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Abstract: Modern day agriculture is becoming an endeavour where precision is highly desired and 
drones with imaging capabilities are contributors of big data to this field of research. Our focus in this 
paper is on precise weed control, in particular, the optimisation of yield and cost while having minimum 
impact on the environment. The information about in-field variability of weed patches can be exploited 
for sub-plot specific weed control, which leads to a restrained yet flexible use of herbicides. We use 
close-range imagery of weeds recorded with handheld cameras, having a resolution of only a few 
millimetres per pixel in their natural environment. In this paper we adapt Convolutional Neural 
Networks with the goal of separating weeds from the main crops in close-range imagery. We explore two 
ways to design the networks: pixel-wise classification and object-based detection. For both approaches, 
we use pre-trained networks, which are fine-tuned with the recorded weed images. The deep learning 
libraries used are Caffe and Tensorflow. The study demonstrates successful adaptation of pre-trained 
CNNs for weed classification in close-range imagery which could be extended to UAV imagery in future. 
 

1 Introduction 

Modern agricultural techniques focus on high yields, low costs and eco-friendly practices. While 
frugal use of herbicides is desired, weed control still remains important for the increase in the 
productivity of the crops. The common approach so far is the uniform application of herbicides 
to a field, neglecting the spatial variability of weed species and densities. This results in higher 
costs, pollution of soil and water resources. In addition, the herbicides may adversely affect the 
crops if applied in high concentrations. By mapping different species of weeds, their density and 
distribution, herbicide spraying can be adjusted as opposed to uniform application.  
As weeds and crops are spectrally similar at an early stage of growth, pixel-based classifications 
of the two do not always provide reliable accuracy and hence popular rule-based methods 
include features such as the shape of leaf and texture to increase the achievable accuracy of 
classification (SØGAARD 2005; ÅSTRAND & BAERVELDT 2002; GOLZARIAN & FRICK 2011). 
However, these classification methods rely on handcrafted feature extraction techniques which 
are not robust enough to discern complexities that exist in the natural environment. 
Our ultimate objective is to classify weeds in aerial images acquired from a height of less than 10 
meters but for this study, we restrict ourselves to terrestrial images i.e. images acquired with 
hand-held devices. In this paper, we propose Convolutional Neural Networks (CNNs) for weeds 
classification using two approaches, object detection and pixel-wise labelling. We adapt pre-
trained CNN models trained on expansive datasets and fine-tune with the weeds’ images.  
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2 Data 

The data used for this study comprises images of five different weed species, as shown below.  
 

Tab. 1: A list of the weeds classes available for the study 

EPPO Code Scientific name English name 
MATCH Matricaria chamomilla Wild chamomile 
POAAN Poa annua Annual meadowgrass 
STEME Stellaria media Common chickweed 
VIOAR Viola arvensis Field pansy 
AMARE Amaranthus retroflexus Common amaranth 

 
The images were taken at Heidfeldhof farm, located in Plieningen, Stuttgart. These images were 
photographed vertically downwards from approximately 50cm above the ground by a cell phone 
camera having a resolution of 3024×4032 pixels. The weeds were cultivated in natural 
environment and were at an early stage of growth. Additionally some weed images from a 
dataset created by GISELSSON et al. (2017) were used for testing the models in the pixel-based 
approach. This dataset consists of images taken in controlled conditions with the soil covered by 
small stones to prevent green moss layer. 

3 Object-based approach 

Object detection deals with localization of objects in addition to the classification of the same 
objects. This approach of the study utilizes Faster R-CNN (REN et al. 2015) architecture for 
localizing weeds along with the recognition of the species to which they belong, by fine-tuning a 
pre-trained Resnet-50 model (HE et al. 2016) trained on 90 different object categories of COCO 
dataset (LIN et al. 2015).  
Resnet-50 is a 50-layer architecture, consisting of the building blocks as shown in Table 2. A 
building block, for example, Conv2_x consists of three units with each unit having three 
convolutional layers of 1×1, 3×3 and 1×1. A shortcut connection is added from the result of the 
previous block (which in this example is 3×3 max pool) to the output of the first unit of 
Conv2_x. This shortcut connection is implemented as element-wise addition of the outputs of 
3×3 max_pool to the output of the first sub-block of Conv2_x. Shortcut connections are also 
provided within the adjacent units in a block. For example, a shortcut connection is provided 
between the output of 1×1, 256 convolution of first unit of block Conv2_x and the output of 1×1, 
256 convolution of the second unit of the same block. The shortcut connections between the 
units in adjacent block decrease the image size. Batch normalization has been performed after 
each convolution to overcome the problem of exploding and vanishing of the gradients during 
backpropagation. 
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Tab. 2: Resnet Architecture for an input size of 224*224 (adapted from HE et al. (2016)) 

