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Relevance Assessment of Spectral Bands for Land Cover 
and Land Use Classification: A Case Study Involving 
Multispectral Sentinel-2-like and Hyperspectral Data 

MARTIN WEINMANN1 & UWE WEIDNER1 

Abstract: In this paper, we comprehensively investigate the potential of both multispectral and 
hyperspectral data for land cover and land use classification and, in this context, we 
particularly focus on comparatively assessing the relevance of involved spectral bands for the 
considered classification task. We present a framework which comprises different data-driven 
techniques for assessing the relevance of spectral bands with respect to the given classification 
task. Based on the assessed feature relevance, our framework allows selecting relevant 
features as the basis for classification for which a Random Forest classifier is used. We also 
describe a transformation of given hyperspectral data to multispectral Sentinel-2-like data 
that are commonly used for large-scale land cover and land use classification. For 
performance evaluation, we provide classification results achieved for two standard 
benchmark datasets representing an urban area and an agricultural area, respectively.  
 

1 Introduction 

Land cover and land use classification is commonly performed on the basis of aerial or satellite 
imagery representing either multispectral or hyperspectral data. In the case of multispectral data, 
the number of spectral bands is relatively low and the spectral bands are wide. In contrast, the 
number of spectral bands is relatively high for the case of hyperspectral data, while the spectral 
bands themselves are narrow. Consequently, a more characteristic description of the spectral 
properties of the Earth’s surface can be expected for the latter case in comparison to the use of 
multispectral data. 
In contrast to multispectral data, where the neighboring spectral bands are well-separated by a 
sufficiently large margin across wavelengths, the spectral bands of hyperspectral data are directly 
next to each other so that the acquired reflectance values of neighboring spectral bands tend to be 
strongly correlated. This kind of redundancy typically has a negative impact on classification 
results, so that approaches for dimensionality reduction or band selection are commonly used. 
While dimensionality reduction techniques transform the given data to a new space, band selection 
techniques allow conclusions about relationships with respect to physical properties as they retain 
a subset of the original spectral bands which, in turn, can further be used for conclusions regarding 
a diversity of environmental applications. 
In this paper, we comprehensively investigate the potential of both multispectral and hyperspectral 
data, and we thereby comparatively assess the relevance of involved spectral bands for the 
considered classification task. We present a framework which comprises different data-driven 
techniques for assessing the relevance of spectral bands with respect to the given classification 

                                                 
1 Karlsruhe Institute of Technology, Institute of Photogrammetry and Remote Sensing, Englerstraße 7, 

D-76131 Karlsruhe, E-Mail: [Martin.Weinmann, Uwe.Weidner]@kit.edu 



Dreiländertagung der DGPF, der OVG und der SGPF in Wien, Österreich – Publikationen der DGPF, Band 28, 2019 

139 

task. This includes both classifier-dependent techniques and classifier-independent techniques. 
The classifier-dependent techniques comprise 1) a sequential forward selection of spectral bands 
based on sequentially training a Linear Discriminant Analysis (LDA) classifier based on different 
sets of spectral bands and 2) the Mean Decrease in Permutation Accuracy (MDPA), a measure 
assessed during the training of a Random Forest classifier. The classifier-independent techniques 
comprise 1) a general relevance metric taking into account the relations between the given spectral 
bands and the defined classes to identify relevant spectral bands and 2) an approach taking into 
account both the relations between spectral bands and classes to identify relevant spectral bands 
and the relations among spectral bands to identify and discard redundant spectral bands. Based on 
the selected bands, we finally perform a pixel-based classification using a Random Forest classifier 
to quantify the effect on the achieved classification results. 
As the available datasets contain either hyperspectral or multispectral data, we consider commonly 
used hyperspectral benchmark datasets for which a semantic labeling is available on a per-pixel 
basis, and we adequately transform these hyperspectral datasets to multispectral Sentinel-2-like 
data using the Sentinel-2 Spectral Response Functions (S2-SRFs). For performance evaluation, we 
consider two classification tasks, one focusing on the semantic interpretation of an urban area and 
one focusing on the semantic interpretation of an agricultural area. For both classification tasks, 
the data have been acquired from an airborne platform during a low-altitude flight campaign. 
After briefly summarizing related work (Section 2), we present our framework in detail (Section 
3) and we demonstrate its performance on two benchmark datasets (Section 4). This is followed 
by a discussion of the derived results (Section 5). Finally, we provide concluding remarks and 
suggestions for future work (Section 6).  

