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Abstract: Due to the shift of power production from highly centralised power plants to de-
centralised power production with renewable energy, the role of local distribution networks 
has changed. Originally, these networks were designed to distribute electric power from a 
centralised source to consumers. However, nowadays, the increasing number of climate-
dependent decentralised energy production systems connected to local distribution networks, 
such as photovoltaics, affect the network stability. Thus, network operators need decision 
support methodology in order to cope with the network uncertainty. As a central part of the 
decision support system, climate-dependent forecast for feed-in power is required with high 
spatial resolution. In this paper, a method for the prediction of feed-in power production 
from photovoltaics, based on georeferenced power production and meteorological data is in-
troduced. 
 

1 Introduction 

For decades, centralised power plants have been the operating model for electricity generation 
across Europe. This means, that huge quantities of electricity are being generated by power 
plants, that are physically clustered in a specific area or region located far away from the con-
sumer (GREEN & SONNREICH 2014). The electricity being generated by the centralised power 
plants is being distributed through the electric power grid to multiple users (ACKERMANN et al. 
2001).  
Based on the Department of Economic and Scientific Policy within the EU parliament in June 
2010, there has been a paradigm shift from centralised power plants to a more decentralised en-
ergy system. This shifts the narrative from passive to active consumers, in the sense that they can 
act as power producers as well (ALTMANN et al. 2010; COSSENT et al. 2009). End consumers, in 
turn, are often installing solar panels to cover their power needs and the excessive power are to 
be fed-in to the grid (CARLEY 2009). However, these climate-dependent decentralised energy 
production systems affect network stability. Hence, network operators need decision support 
tools for coping with network instabilities. 
In this contribution, a method for feed-in power prediction from photovoltaics, based on georef-
erenced power production and climate data is described. The method takes into account that pho-
tovoltaic power production is influenced by various parameters: a) geographical location on earth 
and orientation of the panels, b) time of the year (changing sun elevation over the year), c) time 
of the day (HOSTE et al. 2009) (changing sun position over each day), d) climate (e.g. weather, 
wind, cloud, atmospheric conditions, etc.), e) shadowing effects caused by local topography 
(SALVATORE & FRANCISCO 2015), and f) panel-specific parameters (e.g. efficiency of the solar 
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panel, condition like dust, dirt or snow cover). Whereas, the aforementioned parameters (a-e) do 
play a pivotal role in the global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), 
and shortwave radiation received on the Earth surface, the panel-specific parameters are highly 
individual. 
Within the course of this research, diverse meteorological aspects that play a role in the feed-in 
power have been investigated. As part of a state-of-the-art analysis, two approaches to compute 
or predict the feed-in power from photovoltaics have been identified: An analytical approach and 
an observation-based one. 

2 Related Work 

The amount of solar irradiation that reaches the surface of the solar panels determines how much 
power can be produced by a specific solar panel. Additionally, the panel-specific parameters (see 
section 1) contribute to the amount of power being produced and fed into the network. In this 
contribution, we have identified two approaches for tackling the issue of predicting the feed-in 
power from photovoltaics: an analytical approach and an observation-based approach.  

2.1 Analytical Modelling 

In the analytical approach, each and every aspect that plays a role in the computation of the 
amount of power being generated by the solar panel is to be thoroughly studied and a computa-
tional formula is to be obtained. As earlier mentioned, there are a variety of factors that do influ-
ence the feed-in power from photovoltaics. 
One of the areas that have been studied in depth was the cloud coverage and its impact on the 
solar irradiation. In a research study by LUMB (1963) founded on a former study by KIMBALL 
(1928), an empirical correlation function between the average daily short-wave radiation and the 
fraction of sky covered by cloud has been introduced. However, that empirical formula that has 
been introduced did not take into account the different types of clouds. LUMB (1963) comple-
ments KIMBALL’S (1928) work by classifying and identifying different types of clouds. In his 
study, clouds were divided into nine categories, mainly based on their intensity (amount of 
cloud) and altitude. In addition to that, scattering of solar irradiation also varies based on, the 
cloud optical depth, cloud geometry, and the direction of the incident solar radiation (MCKEE & 

COX 1974; AIDA 1977). 
However, the data required for these computations are typically not available, which makes it not 
practical in deducing a computational formula for estimating the short-wave radiation that is re-
ceived at the solar panel. Also, due to the diversity of the domains that ought to be covered to 
precisely compute the amount of feed-in power from photovoltaics, an analytical model consid-
ering all the aforementioned factors would be very complex. Furthermore, from a practical point 
of view, the panel-specific parameters (see section 1) cannot be obtained for individual house-
holds. Hence, the second approach, which seems to be more applicable and more examined re-
cently, is the observation-based approach. 
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2.2 Observation-based Modelling 