Building 
block 

Output size Units 

Conv1 112*112 7*7, 64, stride 2 
 56*56 3*3 max pool, stride 2 

Conv2_x 56*56 

1 ∗ 1, 64
3 ∗ 3, 64
1 ∗ 1, 256

൩ ∗ 3 

Conv3_x 28*28 

1 ∗ 1, 128
3 ∗ 3, 128
1 ∗ 1, 512

൩ ∗ 4 

Conv4_x 14*14 

1 ∗ 1, 256
3 ∗ 3, 256
1 ∗ 1, 1024

൩ ∗ 6 

Conv5_x 7*7 

1 ∗ 1, 512
3 ∗ 3, 512
1 ∗ 1, 2048

൩ ∗ 3 

 1*1 Average pool, 5-d fc 

 
For the detection of weeds species, Faster R-CNN algorithm has been used. The blocks up to 
Conv4_x were used for Region Proposal Network (RPN) whereas the final block Conv5_x was 
used as an object detector to predict the class of weeds along with the refinement of the bounding 
boxes proposed by the RPN. Region Proposal Network consists of a sliding window of kernel 
size n, over the feature maps generated by the block Conv4_x. At each location of the sliding 
window, a number of object proposals are computed. These object proposals are computed on 
the basis of reference boxes, called grid anchors. A number of grid anchors of varying scales and 
aspect ratios are generated at each position of the sliding window. Though the anchors are 
generated in feature maps, the coordinates of these anchors corresponds to the image 
coordinates. The correspondence of the feature maps to that of the image can be calculated as the 
feature maps are generated through a series of convolutions and pooling. 
A grid anchor is labelled as positive if the Intersection over Union (IoU) of the grid anchor to the 
bounding box of the ground truth is over a certain threshold. Intersection over Union is 
calculated by the area of intersection of the boxes divided by the area of union. All the grid 
anchors below the threshold are labelled as negative. These proposals are passed to the classifier 
and regressor in the RPN where they are classified as objects and background by the classifier 
and the regressor computes the bounding box regression. 
The proposals that have been classified as objects and non-objects along with their regressed 
bounding box are sent to the detector network, consisting of the final convolution block of the 
network. Here, the objects are classified into their classes and the coordinates of the bounding 
box are computed. 

3.1 Data Preparation 

The images were cropped due to the memory limitations of the computer before being added to 
the training and test sets. The bounding boxes were created in an XML format using LabelImg 
tool (LIN 2015). Table 3 shows the number of training and test images used for the study.  
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Tab. 3: List of Training and Test images 

S.N. Images containing Number of Training Images Number of Test images 
1 MATCH 78 20 
2 POAAN 132 33 
3 STEME 174 40 
4 VIOAR 126 30 
5 AMARE 130 33 

 
The training images contain at least one object and at most 8 objects of an individual class. The 
bounding box of each object include four coordinates, minimum and maximum x and y 
coordinate values. In addition, class information is provided.  

3.2 Implementation 

The weights of the network were initialized by the pre-trained model on COCO dataset and only 
the weights of the fully connected layer were initialized by Xavier initialization (GLOROT & 