2 Related Work 

The semantic interpretation of hyperspectral imagery may easily be achieved via a pixel-wise 
classification relying on the reflectance values across all considered spectral bands. In this context, 
the reflectance values are defined as features and used as entries of a respective feature vector, 
while the classification may be based on well-known standard classifiers such as a Support Vector 
Machine (SVM) classifier (MELGANI & BRUZZONE 2004; CHI et al. 2008) or a Random Forest 
classifier (HAM et al. 2005; JOELSSON et al. 2005). 
However, particularly for such high-dimensional classification tasks, it can often be observed that 
above a certain value a further increase of the number of involved features results in a (typically 
significant) decrease in predictive accuracy (MELGANI & BRUZZONE 2004; KELLER et al. 2016; 
BRADLEY et al. 2018). This effect is commonly referred to as the Hughes phenomenon (HUGHES 

1968) and arises from the joint consideration of more or less relevant features and possibly even 
irrelevant or redundant features with respect to the considered classification task. 
To address the Hughes phenomenon, either dimensionality reduction techniques or feature 
selection techniques are commonly applied. The latter have the advantage that they retain a 
meaningful subset of the original features with respect to the given task (i.e. the reflectance values 
corresponding to specific spectral bands with known wavelength, which may further be exploited 
for conclusions regarding feature engineering and for conclusions regarding environmental 
sciences), while discarding less relevant and/or redundant features. This, in turn, typically allows 
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gaining predictive accuracy and improving computational efficiency with respect to both time and 
memory consumption (GUYON & ELISSEEFF 2003; SAEYS et al. 2007; ZHAO et al. 2010). In the 
context of classifying hyperspectral data, such feature selection techniques resulting in the 
consideration of reflectance values across specific spectral bands have been used in several 
investigations (MELGANI & BRUZZONE 2004; LE BRIS et al. 2014; CHEHATA et al. 2014; KELLER et 
al. 2016; BRADLEY et al. 2018). Such techniques may also directly allow assessing the importance 
of single spectral bands for land cover and land use classification (LE BRIS et al. 2014; KELLER et 
al. 2016; WEINMANN & WEIDNER 2018). Typically, feature selection techniques are categorized 
with respect to filter-based methods, wrapper-based methods and embedded methods (GUYON & 

ELISSEEFF 2003; SAEYS et al. 2007; ZHAO et al. 2010; WEINMANN 2016). 
The filter-based methods rely on evaluating relations between features and classes and possibly 
also among features. In this context, the relations are described via a score function which is 
directly applied to the given training data. When only focusing on relations between features and 
classes (univariate filter-based feature selection), the relations are quantified by comparing the 
values of a feature across all data points with the respective class labels, e.g. via the correlation 
coefficient, Gini index, Fisher score, or information gain. This allows ranking the features with 
respect to their relevance. When taking into account both feature–class relations and feature–
feature relations (multivariate filter-based feature selection), it is also possible to remove 
redundancy to a certain degree. A respective approach is represented by Correlation-based Feature 
Selection (HALL 1999). In general, filter-based methods are classifier-independent and thus 
typically result in simplicity and efficiency. 
The wrapper-based methods rely on the interaction with a classifier to select features based on 
their suitability for classification. This may be achieved via Sequential Forward Selection (SFS) 
where, beginning with an empty feature subset, it is successively tested which feature can be added 
to the feature subset so that the predictive accuracy of the classifier increases the most. 
Alternatively, a Sequential Backward Elimination (SBE) may be conducted where, beginning with 
the set of all features, it is successively tested which feature can be removed from the feature subset 
so that the predictive accuracy of the classifier is decreased the least. In general, however, the 
exhaustive interaction with a classifier tends to cause a high computational burden. 
The embedded methods rely on the interaction with a classifier which provides the capability to 
internally select the most relevant features during the training phase, e.g. a Random Forest 
classifier (BREIMAN 2001). In contrast to wrapper-based methods, the involved classifier has to be 
trained only once to allow concluding about the relevance of involved features and the 
computational effort is therefore still acceptable in comparison to wrapper-based methods. 
Besides such feature selection techniques, a transformation of hyperspectral data to multispectral 
data may be applied, where particularly Sentinel-2-like data are of interest as they are 
systematically acquired for Earth observation with short revisit times (SPOTO et al. 2012). Such a 
transformation has been introduced for simulating Sentinel-2 and other multispectral imagery in 
general (THONFELD et al. 2012), for assessing agricultural land use based on simulated Sentinel-2 
data (ELBERTZHAGEN et al. 2012) and for simulating Sentinel-2 products that are relevant for 
geological and soil analyses (VAN DER MEER et al. 2014). Furthermore, such a transformation 
allows reasoning about the potential of multispectral data in comparison to hyperspectral data for 
land cover and land use classification (WEINMANN et al. 2018). 
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3 Methodology 

