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Urban Monitoring by 4D Change Detection 
Using Multi-temporal SAR Images 

CHIA-HSIANG YANG1 & UWE SOERGEL1 

Zusammenfassung: Die wachsende Bevölkerung und der Trend zur Urbanisierung haben viele 
bauliche Veränderungen in Städten zur Folge. Deren Erkennung und Überwachung ist 
essentiell für Zwecke wie kommunale Verwaltung, Stadtplanung oder Katasterfortführung. 
Konventionelle Vermessungen vor Ort sind zwar sehr genau, jedoch aufwendig und können 
nur punktuell durchgeführt werden. Im Gegensatz dazu ist mit Fernerkundung eine 
kostengünstige und großflächige Datengewinnung möglich. Moderne SAR-Satelliten sind in 
der Lage, hochaufgelöste Radarbilder in dichtem zeitlichen Raster zu erfassen. Aktives SAR 
hat zudem den Vorteil der Allwetterfähigkeit und der Nachtsicht, weshalb sich SAR 
insbesondere für auf Zeitreihen von Bildern basierende Überwachungsaufgaben eignet. Multi-
temporale SAR-Bilder werden daher häufig zu Zwecken der Änderungsdetektion ausgewertet. 
Wir stellen ein neu entwickeltes Verfahren zur 4D-Änderungserkennung vor, womit gemeint 
ist, dass sowohl räumliche (3D) als auch zeitliche (1D) Änderungen erkannt werden können. 
Dieses Verfahren wird anhand von SAR-Bildstapeln demonstriert, die den Innenstadtbereich 
von Berlin abdecken. Insbesondere liegt das Augenmerk auf der Erkennung von 
Baumaßnahmen, in deren Zuge alte Gebäude abgerissen oder neue errichtet werden. 
 
Abstract: The continuous rise in population and economic growth has led to frequent urban 
changes such as construction. Monitoring such changes is important for city management, 
urban planning, updating of cadastral maps, etc. In contrast to conventional field surveys, 
which are usually expensive and slow, remote sensing techniques are fast and cost-effective 
alternatives. Spaceborne synthetic aperture radar (SAR) provides radar images captured 
rapidly over vast areas at fine spatiotemporal resolution. In addition, the active microwave 
sensors are capable of day-and-night vision and independent of weather conditions. The 
advantages mentioned above make SAR suitable for monitoring tasks. Change detection 
approaches based on multi-temporal SAR images are widely used for urban monitoring. We 
developed a novel 4D change detection technique, which is capable of detecting spatial 
changes (3D) and occurrence times (1D). In this study, we apply our technique to a built-up 
area in the centre of Berlin, Germany. As a result, the disappearing and emerging structures 
along with their occurrence times are successfully detected. We have demonstrated that these 
spatiotemporal results are able to provide detailed and comprehensive information for urban 
monitoring.    

1 Introduction 

Human activities, such as population growth, economic globalization, urban extension, and natural 
disasters have led to frequent urban changes. Monitoring such changes is important for city 
management, urban planning, updating of cadastral map, environmental monitoring, disaster 
assessment, etc. (GAMBA 2013; MARIN et al. 2015). In contrast to conventional field surveys, 
which are usually expensive and slow, remote sensing techniques are fast and cost-effective 
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alternatives. Spaceborne synthetic aperture radar (SAR) provides radar images captured rapidly 
over vast areas at fine spatiotemporal resolution. In addition, the active microwave sensors are 
capable of day-and-night vision and independent of weather conditions. The advantages mentioned 
above make SAR suitable for monitoring tasks.  
Time series analysis based on SAR images is widely used for urban monitoring. Among them, 
persistent scatterer interferometry (PSI) (CROSETTO et al. 2016; FERRETTI et al. 2000, 2001, 2011; 
HOOPER et al. 2004; KAMPES 2006) detects and analyses PS points, which are characterized by 
strong, stable, and coherent radar signals throughout a SAR image stack and can be regarded as 
substructures in human settlements. Attributes of PS points, including line-of-sight velocities 
(mm/year level), topography heights, geographic positions, etc., can be derived and used for 
monitoring of structural deformation and 3D modelling. A prerequisite of forming PS points is 
that their signals must maintain temporal coherence. For example, to avoid coherence loss, 
buildings covered with PS-like substructures must be steady and free of any big changes during an 
entire acquisition period of SAR images. In contrast, if the substructures disappear or emerge 
arbitrarily due to construction, the corresponding temporary PS points are discarded at the initial 
screening of temporally stable scatterers in a standard PSI processing.  
Certain approaches (BRCIC & ADAM 2013; FERRETTI et al. 2003; NOVALI et al. 2004; YANG et al. 
2016) are dedicated to retrieve temporary PS points, which exist in a portion of time-series SAR 
images due to big changes. Among them, our previous work (YANG et al. 2016) proposed "4D 
Change Detection Based on PSI" (4DCDPSI) to recognizes two types of temporary PS points 
subject to big changes, which are called disappearing big change (DBC) and emerging big change 
(EBC) points, along with their occurrence times. This technique has been validated by the 
simulated and real data tests. 
In this paper, we apply our 4D change detection technique to the centre of Berlin, Germany to 
explore the applications of monitoring construction progress, business districts, sports 
playgrounds, traffic infrastructures, and single buildings. We first introduce PSI and 4DCDPSI in 
Sections 2 and 3, respectively. Section 4 demonstrates the spatiotemporal changes over the entire 
study area, followed by the in-depth discussions on five zoom-in areas with respect to different 
applications. Finally, the conclusions are summarized in Section 5. 