In contrast to analytical modelling, observation-based approaches rely on correlating the obser-
vations of different phenomena with each other using statistical methods. In a study by YUAN et 
al. (2015), a correlation between the normalised solar radiation difference and the cloud optical 
thickness was built. An exponential correlation between the amount of solar radiation increase 
and the cloud optical thickness decrease was observed. In another research work by YANG et al. 
(2012), a forecast analysis between the Global Horizontal Irradiance (GHI) and Direct Normal 
Irradiance (DNI) based on a cloud cover index was developed. These studies rely on an observa-
tion-based approach to detect the correlation between cloud coverage and solar irradiation using 
NASA MODIS data (PLATNICK et al. 2015). 
By taking into account these research studies, we concluded that an observation-based approach 
does overcome individual missing or prone to error parameters, as of the case in the analytical 
one. Additionally, various meteorological parameters can be correlated to the solar irradiation. 
This, in turn, allows for studying certain meteorological phenomena and their direct or indirect 
impact on the photovoltaic power generation (JEREZ et al. 2015). 
As a result, it has been decided that we further investigate the observation-based approach in 
order to predict the power output from photovoltaic cells under certain weather conditions.  
However, the studies mentioned above do not take into account local topography and panel-
specific parameters (see section 1), which are important for predicting the feed-in power in local 
distribution networks, but which are not obtainable in most cases. In our research we propose an 
observation-based approach, which tries to overcome these problems. 

3 Proposed Observation-based Approach 

Our approach relies on statistical analysis of georeferenced historic power production measure-
ments from photovoltaic systems installed in local distribution networks and georeferenced his-
toric meteorological data. Figure 1 gives an overview of our approach. The numbers shown in 
the Figure correspond to the numbering of the sections in this paper. 

3.1 Acquisition of power production data from photovoltaics stations 

The first step in this research project was to obtain a reliable and continuous stream of photovol-
taic power production data. Online services for providing crowd sourced photovoltaic power 
data, such as PVOutput2 were inspected and analysed. More than 50 photovoltaic stations in the 
area of Utrecht (Netherlands) were picked from PVOutput and selected for further investigation 
(see Figure 2). Power production data acquisition was limited to a period of 12 months back, 
because of PVOutput limitations. However, although PVOutput provides free online service for 
photovoltaic output data, it does not guarantee their consistency or sustainability.  
In order to take the observation-based approach a step further and correlate power production to 
meteo-rological factors, a con-tinuous stream of power readings was essential.  

                                                 
2http://www.pvoutput.org  
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Fig. 1.  Overview of the proposed approach 

Therefore, the German energy company EnBW ODR provided us with photovoltaic power pro-
duction data for 22 stations (spatial distribution see Figure 3) over the course of 13 months with 
15 minutes temporal resolution. The same workflow has been applied on the EnBW ODR and 
the PVOutput data and the readings have been geo-referenced and stored in a geo-database in 
order to allow for spatial analysis, such as spatial autocorrelation of the power production data, 
spatial interpolation, and spatial correlation with meteorological data (see 3.5). In the following 
sections, the further steps of our approach are described. The outcomes are illustrated using ei-
ther the crowd sourced PVOutput data or the data provided by the energy company EnBW ODR. 

3.2 Maximum Power Estimation for each Station 

In order to overcome the individual panel specific characteristics, we needed to derive a parame-
ter, which accounts for all the influences and makes different photovoltaic systems comparable. 
Hence, we needed to identify the maximum expectable power that can be generated by a specific 
station at a particular point in time on a particular day. The maximum generated power varies on 
daily basis, because of the factors, such as change of inclination of the sun during the year (shad-
owing situation), and season specific atmospheric conditions. Therefore, we had to create the 
maximum power curve for each individual day of the year. In order to measure the maximum 
power at each point in time produced by a certain solar panel, we resorted to historic measure-
ments. The maximum power produced for a specific station was computed for each day of the 
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year applying a moving window approach as follows: for each day of the year, for every 15 
minutes time step, the generated power is compared to its relevant time values for +/-15 days, 
then the maximum reading is being selected (see Figure 4). The period of +/-15 days was chosen, 
because we assumed, that within this period the probability is high to find clear sky conditions. 
The maximum generated power was then assumed to be the maximum expected power that can 
be obtained from a particular solar panel under clear sky conditions at this point in time. 
 