BENGIO 2010). 
The training of the Region Proposal Network (RPN) was done simultaneously along with the 
training of the object detector, as opposed to the four-step alternating training proposed by REN 
et al. (2015). A batch size of 1 image was used because the training images vary in their 
dimensions. Since the training data was sparse, augmentation of images and corresponding 
bounding boxes was done by randomly flipping them horizontally and vertically, rotating by 90 
degrees, altering brightness, contrast, hue and saturation along with random cropping, padding, 
and scaling. 
Grid anchors were generated at scales 0.25, 0.5, 1 and 2 with aspect ratios 1:2, 1:1 and 2:1. The 
reason for using these is to generate object proposals with varying scales and aspect ratios. This 
is believed to make the network robust in predicting objects that vary in scale and/or are 
obscured by other objects. In our case, since the weeds have various stages of development even 
in the same image and may be obscured by crops, the use of various scales and aspect ratios is 
important.  
For generating the region proposals, a window of size 3x3 was convolved on the results of 
Conv4_x, followed by the activation step. This output was simultaneously passed to the 
classification and regression layers by a convolution of 1x1 producing scores for the 
“objectness” and the four coordinates of a bounding box of each object. The weights of the 
Conv4_x were initialized by the pre-trained model; however, the weights of the subsequent 
layers of the RPN were initialized by the truncated normal initialization with a standard deviation 
σ of 0.01.  
The Intersection over Union (IOU) threshold for distinction between objects and non-objects was 
set to 0.7 which means those proposals whose IOU values were less than 0.7 in the ground truth 
bounding boxes, were considered as background. As the number of proposals for the background 
would be particularly high for the images that contain few objects of interest, only a subset of 
such proposals is considered. In this study, a ratio of 1:1 for the object and background was 
specified. 
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The classification of the objects was done by cropping and resizing the convolutional feature 
maps proposed by RPN and passing it through the Conv5_x layer. The output of this layer was 
passed through the softmax activation function to predict the class probabilities of the object and 
the same output was passed to a different regression layer for the final regression of the bounding 
box. The implementation was done on Tensorflow Object Detection API (HUANG et al. 2016). 

3.3 Results and Discussion  

Initially, the training was run with up to 200,000 iterations; the accuracy was simultaneously 
calculated along with the training by evaluating the models created during the training at various 
iterations using test data. The training loss started from a higher value in the first iteration and 
then reduced abruptly after few thousand iterations, after that it remained stagnant (see Figure 1). 
The test accuracy started from a low value and increased abruptly and then remained stagnant 
after few thousand iterations. Neither the loss nor accuracy improved or degraded even if the 
training was done for 450,000 iterations (see Figure 1). 
 

 
Fig. 1: Training Loss and Test Accuracy 

 
In this setup, the training and test set were mutually exclusive sets of images where the weeds are 
large. We refer to such images as “large weed images”. It was expected that the network, after 
sufficient training, would learn the complex features such as shape and texture from the training 
images and would generalize even on the images where the weeds are significantly small. Hence, 
another set of such images, which we refer to as “small weed images” were added to the test set 
to assess the quality of the model. This set of images had 97 images with MATCH and STEME 
photographed along with wheat. The development stage of the weeds in this image set was 
similar to the previous set of images, the differences being the size of the weeds, the inclusion of 
the crops and occurrence of above-specified weeds in a single image. 
The evaluation of the detection has been performed according to the PASCAL VOC metrics 
(EVERINGHAM et al. 2007). The Average Precision (AP) of each class and a mean Average 
Precision (mAP) for the entire class has been computed. The AP has been calculated by 
computing precision at various recall values, ranging from zero to one and then taking the 
weighted mean of such computed precisions, where the weights are the increase in recall values 
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from the previous steps. The mAP values are the average values of AP over all the classes. The 
precision is calculated by the number of true positives divided by the sum of true positives and 
false positives, whereas the recall is calculated by the number of true positives divided by the 
sum of true positives and false negatives. In our case, true positives refer to the detections that 
have an Intersection over Union value of at least 0.5. In case of multiple detections of the same 
class, a single detection is considered as true positive while all the others are considered as false 
positives. Other false positives are the ones which the model detects although there are no 
corresponding objects in the ground truth. The false negatives are the ground truth objects which 
the model did not detect. 
Table 4 shows the AP and mAP of each of the weed class which was tested on two different 
datasets. Dataset 1 refers to the test data set as described in Table 2 and Dataset 2 refers to the 
test data set including the “small weed images”. A third setup (Dataset 3) of the experiment was 
done in which the “small weed images” were randomly split in training and test data in ratio 80% 
and 20% respectively, and were added to the respective datasets of Table 2. 
 

