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Development of large scale 3D point cloud processing 
modules – minimizing the number of input parameters 

through statistical modeling and optimization 

MAXIMILIAN SPERLICH1 & HOLGER WEINACKER1 

Abstract: The main objective of this thesis was to develop a pipeline of 3D point cloud 
processing modules, facilitating the extraction of training data for supervised classification 
tasks. The modular design enables the application of each module as standalone tools for 
filtering, segmentation or information retrieval. 
Core component of most modules is a ground filtering algorithm, devised as a combination 
and further development of two well-established methods by WANG et al. (2015) and ZENG et 
al. (2016). The ground filter is thoroughly tested for robustness through a range of freely 
available benchmark datasets. Its performance is further compared to results produced by 
multiple methods tested on equal data. 
In order to reduce the number of necessary parameters, an optimized general parameter set 
is produced through a regression model. The resulting default parameters prove to be 
applicable to a wide range of scenarios. 
For further ground filtering improvements, a method for the regional segmentation of large 
scale outdoor point clouds is proposed, resulting in spatially coherent areas of similar terrain 
slope. Further characteristics, such as terrain roughness, are calculated for each segment. 
Optimized parameters are then calculated for the respective slope and roughness classes, thus 
enabling the implementation of automatic parameter adjustments into the ground filter. 
As a measure for the viability of the accumulative results from all proposed methods, a 
supervised random forest classifier is trained from data, which has been preprocessed by each 
module. Hereby, the facilitation of manual training data extraction, as a result of the proposed 
methodology pipeline, is evaluated. The performance measures of the subsequent 
classification, serve as evidence for the effectiveness of the training data, as a cumulative 
representation of all presented modules. 
 

1 Problem Statement 

The scientific literature provides a wide array of options for point cloud classification. The 
effectiveness of supervised classification of 3D point clouds, based on 2D and 3D shape features 
derived from the local point neighborhood has been demonstrated on multiple occasions 
(BLOMLEY et al. 2016; DEMANTKÉ et al. 2012; JUTZI 2015; WEINMANN 2016). In many cases, the 
main limitation is a design focused on a specific task, based either on the applied sensor type or 
on the captured scene. However, improvements in the area of sensors enable the capture of large 
areas (> 10 ha), including varying landforms and land use types with point densities > 30 points/m2. 
The technology for processing such data is becoming more affordable. Therefore, the need for a 
more generalized approach to large scale point cloud classification arises. 
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Furthermore, supervised classification requires the generation of training data. This is often a long 
and tedious process and great deal of time has to be spent, carefully picking the points by hand, in 
order to meet the following requirements for quality training: 

• being as plentiful as possible while 
• remaining randomly distributed, 
• representing the actual class proportions and 
• minimizing spatial autocorrelation. 

The more extensive the data is, the more time has to be set aside for the generation of training data. 
Robust, unsupervised methods for segmenting the 3D points prior to training data selection 
facilitate the work flow. Here, methods for filtering the ground points (GP) are of utmost 
significance and numerous studies, especially progressive TIN densification (PTD) approaches, 
have produced valuable results and are under constant development (NIE et al. 2017; ZENG et al. 
2016). 
Further publications also address the problem of retrieving information from the remaining non-
ground points (NGP), in order to extract either building or vegetation point clusters (TÓVÁRI 2006; 
WANG & TSENG 2014). However, RAMIYA et al. (2016) point out, that the issue of automatically 
separating tree from building clusters, when both cluster classes are to be returned, is scarcely 
covered in literature. Again, the methods found in literature are often bound to specific landforms 
or land uses and the results also rely on the fine tuning of multiple parameters. 
Hence, any supervised classification task of large scale 3D points would benefit from a robust 
ground filtering algorithm, unaffected by varying data attributes like terrain slope or roughness. 
Furthermore, additional subsequent methods for processing the remaining NGP are also beneficial. 
Most unsupervised methods studied in the course of this thesis, rely on the fine tuning of multiple 
input parameters. 
The presented study aims at solving all afore mentioned problems. 

2 Methods 

Figure 1 displays the proposed methodology pipeline passing through every developed module, 
with the aim of facilitating training data extraction and generating additional features for the 
improvement of supervised 3D point cloud classification. 

2.1 Low outlier filter 
Outlying points below the true ground are removed, as they could otherwise cause problems with 
the ground filter. This is achieved through iteratively executing a simplified version of the ground 
filter, outlined in section 2.5.1, while inverting the z-axis after every step. 

2.2 Statistical model and parameter optimization 
A regression model, as part of the ground filter, is trained in advance with a wide range of training 
data. Based on the features resulting from the regional segmentation module, parameters for the 
ground filter and the cluster segmentation within the semi-supervised classification / segmentation 
module are optimized. 
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Fig. 1: Overview of the classification pipeline with the various processing modules grouped into 

preliminary processing modules and the main classification algorithm. Raw 3D point data is the 
input and semantically classified 3D point data the output of the pipeline. 

2.3 2D/3D point feature calculation 
Based on circular (2D), spherical (3D) and gridded (3D) local point neighborhood of each point, 
2D and 3D shape features are derived, mainly calculated from respective eigenvalues. While the 
resulting features mainly serve as input for the supervised random forest classification module, 
features like linearity, planarity or scattering are independently informative, justifying a separate 
module for the feature calculation. 