Fig. 2: PVOutput stations Fig. 3: EnBW ODR stations 

 
 

Fig. 4:  Moving window approach for maximum power computation 

April 2 2016,
8:00 AM

April 3 2016,
8:00 AM

April 4 2016,
8:00 AM

April 5 2016,
8:00 AM

April 6 2016,
8:00 AM

April 7 2016,
8:00 AM

P

t

We are interested in Pmax for
8:00 AM on April 4

Pmax for 8:00 AM 
on April 4



M. Elfouly, A. Donaubauer & T. H. Kolbe 

204 

3.3 Attenuation Computation and Spatial Interpolation 

Considering the fact that various meteorological conditions may reduce the amount of power 
being generated by a certain percentage and by learning the maximum expected power produc-
tion for each station at a specific point in time (see section above), we derived a specific attenua-
tion function for each station along the year. Attenuation is defined as the percentage of power 
being lost, due to meteorological conditions. An attenuation value of 0% means that a specific 
station generates the maximum expectable energy for this point of day and time, taking into ac-
count the station-specific non-meteorological factors, such as date and time, efficiency, panel-
condition and local topography. An attenuation value of 100% means that this station produces 
no power at all.  In order to determine the current attenuation percentage, a ratio between the 
measured and maximum expectable power at a specific point in time has to be built. The attenua-
tion accounts for all the influences and the afore-mentioned parameters – apart from meteorolog-
ical factors - and therefore makes different stations comparable: 

Attenuation	ܣ	ሾ%ሿ ൌ ቀ1 െ


ೌೣ
ቁ ∗ 100 

where P is the measured power at a specific point in time and Pmax is the maximum expectable 
power at this point in time under clear sky conditions (see 3.2).  
Then, we generated daily-based, seasonal-based, and station-based, diagrams for plotting the 
actual power that is being produced by a specific station, maximum power at each point in time, 
and the attenuation percentage (see Figure 5). 
Then, three scenarios have been considered, in order to observe various correlation aspects. The 
first one is to indicate the meteorological influence, such as cloud coverage and its impact on the 
power production. Thus, we decided on two consecutive dates where one is cloudy and the other 
one has clear sky conditions (see Figure 5). It can be noted, that there is severe power drop on 

the cloudy day, com-
pared to the clear sky 
day. However, there 
might have been other 
meteorological factors 
that have played a role 
also. In the second sce-
nario, we checked for 
spatial auto-correlation 
between nearby sta-
tions, in order to ob-
serve for certain mete-
orological phenomena, 
such as cloud move-
ment, that occur over a 
certain region (see Fig-
ure 6). It can be noticed 
that the power curve is 
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Fig. 5:  An example for actual power production, maximum power, and 
attenuation percentage for Pasij station on April 2nd 2016. Ex-
ample using PVOutput 
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almost the same for both nearby stations, because they do get exposed to similar conditions at 
this point in time. The last scenario was studying the seasonal effect and its correlation to the 
amount of power that can be produced by a certain station (see Figure 7). In that last scenario 
(see Figure 8), we can study seasonal effects of photovoltaic power production.  

 
Fig. 6:  Clear Sky vs Cloud for Moorstenweg 

station on 9th and 10th of May consecu-
tively – examples using PVOutput data. 
The green curves differ substantially.

Fig. 7:  Spatial auto-correlation on Fregatstraat & 
Moorsterweg on March 17th 2016 consec-
utively using PVOutput data. The green 
curves have nearly the same shape.

 

 

 

 

 

 

 

Fig. 8:  Seasonal effect for Fregatstraat 
station on January 25th and July 
18th 2016 consecutively using 
PVOutput data 
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Afterwards, a spatial interpolation between the stations has been performed, in order to deduce 
attenuation fields, which show spatial distribution and the change of attenuation throughout the 
day, month, and year for the whole area of study (see Figure 9). The spatial interpolation was 
carried out using the natural neighbours interpolation algorithm (SIBSON 1981), because of it 
creates a smooth field, whereas the observations at the known data points are preserved. 

Fig. 9:  Attenuation field of four consecutive points in time in the Utrecht area: Top left 12:05 pm, top 
right: 12:15 pm, bottom left: 12:25 pm, bottom right: 12:40 pm. Data source: PVOutput 

The attenuation field now allows to predict the feed-in power for a station installed at an arbi-
trary location within the extent of the field and for a specific point in time. This use case is relat-
ed to a real-world problem, that energy companies face. Whereas, only few stations have smart 
meters installed, the energy companies need to predict feed-in power for all stations connected to 
their network. Thus, the attenuation field can be used to predict the potentiality of power produc-
tion for stations with no smart meters installed, by extracting the attenuation values for the geo-
graphic locations of the power stations from the field. The amount of power to be produced is 
then to be computed from the extracted attenuation values. In order to do so, the maximum pow-
er that is ought to be generated from this particular panel still has to be known. 