An overview of the applied methodology is shown in Fig. 1. Given a hyperspectral data cube, we 
first derive the original data representation and its transformation to multispectral Sentinel-2-like 
data. Subsequently, we focus on feature relevance assessment to draw conclusions about the 
relevance of considered spectral bands with respect to the classification task. In this context, we 
involve 1) a wrapper-based feature selection method relying on a Linear Discriminant Analysis 
(LDA) classifier, 2) an embedded feature selection method relying on the Mean Decrease in 
Permutation Accuracy (MDPA) assessed with a Random Forest (RF) classifier (BREIMAN 2001; 
LIAW & WIENER 2002), 3) a univariate filter-based feature selection method relying on a general 
relevance metric (GRM) proposed in (WEINMANN 2016) and 4) a multivariate filter-based feature 
selection method relying on the Correlation-based Feature Selection (CFS) method (HALL 1999). 
Finally, a supervised classification based on a Random Forest (RF) classifier (BREIMAN 2001) is 
performed. In the following, we first focus on the two options for the data representation (Section 
3.1). Subsequently, we explain the four applied data-driven techniques for feature relevance 
assessment (Section 3.2) and the used approach for supervised classification (Section 3.3) with 
more details.  

 

  
Fig. 1: Overview of our framework with different components for data representation, feature relevance 

assessment and supervised classification. 

3.1 Data Representation 

In our work, we consider the original representation of hyperspectral data (Section 3.1.1) and its 
transformation to multispectral data in the form of Sentinel-2-like data (Section 3.1.2) as input for 
subsequent processing steps. 

3.1.1 Original Data Representation 

The straightforward approach consists in using the given representation of the data, where we 
simply concatenate the reflectance values across all given spectral bands to obtain the respective 
feature vectors on a per-pixel basis. 
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3.1.2 Transformation of Hyperspectral Data to Sentinel-2-like Data 

We also transform the original representation of hyperspectral data to multispectral Sentinel-2-like 
data (WEINMANN et al. 2018). In this context, we first identify those spectral bands of the 
hyperspectral data which are within the 13 spectral bands corresponding to Sentinel-2 data. The 
reflectance values corresponding to these hyperspectral bands, in turn, are used to derive a 
reflectance value for each considered spectral band of the Sentinel-2 data. More specifically, we 
consider the weighted mean of the reflectance values, where the weights are determined via linear 
interpolation based on the Sentinel-2 Spectral Response Functions (S2-SRFs) which are depicted 
in Fig. 2.  

 

 
Fig. 2: Visualization of the Sentinel-2 Spectral Response Functions (S2-SRFs), i.e. the measured 

spectral responses for each band of the Sentinel-2 MultiSpectral Instrument (MSI) (WEINMANN et 
al. 2018). 