2.4 Regional segmentation 
The filtered point cloud is segmented into regions of coherent terrain slope for which additional 
features, like terrain roughness or the proportion of probable vegetation and artificial structures, 
are calculated. 

2.5 Semi-supervised classification / segmentation 
With a preceding regional segmentation, each previously segmented region is processed 
individually. With the parameters adjusted through the regression models, in a first step, the GP 
are separated from the NGP. In a second step, the NGP are spatially clustered and every cluster is 
searched for planarly organized points as an indicator of unnatural objects. The resulting categories 
are: ground, probable building cluster, probable vegetation cluster, and unclassified NGP. 

2.5.1 Ground filter 
The ground filter consists of two main algorithms. In the TIN densification, the lowest point in 
each grid cell serves as the initial TIN vertices. Based on the triangle characteristics, the regression 
model predicts the tolerated height difference for each triangle. Points with a vertical TIN distance 
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below the calculated threshold are potential GP in the next densification iteration. Once a target 
grid size is reached, the remaining GP are extracted through an entropy based ground filter. The 
switch to an entropy based ground filter substantially increases processing speeds with point clouds 
of high point density. Various optimized ground filter parameters are optionally set, based on 
preceding slope region segmentation. 

2.5.2 Cluster segmentation 
This module processes only NGP. Spatial clusters are grouped through Density-based spatial 
clustering of applications with noise (DBSCAN) and filtered by size. Planar segments are detected 
and serve as a measure for building / vegetation probability. Clusters with a probability between 
20% and 70% are split into segment and non-segment points. Points within close proximity of the 
segments are added to the resulting building cluster. The remaining points result to a vegetation 
cluster. The planar segments are further merged into individual building clusters. 

2.6 Supervised random forest classification 
The results of the preceding modules simplify the training data selection for a supervised 
classification. The supervised classification method used here is a random forest approach based 
on 2D/3D shape features of the local point neighborhood. In addition to the mandatory shape 
features, the resulting point attributes of preprocessing steps improve the classification results. 

3  Results 

For all 10 terrestrial laser scanning (TLS) reference datasets from BRODU & LAGUE (2012), none 
of which included outliers, the outlier filter adequately did not flag any points as outliers. While a 
high ratio of the present outliers is detected in many datasets, in some cases the filter misses all 
outliers. In others, often cases without any outliers present, the filter falsely classifies many points 
as outliers. In only two out of the 16 airborne laser scanning (ALS) benchmark datasets more than 
30% of the outliers were missed. In six cases all outliers were detected. The main weaknesses of 
the outlier filter are false positives in areas with jump edges or regions with few true ground points. 
Applying the outlier filter to aerial based photogrammetric point cloud data demonstrates an 
advantage of this method over methods such as statistical outlier removal. Aside from isolated low 
outliers, also outlier clusters are correctly flagged, resulting in unprecedented ground filtering 
results. 
Based on visual examination, the results from the regional segmentation module capture the 
varying terrain characteristics very well. Problems only arise in cases where erroneous ground 
filtering results, based on the default parameter set, precede. Manual adjustment of said parameters 
significantly improves the regional segmentation outcome. 
The main reference for the ground filtering results is the benchmark data from SITHOLE & 
VOSSELMAN (2003), on which a wide range of methods have been tested. With a mean total error 
of 4.90 and a mean kappa-coefficient of 84.38 the proposed ground filtering algorithm is only 
outperformed by two out of the 14 compared methods, proposed by CHEN et al. (2013, 2016), 
displaying total errors of 4.11 and 3.03 and kappa-coefficients of 86.27 and 89.44. The proposed 
method without preceding regional segmentation is thus already able to produce results similar to 
the leading methods, and additional regional segmentation cannot improve the results for the 
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benchmark datasets. Tested on data including regions of very steep terrain, the ground filter 
performance is much better, if the steep regions are segmented and processed individually with 
automatically adjusted parameters. None of the compared methods featured data of similarly steep 
terrain. It is also vital to notice, that the benchmark data was recorded in 2003 and does not 
represent the point density attainable with modern sensors. It is conceivable that, given new 
benchmark data, the proposed method displays a significant advantage in processing speed.  
A visual representation of the results of a supervised classification is displayed in figure 2. Aided 
by all previously generated results, manual training data selection is accomplished within under 
an hour, extensively covering the entire area of the data. The mean performance measures result 
to an Accuracy of 0.98, a Precision of 0.75, a Recall of 0.64 and a F1 Score of 0.67. The relatively 
low values of Precision, Recall and F1 Score can here be attributed to the classifiers inability to 
capture the cable running from the top left of the image to the bottom right corner. The F1 Scores 
for the individual classes aside from the ‘cable’ class all lie above 0.84 with F1 Scores for ‘ground’ 
and ‘high vegetation’ at 0.98. 
Aside from being valuable individual tools, the pipeline of processing modules as a whole can 
greatly facilitate training data selection, whenever a point cloud is to be manually subset into 
individual classes for supervised classification. 

 
Fig. 2: Supervised classification: unclassified – red, ground – brown, low vegetation – light green, high 

vegetation – dark green, building – blue, vehicle – yellow. The additionally trained class cable is 
not visible in the depicted image. 
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