2 Persistent Scatterer Interferometry 

A time series of N complex SAR images, which are acquired from the same orbit and cover a 
common extent, is required as input data. Among the series, slave images are precisely co-
registered to a master image, which is selected under small baseline constraint (BERARDINO et al. 
2002; LANARI et al. 2004). Then, N-1 interferograms between the master and all of the slave images 
are computed. The interferometric phases of each pixel are used to estimate its temporal coherence, 
line-of-sight velocity, and relative topography height via a Periodogram process (FERRETTI et al. 
2001). A temporal coherence serves as a measure of phase stability throughout the SAR image 
stack. Finally, pixels with high temporal coherences are selected as PS points. However, DBC and 
EBC points, if any, are just discarded as they suffer coherence loss during the entire SAR image 
sequence. To retrieve such big change information, we resort to the 4D change detection technique 
described in the next section. 



37. Wissenschaftlich-Technische Jahrestagung der DGPF in Würzburg – Publikationen der DGPF, Band 26, 2017 

235 

3 4D Change Detection Based on Persistent Scatterer Interferometry 

We first illustrate the change detection scheme subject to a single break date that big changes occur 
before or after. Complete, front, and back SAR image sets are defined from an image sequence for 
use in this scheme. The complete set consists of all of the images in the sequence. The front and 
back sets comprise the images taken before and after a specified break date, respectively. Our aim 
is to find PS points that exist in the front set but disappear in the back set and vice versa. The PS 
points that suddenly disappear are termed DBC points and those emerging in the back set are called 
EBC points. 
The flowchart of single-break-date change detection (Fig. 1) is composed of the persistence, 
disappearance, and emergence scenarios, in which the complete, front, and back sets are mainly 
involved, respectively. These three image sets are processed by a standard PSI procedure to 
generate three temporal coherence images. We suppose that the temporal coherence of a DBC or 
EBC point in the front or back set is higher than that in the complete set, which is reduced due to 
the big change. Based on this assumption, the change indices of each pixel x in the disappearance 
(CID) and emergence (CIE) scenarios are calculated by  

CIDሺxሻ
ሾ-1	,	ା1ሿ∈ୖ

ൌ γT
Fሺxሻ െ γT

Cሺxሻ (1) 

CIEሺxሻ
ሾ-1	,	ା1ሿ∈ୖ

ൌ γT
Bሺxሻ െ γT

Cሺxሻ (2) 

where γT
C, γT

F, and γT
B denote the temporal coherences in the complete, front, and back sets. A pixel 

is more likely to be a DBC or EBC point when CID and CIE is closer to 1, respectively. A change 
index distribution over DBC or EBC points is modelled to be a right-tailed probability function 
towards 1. Then, a statistical-based thresholding is applied to the change indices of the pixels to 
extract DBC and EBC points. The extracted points are jointly analysed with the PS points, which 
are selected in the persistence scenario, to reject two types of outliers. First, PS points are discarded 
if they coincide with the other two point labels. Second, a DBC point must not be an EBC point as 
well and vice versa. The remaining pixels without any label are regarded as undefined (U) points. 
Finally, the PS, DBC, and EBC points are combined into a change detection result. However, the 
accurate times of big changes are lacking as they are only known to disappear and emerge after 
and before the break date, respectively. 
To detect accurate big change times, a set of single-break-date results are jointly analysed in a 
multi-break-date change detection (Fig. 2). For each pixel, two sequences, i.e., change indices and 
initial point labels (PS, DBC, EBC, or U), have been determined thus far. Some of the initial labels 
may be erroneous due to processing uncertainty in each single-break-date change detection. The 
majority vote is then applied to each label sequence to determine the pixel’ label, e.g., a pixel is 
labelled PS if most of its initial labels are PS. Nevertheless, false labels are still unavoidable but 
can be removed by an outlier filtering. Three outlier types are described below along with their 
removal strategies using sliding window operation.  