However, for a classification task focusing on the use of Sentinel-2 data to derive thematic maps 
with respect to a variety of land cover and land use classes, not all of the 13 given spectral bands 
contain valuable information (WEINMANN & WEIDNER 2018). The reflectance values 
corresponding to the spectral bands B1 (center wavelength of 443 nm), B9 (945 nm) and B10 (1375 
nm) are not considered, because they correspond to parts of the spectrum where the atmospheric 
transmission is low, e.g. due to ozone (O3), oxygen (O2) or water vapor (H2O) which strongly 
affect the atmospheric transmissivity at specific wavelengths. Furthermore, the reflectance value 
corresponding to the spectral band B8 (842 nm) is not considered, because it is overlapping with 
the spectral band B8a but much wider and less characteristic. Consequently, we only use those 
reflectance values corresponding to the spectral bands B2 (490 nm), B3 (560 nm), B4 (665 nm), B5 
(705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm) and B12 (2190 nm). 

3.2 Feature Relevance Assessment 

Given the different data representations, we proceed with assessing the relevance of features (i.e. 
spectral bands) via an exhaustive interaction with a classifier (Section 3.2.1), via a classifier-
internal metric (Section 3.2.2), and via classifier-independent schemes (Sections 3.2.3 and 3.2.4).  
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3.2.1 Wrapper-Based Sequential Forward Selection of Spectral Bands 

A classifier-dependent feature relevance assessment may be achieved by sequential forward 
selection via interaction with a classifier. Thus, we derive a feature ranking by starting with an 
empty set of features and successively adding the feature that improves the predictive accuracy of 
the involved classifier the most when added to the given feature set. This procedure is repeated 
until all features have been added. Consequently, we obtain the rank 𝑟 of a feature 𝑓௜ with 𝑖 ൌ
1, … , 𝑁௙ and we define the relevance 𝑅 ∈  ሾ0,1ሿ of the feature 𝑓௜ according to  

𝑅ሺ𝑓௜ሻ ൌ 1 െ
𝑟ሺ𝑓௜ሻ െ 1

𝑁௙ െ 1
 

so that relevant features are characterized by values close to 1, while irrelevant features are 
characterized by values close to 0. In this context, we take into account that exhaustive 
comparisons of feature vectors via the Euclidean distance as performed with a Nearest Neighbor 
(NN) classifier result in a high computational burden, particularly when considering high-
dimensional feature vectors. Furthermore, we take into account that some classifiers such as a 
Support Vector Machine (SVM) classifier or a Random Forest (RF) classifier require an additional 
tuning of internal parameters during the training process (i.e. the kernel width and the cost 
parameter in case of the SVM classifier, or the number of decision trees, the maximum tree depth, 
etc. in case of the RF classifier), which also results in a high computational effort. Consequently, 
we involve a classifier which does neither require such a tuning nor rely on the evaluation of 
Euclidean distances between feature vectors. More specifically, the chosen classifier is represented 
by a Linear Discriminant Analysis (LDA) classifier relying on the principle of probabilistic 
learning. In the training stage, it is assumed that the instances of different classes follow a Gaussian 
distribution in the feature space. Accordingly, the training of the LDA classifier consists in fitting 
a multivariate Gaussian distribution to the given training data, where the parameters of a Gaussian 
distribution have to be estimated for each class. Due to a lack of knowledge about the behavior of 
single classes in the feature space, the same covariance matrix is assumed for each class so that 
only the means vary for the different classes. In the prediction stage, the class probabilities are 
evaluated for each feature vector to be classified and the label of the class with the maximum 
probability is selected.  

3.2.2 Feature Ranking via an Embedded Method  

To directly assess the relevance of the given spectral bands with respect to the considered 
classification task, we use a Random Forest classifier (BREIMAN 2001) which represents an 
embedded method for feature selection, since it allows assessing feature relevance via the 
consideration of the Mean Decrease in Permutation Accuracy (MDPA). In this regard, the main 
idea consists in training each decision tree of the Random Forest classifier on a randomly chosen 
subset of the training data, i.e. a bootstrap sample, and then performing the prediction for the data 
which are not in the bootstrap sample, i.e. the out-of-bag (OOB) data (LIAW & WIENER 2002). 
Subsequently, the OOB predictions of all trees are aggregated and an error rate is derived. To 
estimate the relevance of a feature, it is tested how much the prediction error increases if OOB 
data for that feature is randomly permuted, while all others are left unchanged. Using the MDPA 
as feature importance and sorting the features accordingly, we obtain the rank 𝑟 of a feature 𝑓௜ with 
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𝑖 ൌ 1, … , 𝑁௙ and we define the relevance 𝑅 ∈  ሾ0,1ሿ of the feature 𝑓௜ as done for the wrapper-based 
sequential forward selection method in the previous section. 

