLA et al. 2010 0.488 0.244 0.974 0.382 
FURUKAWA & PONCE 2010 1.299 0.534 0.702 0.405 
CAMPBELL et al. 2008 1.411 0.579 0.562 0.322 

 

 
Fig. 5: Further Gipuma/Fusibile results. Left: Oblique aerial images. Right: Vehicle-mounted cameras 

from KITTI. 

5 Conclusion 

The Gipuma/Fusibile multi-view stereo suite has been designed to provide high-quality point 
clouds from multi-view imagery. It is optimised for parallel computation on off-the-shelf GPUs. 
Technically, the system is a multi-view extension of PatchMatch Stereo tailored to modern 
GPUs with thousands of parallel threads. Like the original PatchMatch it uses slanted support 
windows and does not suffer from fronto-parallel bias. It is thus particularly well-suited for 
locally smooth scenes with a large extent in depth. Quantitative results on the DTU and 
Middlebury benchmarks confirm that the software is at the same time more accurate than state-
of-the-art methods such as PMVS and much faster. Gipuma and Fusibile are available as open-
source software at https://github.com/kysucix/gipuma, respectively 
https://github.com/kysucix/fusibile. 
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