3.4 Meteorological Data Acquisition 

Acquiring meteorological data for the same spatial region as of the photovoltaics stations is cru-
cial. Also, the time span and temporal reference system for the various meteorological attributes 
has to match with that of the power production readings. Hence, within the scope of this project, 
we obtained satellite-based meteorological data for our test region with a spatial resolution of 
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3x3km and a temporal resolution of 15 minutes from the company METEOBLUE3. The obtained 
data varied from cloud coverage and temperature to Global Horizontal Irradiance (GHI) and Dif-
fuse Horizontal Irradiance (DIF). In order to prepare for correlation with power production data, 
the meteorological data had to be geo-referenced. Then, as a last step before correlating the me-
teorological readings with the power production readings, both of those readings had to be trans-
formed to the same time base (UTC offset of one hour was chosen). 

3.5 Finding a correlation function 

By analysing the historic observations and meteorological data, a correlation function between 
the attenuation and the various meteorological factors derived from satellite observations, such 
as cloud cover and solar irradiance could be determined. The derived correlation function, allows 
to predict the attenuation field for a specific future point in time from weather forecast. 
As a first step of the correlation process, geo-location and date-time of the power production, 
attenuation and meteorological data were used for joining the readings in a common database 
table. Then, scatter plots were produced to examine for potential correlation. It is to mention, that 
night time was excluded from our study, since it gives us a false indicator of strong correlation 
where readings from power production as well as solar irradiation are zero. 

 
Fig. 10:  Scatter plot between GHI & power for Spraitbach station in August 24th 2016. Data source: 

Power production: EnBW ODR; Meteorological data: Meteoblue 

By analysing Figure 10, a mostly linear correlation between the GHI (W/m2) and the produced 
power (W) for a specific station can be observed. A linear regression function was then generat-
ed and checked thoroughly. In addition to that, we inspected the correlation between the attenua-
tion and GHI. However, a linear regression in that case was not the best fit (see Figure 11). Thus, 
we generated a polynomial regression function of the 5th degree to correlate GHI with the attenu-
ation percentage. 

                                                 
3 https://content.meteoblue.com/ 
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Fig. 11:  Scatter plot between GHI & attenuation for all the stations on September 24th 2016. Data 

source: Power production data: EnBW ODR; Meteorological data: Meteoblue 

By examining the correlation for longer periods of time, we concluded that there is a higher cor-
relation between the GHI and the attenuation, than between the GHI and the power production, 
specifically under non-clear-sky-conditions. Hence, as a last step before forecasting, we extended 
our correlation over a 12-months timespan to assess the goodness of fit of the model. Further-
more, we studied the correlation separately for each season, in order to evaluate the fitting model 
and determine if the correlation varies from season to season. 
As a result, of that, the goodness of the fitting model across the whole year is estimated to be 
0.74 R squared. The fitting model operates during autumn with 0.85 R squared and the least dur-
ing summer with 0.63 R squared. Additionally, it was found out that by taking into account 12 
months of historical data, a linear regression equation could be deduced, which is in contrast to 
the results when we take only small sample data as seen in Figure 11. 
We plotted the diverse meteo-rological aspects that we have obtained, such as cloud coverage 
and temperature against the attenuation to examine if there is a noticeable correlation between 
them (see Figure 11). However, temperature did not play a significant role in the amount of pow-
er being generated. As for cloud coverage, while it plays a role in the amount of solar radiation 
received on the earth surface, as we explained in the introduction, there was no direct correlation 
between the power production and the cloud coverage. This is because, in the meteorological 
data available, cloud coverage is expressed as a percentage representing the fraction of a 3×3 
kilometres tile covered by clouds with 15 minutes temporal resolution. This means, that clouds 
can be formed within this time period without being detected. Also, different formations of 
clouds react to solar radiation differently as earlier discussed in section 2.2, and cannot be dis-
criminated in the meteorological data available. Based on the regression model that has been 
generated in section 3.5 and by feeding GHI as input to the model, we could predict the attenua-
tion percentage on that particular day. As demonstrated in Figure 13, the blue line in the middle 
is the estimated fitting line, while the red and the green ones are the lower and upper boundaries 
consecutively of the 95% confidence interval. Thus, the correlation function enables us to predict 
the attenuation field for a specific future point in time from weather predictions. Moreover, it 
allows us to predict the feed-in power for a specific station and for a specific future point in time 
from the predicted attenuation field, by reversing the attenuation formula: 
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Fig. 12:  Meteorological factors vs photovoltaics 
power production for a clear sky day for Al-
theim (Alb) on September 14th 2016. Data 
source: Power production data: EnBW 
ODR; Meteorological data: Meteoblue 