3.2.3 Feature Ranking via a General Relevance Metric 

To directly assess the relevance of the given spectral bands with respect to the considered 
classification task, we also apply a classifier-independent approach for feature ranking via a 
general relevance metric (GRM) (WEINMANN 2016). This metric is a compound metric defined on 
the basis of filter-based feature selection methods and makes use of the given training data. More 
specifically, each of the filter-based methods relies on a score function which evaluates relations 
between features and classes to distinguish between relevant and irrelevant features. For each 
feature, its values across all feature vectors given in the training data are concatenated to a vector 
whose "correlation" with the corresponding label vector is evaluated and represented by a real-
valued score. In this context, different score functions may be used which address different 
intrinsic properties of the given training data (e.g. distance, information, dependency or 
consistency). To achieve a robust feature relevance assessment taking into account different 
intrinsic properties of the given training data, we involve seven score functions (Pearson 
correlation coefficient, Fisher score, Gini index, information gain, χ2-test, t-test and ReliefF) and 
derive a separate ranking with respect to each score function. For more details about these score 
functions, we refer to (WEINMANN 2016) and references therein. As a result, we get the rank 𝑟 of 
a feature 𝑓௜ with 𝑖 ൌ 1, … , 𝑁௙ given the score function 𝑠௝. Averaging the ranks derived for the 
feature 𝑓௜ across all 𝑛௦ ൌ 7 score functions yields the mean rank 𝑟̅: 

𝑟̅ሺ𝑓௜ሻ ൌ
1
𝑛௦

෍ 𝑟ሺ𝑓௜|𝑠௝ሻ

௡ೞ

௝ୀଵ

 

On this basis, the relevance 𝑅 of the feature 𝑓௜ is defined according to 

𝑅ሺ𝑓௜ሻ ൌ 1 െ
𝑟̅ሺ𝑓௜ሻ െ 1

𝑁௙ െ 1
 

with 𝑅 ∈  ሾ0,1ሿ.  

3.2.4 Filter-Based Selection of a Meaningful Subset of Spectral Bands 

To directly derive a meaningful subset of the given spectral bands, we focus on feature subset 
selection. For this purpose, we use a filter-based feature selection method which is referred to as 
Correlation-based Feature Selection (CFS) (HALL 1999). This method takes into account 1) the 
correlation between features and classes to identify relevant features and 2) the correlation among 
features to identify and discard redundant features. More specifically, CFS exploits the average 
correlation 𝜌̅ி஼ between features and classes as well as the average correlation 𝜌̅ிி among classes 
to evaluate the relevance 𝑅 of a feature subset comprising 𝑛 features: 

𝑅 ൌ
𝑛𝜌̅ி஼

ඥ𝑛 ൅ 𝑛ሺ𝑛 െ 1ሻ𝜌̅ிி

 

Here, the correlation metric is defined via the symmetrical uncertainty 𝑆𝑈 (HALL 1999) with  
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𝑆𝑈ሺ𝑋, 𝐶ሻ ൌ
2 𝑀𝐼ሺ𝑋, 𝐶ሻ

𝐸ሺ𝑋ሻ ൅ 𝐸ሺ𝐶ሻ
 

where 𝑋 and 𝐶 represent random variables for the features and classes, respectively. The term 
𝑀𝐼ሺ𝑋, 𝐶ሻ represents the mutual information between 𝑋 and 𝐶, while the terms 𝐸ሺ𝑋ሻ and 𝐸ሺ𝐶ሻ 
represent Shannon entropies indicating the distributions of feature values and classes, respectively. 
Deriving a suitable feature subset thus corresponds to maximizing the relevance 𝑅 over the feature 
subset space in an iterative manner. This means that, given an initial feature subset, either a feature 
is added to the feature subset (forward selection) or a feature is removed from the feature subset 
(backward elimination) until the relevance 𝑅 converges to a stable maximum. 