Tab. 4: Average Precision and mean Average Precision for three sets of test 

 AP(%) mAP(%) 
 AMARE STEME MATCH POAAN VIOAR All weeds 

Dataset 1 89.4 74.6 86.3 74.2 96.3 84.2 
Dataset 2 87.2 30.2 23.3 40.8 94.0 55.1 
Dataset 3 88.5 70.1 78.9 78.9 95.4 82.3 

 
It can be seen that the AP for AMARE and VIOAR does not differ much since the test data of 
dataset 2 does not contain weeds of small size. However, there has been a massive reduction in 
AP for STEME, MATCH, and POAAN, and therefore a reduction of the mAP for all weeds. 
This is due to the wheat in test data images being incorrectly classified as POAAN, as seen in 
Figure 2 (top row, left). The reason for the misclassification might be the similarities in leaf 
structure as well as spectral values of wheat and POAAN. Moreover, the size of STEME and 
MATCH was significantly small. This increased the false positives of POAAN and also the false 
negatives of STEME and MATCH were increased resulting in low precision and a low recall for 
the respective classes. 
The results show that the accuracy of all the weed species improved and is comparable to the 
results obtained for the Dataset 1. The justification for the above results comes from the fact that 
since the “small weed images” are also trained, the Region Proposal Network is able to propose 
even the smaller objects, shown in Figure 2 (top row, right). Furthermore, inclusion of these 
images in the training dataset allows the network to assign regions with the wheat to background 
and hence decrease in false positives for POAAN. The slight decrease in the AP for STEME and 
MATCH as compared to the first experimental setup might be due to some misclassification 
among these two classes. The inclusion of “small weed images” in training has negligible effect 
on the detection of weeds in “large weed images”, as shown in Figure 2 (bottom row). 
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 Dataset 2 Dataset 3 

Small weed 
images 

  

  

Large weed 
images 

 

 
Fig. 2: Detections on test images (network trained on Dataset 2 and 3) with large and small weeds. 

The ground truth boxes are shown in black. The yellow boxes correspond to misclassification of 
wheat as POANN and the red boxes correspond to MATCH. The inclusion of “small weed 
images” for training in Dataset 3 improves the detection but has negligible effect in detection of 
weeds in “large weed images”. 

4 Pixel-based approach 

Semantic segmentation aims at producing a classification map of the same size as the input 
image. The map assigns one out of a set of defined classes to each pixel as opposed to 
categorization networks which assign a single class to an entire image. Several architectures have 
been created for pixel-wise classification which consists of two main stages, the encoder for 
classification and the decoder for pixel-wise prediction and output of the segmentation results. 
LONG et al. (2014) proposed fully convolutional networks (FCNs) for semantic segmentation. 
The architecture transforms common classification CNNs such as VGG, AlexNet and 
GoogLeNet into FCN by rewriting their fully connected layers into convolutional layers which 
form the encoder stage of the network. The encoder generates low-resolution feature maps which 
are then passed to the decoder for upsampling to get prediction maps of the same size as the 
input image. The upsampling is performed using transposed convolution layers also referred to 
as deconvolution layers through bilinear interpolation. The decoder refines the upsampled 
outputs by merging them with features from different stages in the encoder stage which are 
coarse but of high resolution.  
Segnet (BADRINARAYANAN et al. 2015), another semantic segmentation architecture, differs from 
FCN in regards to the implementation of both the encoding and decoding stages. In the encoder 
stage, all the fully connected layers of a classification network are discarded. The lower 
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resolution feature maps from the encoder are upsampled in the decoder using unpooling layers as 
opposed to using deconvolutional layers in the FCN. The resulting encoder-decoder network is 
efficient in memory usage and computational time. This is due to fewer parameters after 
discarding the fully connected layers in the encoder and use of max-pooling indices from the 
encoder for non-linear upsampling in the decoder. The low memory usage, however, results in 
loss of accuracy compared to FCN which preserves the feature maps in the encoder stage by re-
writing the fully-connected layers instead of discarding them. For this reason, FCN was used in 
this approach. 