 Homogeneous points are expected to form a single object. For example, PS points are 
unlikely to appear on a demolished apartment full of DBC points. For this reason, PS, DBC, 
or BC points, which are in the majority in a window, are retained; the other inconsistent 
points are then deleted. 
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 An isolated PS, DBC, or EBC point in a window is removed considering that its reliability 
cannot be inspected by comparing with neighbours. 

 A PS point is removed if its velocity is too large or quite different from the velocities of 
the neighbouring PS points in a window. 

Once the PS, DBC, and EBC points are confirmed, the remaining points are considered to be U 
points. Then, the change date of each DBC or EBC point is detected from the time-series break 
dates based on the temporal variation in its change index sequence. The concept is to detect the 
turning point of a change index sequence, which corresponds to a disappearance or emergence 
date. In the end, the PS, DBC, and EBC points along with the change dates are combined to 
illustrate the spatiotemporal changes. 

 

 
Fig. 1: Flowchart of single-break-date change detection. Persistence (blue), disappearance (red), and 

emergence (green) scenarios are dedicated to extracting PS, DBC, and EBC points, 
respectively (YANG et al. 2016) 
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Fig. 2: Flowchart of multi-break-date change detection. (YANG et al. 2016) 

4 Real Data Test 

In this test, we adopted forty TerraSAR-X (TSX) images acquired in High Resolution Spotlight 
mode from October 27, 2010 to September 4, 2014. Thirteen break dates are set during 2013, i.e., 
we conducted thirteen single-break-date instances, which were jointly processed by multi-break-
date change detection. All of the images are precisely co-registered and resampled into 5000 × 
5000 with ground resolution of 1 m, which is able to represent detailed substructures. The study 
area (Fig. 3) covering the city centre in Berlin, Germany shows many bright clusters of strong 
signals on structures that appear to be potential PS points. Two Google Earth (GE) images (ground 
truth) taken on September 12, 2010 and September 5, 2014 reveal that many building constructions 
occurred within the image acquisition period and are thus good examples for comparison with our 
test result. The spatiotemporal changes (Fig. 4) show where and when the structures disappeared 
and emerged. We focus our following discussions on the patches 1 to 5 for different applications 
of urban monitoring.  

We first explore the construction events around Berlin Central Station (Fig. 5). The office complex 
of Federal Ministry of the Interior (area 1) had been constructed in the second half of 2013. A 
series of construction events is present in area 2. The quad-square structures were removed at the 
early stage. The upper-left hotel had been erected over time by 2013; another hotel and two office 
buildings cannot be detected because the constructions were still in progress. Certain new surface 
substructures in areas 3, 4, and 7 are able to be detected by our method; in contrast, these 
substructures are hardly identified from the GE images. Another construction event, which is also 
difficult to be recognized from the GE images, is illustrated in area 5 where the bridge was 
renovated during a couple of early months in 2013. Area 6 displays two new office buildings that 
were constructed at different schedules. The right building had been completed earlier, giving rise 
to a building-shaped pattern formed by clustered EBC points. In contrast, the construction progress 
on the left building was slower as only sparse EBC points appeared in late 2013. 
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Fig. 3:  Mean TSX image over study area. Patches 1 to 5 are used for in-depth analysis 

 

  
                                 (a)                                                                     (b) 

Fig. 4: Spatiotemporal change detection result. Patches 1 to 5 are used for in-depth analysis. (a) 
Steady, disappearing, and emerging structures represented by PS (blue, 41277/km2), DBC (red, 
2200/km2), and EBC (green, 7180/km2) points. (b) Disappearance and emergence dates: black 
to red, earliest to latest in 2013.  