3.3 Supervised Classification 

For classification, we focus on a standard supervised classification based on a Random Forest (RF) 
classifier (BREIMAN 2001) which relies on the principle of ensemble learning. In the training stage, 
an ensemble of randomly trained decision trees is generated via bootstrap aggregating ("bagging") 
(BREIMAN 1996), i.e. various subsets of the training data are randomly drawn with replacement 
and an individual decision tree is trained for each subset. In the prediction stage, for a new feature 
vector to be classified, each decision tree casts a vote for one of the defined classes and the majority 
vote is selected to obtain the most probable class label. To select suitable values for the internal 
parameters of the Random Forest classifier (i.e. for the number of involved decision trees, the 
maximum tree depth, etc.), we conduct a grid search on a suitable subspace. 

4 Experimental Results 

In the following, we consider two classification tasks, one focusing on the semantic interpretation 
of an urban area and one focusing on the semantic interpretation of an agricultural area. First, we 
describe the used datasets (Section 4.1). Subsequently, we explain the conducted experiments and 
present the achieved results (Section 4.2). 

4.1 Datasets 

For our experiments, we use two benchmark datasets representing an urban area and an agricultural 
area. Both datasets are publicly available in a repository of hyperspectral remote sensing scenes: 
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes 

4.1.1 Pavia Centre Dataset 

The Pavia Centre Dataset was acquired with the Reflective Optics System Imaging Spectrometer 
(ROSIS) during a low-altitude flight campaign over the city of Pavia, Italy. The considered scene 
corresponds to an urban area and the acquired data are represented in the form of two images with 
a size of 1096×223 pixels and 1096×492 pixels, respectively. Each pixel corresponds to an area of 
1.3 m×1.3 m and comprises hyperspectral information on 102 spectral bands. In total, the Pavia 
Centre Dataset consists of about 784k pixels of which 7,456 have been labeled with respect to 9 
semantic classes as shown in Fig. 3, while no labels are provided for the remaining pixels. 
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Fig. 3: Reference labels for the Pavia Centre Dataset: each pixel is characterized by reflectance values 

on 102 spectral bands. Unlabeled pixels are indicated in black. 

4.1.2 Salinas Dataset 

The Salinas Dataset was acquired with the Airborne Visible / Infrared Imaging Spectrometer 
(AVIRIS) during a low-altitude flight campaign over Salinas Valley in California, USA. The 
considered scene corresponds to an agricultural area which is mainly characterized by vegetables, 
corn, bare soils and vineyards, and the acquired data are represented as an image with a size of 512 
× 217 pixels. Each pixel corresponds to an area of 3.7 m × 3.7 m and, after the removal of 20 water 
absorption bands, comprises hyperspectral information on 204 spectral bands. In total, the Salinas 
Dataset consists of about 111k pixels of which 54,129 have been labeled with respect to 16 
semantic classes as shown in Fig. 4, while no labels are provided for the remaining pixels.  

 

 
Fig. 4: Reference labels for the Salinas Dataset: each pixel is characterized by reflectance values on 

204 spectral bands. Unlabeled pixels are indicated in black. 
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4.2 Experiments and Results 