4.1 Data Preparation 

For training a FCN, image pairs as data input and a corresponding ground truth mask as the label 
input is required. Tab. 5 shows the number of training image samples created from the field 
images and the plant seedlings dataset (GISELSSON et al. 2017)  
 

Tab. 5 : The training Dataset 

EPPO Code Name No. of Images No. of Images + 
Augmentations 

MATCH Wild chamomile 179 1611 
POAAN Annual meadow grass 212 1908 
STEME Common chickweed 200 1800 
VIOAR Field pansy 168 1512 

 Wheat 201 1809 
TOTAL  960 8640 

 

The image samples were cropped to contain exactly one weed or wheat and the background 
unlike in the object-based approach in Section 3.1 where a training image contained one or more 
plants. Therefore, the number of images for each species in this approach is higher than the one 
used in the former approach. The reason for cropping in the indicated way was to allow 
segmentation through maximum likelihood classification using ArcGIS Desktop. Symbolic 
values corresponding to the six classes, five classes in the training dataset and the background, 
were assigned to the pixels of the segmented images. These symbolic images were used in the 
sequel as ground truth labels. In order to expand the training dataset effectively, data 
augmentation was performed where both geometric and pixel value changes were applied. 
Increasing the dataset has been used to reduce overfitting and speed up convergence while 
training models. The geometric augmentation techniques included rotating by 90º, 180º and 270º, 
horizontal and vertical flips of both the images and the labels. In the second set of 
augmentations, the pixel values were altered by performing colour enhancement, colour 
equalization and applying a Gaussian blur. Unlike in the object-based approach where the 
augmentations were done on the fly, these augmentations were performed prior to the training 
process. The image dataset was split with 80% as the training dataset and 20% as the test dataset 
for each class and stored in light memory-mapped databases (LMDBs). 
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4.2 Implementation 

The FCN architecture was implemented by leveraging models trained on bigger datasets through 
transfer learning. The deep learning framework Caffe (JIA et al. 2014), developed by the 
Berkeley Vision and Learning Centre (BVLC), was used for the implementation while the model 
definitions and pre-trained weights were obtained from Caffe’s Model Zoo. 
In the first set up, a VGG-16 model by SIMONYAN AND ZISSERMAN (2014) used for the ImageNet 
Challenge 2014 was transformed into a fully convolutional network. The VGG-16 network has 
three fully connected layers at the end, FC6, FC7 and FC8. The last layer FC8, used as the 
classifier for ImageNet’s 1000 classes, was discarded while FC6 and FC7 were re-written into 
convolutional layers and the weights transferred using the net surgery script provided in Caffe. 
By reshaping and retaining FC6 and FC7, the feature extraction weights from the VGG-16 are 
preserved. The weights were used to initialize the encoding stage of the "at-once" FCN-8s 
architecture used for training with PASCAL VOC 2011 dataset (EVERINGHAM et al. 2011). 
Gaussian and bilinear weight fillers were used to initialize the weights of the convolutional and 
deconvolutional layers respectively in the decoder. A combination of a low learning rate of 10-10, 
a high momentum of 0.99 and a batch size of one was used for the training. This setup is referred 
to as VGG16-FCN in the next sections. 
In the second experimental setup, the weights of a FCN-8s model trained on 20 classes of the 
PASCAL VOC dataset were fine-tuned using the weeds dataset. This was done by a full transfer 
of weights and adding a convolution layer as a classifier with the six classes. The new classifier 
was initialized with a Gaussian weight filler. A low learning rate of 10-14 has been used together 
with a high momentum of 0.99 to fine-tune the entire network. The low learning rate was 
necessary to prevent fast distortions to the fully transferred weights.   

4.3 Results & Discussion 

In the training phase, choosing and optimizing training parameters required monitoring by 
plotting the training loss, test loss and accuracy which indicate the performance in real time.  The 
goal of this is to decrease the training and test losses while increasing the model’s accuracy. The 
learning rate remains the most important parameter and estimating an optimal value involves 
testing a range of values and different learning rate policies. Very low learning rate means the 
training takes long to converge or gets stuck at a local minimum while a very high learning rate 
leads to the loss function rising very fast. In both setups, a combination of a fixed learning policy 
rate, a low learning rate and a high momentum gave better results.  
Caffe offers the flexibility to specify which layers to either fine-tune or freeze the weights during 
training. Fine-tuning the whole network gave better results which can be attributed to the 
difference in nature of training classes of our dataset from the ImageNet (RUSSAKOVSKY et al. 
2014) and PASCAL VOC ( EVERINGHAM et al. 2011) datasets used to train the VGG-16 and 
FCN-8s models. Attempt to perform training without initializing new layers with weight fillers 
resulted in high loss values. Gaussian and Xavier weight fillers were both tested to initialize new 
convolution layers both yielding similar performance. 
The performance of the models from the two experiments was evaluated on the test dataset using 
mean Intersection over Union (mIU) metric. The metric also known as Jaccard similarity 
coefficient is the ratio of correctly classified pixels to the total number of ground truth and 
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predicted pixels. It provides an accurate measurement that penalizes false positives making it 
suitable for evaluating semantic segmentation models. The pixel accuracy can be a misleading 
measure of model performance if one class has a higher number of pixels in the images 
compared to other classes. In the training and test datasets, most of the pixels belong to the soil 
which is represented in the class background. The frequency weighted IU, considers the IU of 
each class weighted by the number of pixels in that class. This gives an overall accuracy with 
larger classes receiving larger weights hence the high results in Tab. 6, due to the influence of 
the background class which does not give an accurate performance of the models. The models 
predict most of these background pixels correctly but misclassify some of the weed and wheat 
pixels. In addition to the metrics, visualization of the segmented images was compared to the 
ground truth labels. 