Fig. 13:  Estimated attenuation percentage for 
Schrozberg on July 11th 2016. Data 
source: Power production: EnBW ODR; 
Meteorological data: Meteoblue 
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Validation 

In order to evaluate the estimation, we divided our data into training data and test data. By taking 
into account the seasonal influences, we used training data from different seasons, in order to be 
able to have a proper estimation. Validation in our approach went through different steps. In a 
first step the acquired data was validated. In order to determine if the power production and me-
teorological data are in the same time zone, we generated diagrams for various meteorological 
factors against power (see Figure 12). It can be clearly observed that the power production (W) 
and the clear sky shortwave (W/m2) do overlap and there is no time lag. Also, it can be clearly 
observed that the given day has clear sky conditions. 

Fig. 14:  Histogram showing the frequencies of the 
absolute differences between measured 
and predicted attenuation in Winter. Data 
source: Power production: EnBW ODR; 
Meteorological data: Meteoblue 

Fig. 15:  Histogram showing the frequencies of 
absolute error percentages for power 
estimation in Spring. Data source: Pow-
er production: EnBW ODR; Meteorolog-
ical data: Meteoblue 
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In order to validate the prediction model that has been created in section 3.5, we extracted a table 
containing the predicted attenuation, the actual measured attenuation, and the attenuation differ-
ence of each of the 812842 data items. In addition to that, we computed the estimated power and 
compared it to the actual power reading, in order to measure the power difference and generate 
the error percentage. We then generated histograms for the attenuation difference across different 
seasons to evaluate which seasons have higher correlation than others (see Figure 14). By obser-
vation, we can conclude that in winter, most of the attenuation differences lie between 0% and 
20%. As a last step, the table below was created to provide statistical description of the valida-
tion.  

Tab. 1: Statistical description of the validation results: differences between measured 
and predicted power (absolute percentage) 

Season Mean Median Standard 
deviation

Min Max 

Winter 31.3 27.9 21.3 0.0 93.3 
Summer 19.9 14.5 16.9 0.0 91.7 
Spring 23.0 18.6 17.8 8.0 91.0 

Autumn 19.4 17 13.5 0.0 86.0 
All seasons 25.2 20.1 19.6 8.0 93.3 

4 Conclusions & Outlook 

In this paper, the correlation between photovoltaic power production and heterogeneous mete-
orological and topographical aspects have been studied. Two approaches have been investigated, 
an analytical-based approach and an observation-based approach. In the first approach even 
though it gives a clear depiction of the amount of solar irradiation received on the Earth surface, 
the data sources required for these computations are generally not available. Additionally, it does 
not take into account the local topography and panel-specific parameters, such as efficiency and 
condition and its impact on the amount of power being produced by the solar panels. Further-
more, there is a plethora of domains that do play a role in the amount of power that is being pro-
duced, and predicting power values requires deep knowledge in all these various domains. 
In the observation-based approach, we studied the actual power that is being produced by solar 
panels and its correlation to meteorological factors. This allowed us to take into account all the 
influences on the solar panel by analysing the actual power that is being produced. Hence, by 
computing the attenuation factor, as well as normalising the power, we could compare different 
PV systems and overcome station-specific characteristics that might be hard to obtain in an ana-
lytical approach. By using historical data for training our system, we could then deduce a corre-
lation function between GHI and attenuation that counts for all these factors and their influence 
on the power production. We could apply this function for predicting power production from 
GHI forecast. In addition to that, the attenuation field that has been created enables us to do the 
prediction also for stations that do not have smart meters installed and also to locate solar panels, 
in order to generate the most power. 
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The accuracy of the prediction was determined by a cross-validation approach showing accepta-
ble results. However, taking into account the use case of decision support for operators of local 
distribution networks, the spatio-temporal resolution of the weather data available today is still 
insufficient. This leads to a potential future research area, trying to perform now-casting of ener-
gy production from smart meter readings of georeferenced stations by applying methods like 
Gaussian Markov random fields. In this future approach, the attenuation fields could be extrapo-
lated, which would have the strength to overcome the necessity of weather information in the 
prediction process. 
The research presented in this paper was carried out in the project VerNet-LEM funded by the 
Bavarian Ministry of Economic Affairs in cooperation with the company AED-SICAD, based on 
a geospatial database system with data from EnBW ODR. 
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