Our framework is tested on a standard laptop computer (Intel Core i7-6820HK, 2.7 GHz, 4 cores, 
16 GB RAM, Matlab implementation). For the RF classifier, we use the implementation provided 
with (LIAW & WIENER 2002). This implementation also allows assessing the MDPA used for 
feature selection. For CFS and the score functions used for filter-based feature selection, we use 
implementations provided with (ZHAO et al. 2010), while we apply the GRM following the 
implementation used in (WEINMANN 2016). 
First, we focus on the classification results derived with different configurations of our framework, 
i.e. with different feature (sub)sets provided as input to the RF classifier. In this context, we take 
into account that the wrapper-based feature selection method relying on a LDA classifier, the 
embedded feature selection method relying on the MDPA of a RF classifier and the GRM allow 
quantifying feature relevance and thus ranking the features according to their relevance with 
respect to the given classification task. However, unlike the CFS method, they do not retain a 
recommendation for the number of best-ranked features that should be used as the basis for 
classification. Hence, for the hyperspectral data, we follow (BRADLEY et al. 2018) and select the 
best-ranked features covering about 20% of all available features. For the Pavia Centre Dataset, 
we thus use subsets of the 20 best-ranked features, while we use subsets of the 40 best-ranked 
features for the Salinas Dataset. The quantitative classification results are provided in Tab. 1 in 
terms of overall accuracy (OA), κ-index (κ) and mean F1-score across all classes (mF1), and the 
qualitative classification results are provided in Fig. 5. With these results, we also provide results 
derived for the transformation of the hyperspectral data to multispectral Sentinel-2-like data. 

 

Tab. 1: Classification results derived for different feature (sub)sets provided as input to a RF classifier.  

Pavia Centre OA (in %) κ (in %) mF1 (in %) 
 Salinas OA (in %) κ (in %) mF1 (in %) 

All Features 96.50 95.05 90.50  All Features 87.13 85.69 92.19 

LDA Wrapper 95.53 93.68 88.62  LDA Wrapper 86.38 84.87 91.37 

RF-MDPA 96.22 94.65 89.59  RF-MDPA 86.95 85.49 92.16 

GRM 86.68 81.69 76.03  GRM 85.72 84.16 91.13 

CFS 96.48 95.01 90.60  CFS 87.14 85.71 92.32 

Sentinel-2 96.37 94.86 90.01  Sentinel-2 85.84 84.26 91.08 

 

In the next step, we focus on feature relevance assessment using the described methods, i.e. 1) the 
wrapper-based feature selection method relying on a LDA classifier, 2) the embedded feature 
selection method relying on the MDPA of a RF classifier, 3) the GRM and 4) the CFS. For the 
latter, we take into account that it retains a subset of features without a ranking. Hence, we assign 
the selected features a relevance of 1 and all others a relevance of 0. CFS retains 21 features for 
the Pavia Centre Dataset and 36 features for the Salinas dataset. For all involved methods, the 
derived relevance of the considered spectral bands is visualized in Fig. 6 for the Pavia Centre 
Dataset and in Fig. 7 for the Salinas Dataset. Furthermore, the feature relevance assessment results 
for the transformation to multispectral Sentinel-2-like data are depicted in Fig. 8. 
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Fig. 5: Classification results achieved for the Pavia Centre Dataset (first row and second row) and for 

the Salinas Dataset (third row) when using different feature (sub)sets: the color encoding follows 
the definitions provided in Figs. 3 and 4. 
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Fig. 6: Relevance of the spectral bands of the Pavia Centre Dataset when using the wrapper-based 

feature selection method relying on a LDA classifier (blue), the embedded feature selection 
method relying on the MDPA of a RF classifier (orange), the GRM (green) and the CFS (yellow). 
For the latter, selected features are assigned a relevance of 1 and all others a relevance of 0. 

 

 
Fig. 7: Relevance of the spectral bands of the Salinas Dataset when using the wrapper-based feature 

selection method relying on a LDA classifier (blue), the embedded feature selection method 
relying on the MDPA of a RF classifier (orange), the GRM (green) and the CFS (yellow). For the 
latter, selected features are assigned a relevance of 1 and all others a relevance of 0. 
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Regarding feature relevance assessment, the involved wrapper-based method requires processing 
times of about 3 min 23 s and 41 min 24 s for the Pavia Centre Dataset and the Salinas Dataset, 
respectively. The MDPA is derived in 0.46 s and 2.20 s, the GRM in 4.95 s and 14.03 s, and the 
CFS in 0.69 s and 1.16 s for the Pavia Centre Dataset and the Salinas Dataset, respectively. 