 Mean accuracy:  ሺ/ࢉሻ ∑   ࢚	/
 Mean Intersection over Union (IU):  ሺ/ࢉሻ ∑  /	ሺ࢚  ∑  െ  ሻ
 Frequency weighted IU: ሺ∑ ሻ࢚

‐1 ∑ ࢚ ࢚) /   ∑  െ  ሻ	

Here ࢉ is the number of classes, ࢚	total number of pixels of class  in the ground truth label, 
∑ and  , is the number of correctly predicted pixels of class    is the total number of pixels 
predicted to belong to class  (LONG et al. 2014). 
 

Tab. 6 : A comparison of evaluation metrics after 30,000 training iterations of each experimental setup 
calculated on the test dataset with 1,725 Images 

Models Mean accuracy Mean IU Frequency weighted IU 
VGG16-FCN 77.60 24.75 91.7 

FCN8s + Classifier 77.43 25.32 92.84 

 
Image  Ground truth  FCN8s + Classifier  VGG16‐FCN    
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MATCH  
POAAN  
STEME  
VIOAR  
WHEAT  

Fig. 3:  Visual comparison of segmentation results of images from the test dataset taken in the same 
conditions as the training dataset 

From the metrics in Tab. 6 and inference results in Fig. 3, the FCN8s + Classifier setup yields 
slightly better results. This method employs full weights transfer with only one layer being 
randomly initialised compared to the first method where the entire decoder weights are randomly 
initialized. Weeds sharing similar leaf structures such as elongated leaves in classes POAAN, 
Wheat and MATCH are susceptible to misclassifications. This can be seen in Fig. 3 where some 
POAAN pixels get misclassified as wheat or MATCH and the same occurs in MATCH 
segmentation. The models were further tested on images from the plant seedlings dataset 
(GISELSSON et al. 2017) as a control check for overfitting. The results in Fig. 4 show the ability 
of the models to predict a majority of the pixels correctly with the FCN8s + Classifier setup 
yielding better spatial detail and less misclassified pixels. 
 
 

Image  FCN8s + Classifier   VGG16‐FCN   

   

 

MATCH  
POAAN  
STEME  
VIOAR  
WHEAT  

 

Fig. 4: Segmentation results for a STEME image from the plant seedlings dataset 

5 Conclusion 

The experiments have demonstrated success in transferring pre-trained CNNs to address weed 
classification with limited training images. Further improvements could be achieved by 
expanding image datasets. A large collection of weed and crop images varying in growth stages, 
soil textures, resolutions and conditions would help in training robust CNNs for use in precision 
agriculture.  
The resolution of training images poses some restrictions both due to the memory requirements 
for the computational process as well as in inferring the generated model. The models trained in 
images where the weeds are large, have difficulties in detecting the weeds when the size of the 
weeds is significantly small. However, the inclusion of some images with small weeds in training 
seems to improve the performance of such models. Further experimentation is required to be able 
to detect objects that vary significantly in scale as compared to the trained objects so as to create  
more robust models. 
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There are still challenges to detect objects when they are obscured by other objects. Various 
parameters such as initialization of the weights, regularization of the network affect the learning 
process and have to be further investigated. Other semantic segmentation networks have been 
proposed either as extensions to the FCN models or entirely different architectures focusing on 
reducing computational resources and time, increasing accuracy or a combination of the three. 
These could be explored and compared.  
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