 

The second example (Fig. 6) is about monitoring a business district, in which building changes are 
usually frequent and need cost-effective surveillance schemes. In the early 2013, the buildings in 
areas 1 and 2 were demolished; and the main structures of the new buildings appeared in areas 3 
to 7 and their constructions continued to the end of 2013. Since the second half of 2013, certain 
substructures had been added to the German Railway’s office complex in area 8. These additions 
seem vague in the GE images but are clearly revealed in the spatiotemporal change detection result.  
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                                 (a)                                                                     (b) 

   
(c)                                                                     (d) 

Fig. 5: Construction monitoring in patch 1 (Fig. 3) around Berlin Central Station. Areas 1 to 7 are used 
for in-depth analysis. GE images were acquired on (a) September 12, 2010 and (b) September 
5, 2014. (c) and (d): spatiotemporal change detection result in patch 1 (Fig. 4). 

 

Monitoring sports facilities is demanded for citizen safety. In case of structural damages, DBC 
points might be found at certain times. In Olympiastadion Berlin (Fig. 7), two detected change 
events include a structural renovation (area 1) on the upper-left arena and an erection of a new 
building (area 2) beside a sports playground. Most importantly, the upper-left arena and lower-left 
stadium seem steady without structural damages as the intensive PS points are found on them 
rather than DBC points. If necessary, the line-of-sight velocities of the PS points can be utilized 
for investigation on structural deformation. 
Traffic infrastructure monitoring is useful for transportation management especially in busy cities 
and extending human settlements. For example, our technique detects a new elevated metro line 
across a couple of blocks that was under construction in 2013 (Fig. 8). The main structure had been 
accomplished in the early dates, followed by some partial substructures.  
The last example demonstrates construction monitoring of single high-rise buildings (Fig. 9). The 
left building’s main structure (area 1) had been erected in early 2013 and the remaining 
substructures were later complemented over time. In area 2, certain new storeys were built upon 
an existing building from low to high level in sequence along the magenta arrow (Fig. 9(d)). 
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                                 (a)                                                                     (b) 

   
(c)                                                                     (d) 

Fig. 6: Business district monitoring in patch 2 (Fig. 3). Areas 1 to 8 are used for in-depth analysis. GE 
images were acquired on (a) September 12, 2010 and (b) September 5, 2014. (c) and (d): 
spatiotemporal change detection result in patch 2 (Fig. 4). 
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(a)                                                                     (b) 

  
(c)                                                                     (d) 

Fig. 7: Sports facility monitoring in patch 3 (Fig. 3). Areas 1 to 2 are used for in-depth analysis. GE 
images were acquired on (a) September 12, 2010 and (b) September 5, 2014. (c) and (d): 
spatiotemporal change detection result in patch 3 (Fig. 4). 
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                    (a)                                 (b)                                (c)                                 (d) 

Fig. 8: Traffic infrastructure monitoring in patch 4 (Fig. 3). GE images were acquired on (a) September 
12, 2010 and (b) September 5, 2014. (c) and (d): spatiotemporal change detection result in 
patch 4 (Fig. 4). 

 

  
(a)                                                                     (b) 

  
(c)                                                                     (d) 

Fig. 9: Construction monitoring of single high-rise buildings in patch 5 (Fig. 3). Areas 1 to 2 are used for 
in-depth analysis. GE images were acquired on (a) September 12, 2010 and (b) September 5, 
2014. (c) and (d): spatiotemporal change detection result in patch 5 (Fig. 4). 
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5 Conclusions 

A novel time series analysis, 4DCDPSI, has been proven capable of detecting spatial changes (3D) 
and occurrence times (1D). In this study, we explore the feasibility and applicability of 4DCDPSI 
for urban monitoring. The aims of the five case studies are to monitor construction progress, 
business districts, sports facilities, traffic infrastructures, and single buildings. As to construction 
monitoring, three main construction types, i.e., demolition, erection, and renovation, can be 
distinctly recognized along with change times that substructures are added or removed. Such 
spatiotemporal change information is able to be derived from a business district characterized by 
frequent and intensive building changes. Our method can also provide detailed construction 
progress on single buildings. A typical example in our case studies detects some new storeys that 
were built upon an existing high-rise building form low to high level in sequence. In addition to 
building construction, we also demonstrate that construction monitoring of traffic infrastructures 
is also feasible by bringing an example of a newly-built elevated metro line. Last but not least, 
fortunately, we only find dense PS points instead of DBC points, which are regarded as structural 
damages, on the sports facilities. In summary, we have demonstrated that our technique can 
provide detailed and comprehensive information for urban monitoring.  
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