 

           
Fig. 8: Relevance of the Sentinel-2-like spectral bands derived from the Pavia Centre Dataset (left) and 

the Salinas Dataset (right) when using the wrapper-based feature selection method relying on a 
LDA classifier (blue), the embedded feature selection method relying on the MDPA of a RF 
classifier (orange), the GRM (green) and the CFS (yellow). For the latter, all features are selected 
and assigned a relevance of 1. The band IDs refer to the bands B2, B3, B4, B5, B6 and B7 for the 
Pavia Centre Dataset and to the bands B2, B3, B4, B5, B6, B7, B8a, B11 and B12 for the Salinas 
Dataset. 

5 Discussion 

The derived classification results reveal that the classification of the Pavia Centre Dataset seems 
to be less challenging than the classification of the Salinas Dataset when considering the overall 
accuracy (Tab. 1). Intuitively, this might be due to the fact that there are only 9 classes of interest 
to be classified for the Pavia Centre Dataset and these classes are likely to be more distinctive, 
whereas the Salinas Dataset has 16 classes of interest which might have a higher similarity. 
However, the mean F1-score across all classes reveals that instances of the different classes are on 
average better identified for the Salinas Dataset than for the Pavia Centre Dataset (Tab. 1). A look 
at the confusion matrices and class-wise evaluation metrics derived from these reveals that most 
of the classes of the Salinas Dataset are very well recognized and only the classes C08 
("Grapes_untrained") and C15 ("Vinyard_untrained") are not as well recognized. As instances of 
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these two classes occur frequently in the test data, the values for OA are worse. For the Pavia 
Centre Dataset, most of the classes can be well recognized and only the class C04 ("Self-Blocking 
Bricks") seems to be challenging due to the different materials which elements of this class might 
be composed of.  
Furthermore, the derived classification results indicate that the different feature (sub)sets provided 
as input to the RF classifier tend to deliver results of similar quality (Tab. 1 and Fig. 5), even 
though very different strategies for feature selection are involved. In comparison to the use of all 
features, however, there is a significant reduction regarding the dimensionality of the considered 
feature vectors, as only about 20% of the given features are considered for all cases. A deeper 
analysis of the feature relevance assessment results (Figs. 6 and 7) reveals that the best-ranked and 
hence selected spectral bands are well-distributed across all available spectral bands. Interestingly, 
even the transformation of the given hyperspectral data to multispectral Sentinel-2-like data yields 
classification results of a similar, but slightly worse quality compared to the other approaches. This 
indicates that Sentinel-2-like data already provide a good source of information for land cover and 
land use classification, while the use of hyperspectral data seems to only slightly improve the 
results. Furthermore, the derived results indicate that multispectral Sentinel-2-like data seem to 
have a low degree of redundancy, so that the CFS method (which aims at reducing redundancy 
contained in the considered data) does not discard any of the given features (Fig. 8). 

6 Conclusions 

In this paper, we have comprehensively investigated the potential of both multispectral and 
hyperspectral data for land cover and land use classification and, in this context, we have also 
focused on comparatively assessing the relevance of involved spectral bands for the considered 
classification task. We have presented classification results achieved by using the original 
hyperspectral data as input to a Random Forest classifier, and we have demonstrated the potential 
of applying well-established approaches for feature selection: 1) a wrapper-based feature selection 
method relying on a Linear Discriminant Analysis classifier, 2) an embedded feature selection 
method relying on an internal metric of a Random Forest classifier, 3) a univariate filter-based 
feature selection method relying on a general relevance metric and 4) a multivariate filter-based 
feature selection method also allowing to reduce the degree of redundancy in the considered data. 
In addition, we have included a transformation of the given hyperspectral data to multispectral 
Sentinel-2-like data that are relevant for land cover and land use classification. The results derived 
for two benchmark datasets clearly reveal that Sentinel-2-like data already seem to provide a good 
source of information for land cover and land use classification, while the use of hyperspectral 
data (with or without well-established approaches for feature selection) seems to only provide a 
slight improvement for such a task. This is particularly interesting for large-scale land cover and 
land use mapping applications, where the use of Sentinel-2 data would correspond to a 
significantly less expensive data acquisition and a much faster repetition of data acquisition for the 
same area over time.  
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