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Creating Models of Custom Image Classification Workflows 
Using Machine Learning Techniques 

JASON D. WOLFE1, THOMAS BAHR2 & NICOLAI HOLZER2 

Abstract: Machine learning algorithms are becoming increasingly popular for image classi-
fication due to their robustness and accuracy. This study demonstrates a streamlined process 
for comparing the accuracy of different machine learning classifiers using a visual modelling 
tool. The classifiers included ensemble learning methods such as AdaBoost, Random Forest, 
and Extra Trees; along with traditional methods such as Maximum Likelihood and Minimum 
Distance. Classification models were built and run using Sentinel-2A imagery of a study area 
with vegetation land-cover classes that were spectrally similar. The Random Forest and Extra 
Trees classifiers yielded overall accuracies of 100% for 145,514 training samples. The Ada-
Boost classifier yielded an overall accuracy of 93% for 210,235 samples. The traditional Max-
imum Likelihood and Minimum Distance yielded lower accuracies: 84% and 45% for 147,601 
samples.  
 

1 Introduction 

With the continued advancement of new machine learning algorithms, the options that are availa-
ble for image classification have increased significantly. Comparing the performance and accuracy 
of multiple classification algorithms can be time-consuming, particularly if analysts choose to 
write programming (API) code. This study shows how a visual modelling tool can provide a 
streamlined process to building custom image classification workflows.  
Visual models allow for easy customization by interchanging different trainers and classifiers. In-
puts, outputs, data management operations, and processing tasks can be linked with a drag-and-
drop user interface instead of learning API code.  
A case study demonstrates the use of simple models to run multiple supervised classification work-
flows with Sentinel-2A multispectral imagery. The workflows use three machine learning algo-
rithms from the Python “scikit-learn” package (PEDREGOSA et al. 2011): 
 AdaBoost 
 Extra Trees 
 Random Forest 
Two additional workflows were built and run using Minimum Distance and Maximum Likelihood 
classifiers, which are traditional remote sensing algorithms. 
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2 Methodology 

A case study was designed to test the effectiveness of ensemble-based machine learning classifiers 
in discriminating among land-cover classes that were spectrally similar. 

2.1 Study Area 

The study area is in eastern Texas, USA. The site was chosen because it contains a mix of land 
cover classes that are predominantly vegetative such as wetlands, forest, agriculture, and range-
land. The area of interest is bounded by coordinates 30.96 – 31.04°N, 96.74 – 96.84°W (Figure 1). 

 

Fig. 1: U.S. Geological Survey orthophoto mosaic of study area (left) and overview map (right) (WOLFE 
et al. 2018). 

2.2 Data Processing 

A Sentinel-2A Level-1C image of the study area was used for image classification. The image was 
acquired on 8 August 2017. Level-1C images are calibrated to top-of-atmosphere reflectance (ESA 
2015a). The following processing steps were used with ENVI® 5.5 software to prepare the image 
for analysis: 
 Creating a layer stack of the visible and near-infrared bands, while resampling the 20-meter 

bands to 10 meters. 
 Defining a spatial subset around the area of interest. 
 Using the Quick Atmospheric Correction (QUAC) tool to correct the image for atmospheric 

effects. Pixels represent surface reflectance. 
 Creating and applying a mask of all non-vegetation features such as roads, water, and build-

ings. 
The resulting dataset contained 10 spectral bands, listed in Table 1. 
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Tab. 1: Sentinel-2A spectral bands and associated central wavelengths (ESA 2015b). 

Band Wavelength (nm) Band Wavelength (nm) 
B2 ‒ Blue  492.4  B6 ‒ Vegetation Red Edge 740.5 
B3 ‒ Green  559.8 B7 ‒ Vegetation Red Edge 782.8 
B4 ‒ Red  664.6 B8A ‒ Narrow NIR 864.7 
B8 ‒ NIR  835.1 B11 ‒ SWIR 1613.7 
B5 ‒ Vegetation Red Edge  704.1 B12 ‒ SWIR  2202.4 

 
Field studies to validate ground truth were not feasible, so training data consisted of samples of 
image pixels that belonged to five feature types: “Nonforested Wetland”, “Rangeland”, “Forest”, 
“Grass / Pasture”, and “Cropland” (Figure 2). Distinguishing between these land-use types using 
remote sensing imagery can be challenging since many areas contain a mix of land-use types. In 
seldom cases the categories are defined by abrupt boundaries, except for possibly “Cropland”. 

 
Fig. 2: U.S. Geological Survey orthophoto mosaic of study area with regions of interest (ROI) training 

samples. 

Data-processing steps are described more detailed in WOLFE et al. (2018). 

2.3 Machine Learning Classifiers 

Machine learning algorithms offer a relatively accurate and efficient way to perform image clas-
sification. They can be trained using an initial image and training data, and then used to classify 
other similar images. For this study, three supervised classifiers were selected from the Python 
“Scikit-learn” package (PEDREGOSA et al. 2011). These are ensemble learning methods, which 
train individual decision trees and combine the results to yield the most accurate prediction (SAINI 
& CHOSH 2017). 
The AdaBoost algorithm (FREUND & SCHAPIRE 1995; ZHU et al. 2009) fits a classifier on an orig-
inal dataset, then fits more copies of the classifier on the same dataset using adjusted weights. This 
focuses the training on the incorrectly classified pixels. 
The Random Forest algorithm has only recently been applied in land-use classification (e. g. KUL-

KARNI & LOWE 2016). It is a decision tree-based classifier whereby several classifiers are trained 
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and their results are combined based on the votes given by each tree. Random Forest is effective 
at estimating the importance of individual variables in multi-source classification. 
The Extra Trees, or extremely randomized, algorithm (GEURTS et al. 2006) is a decision tree-based 
classifier. When looking for the optimal split to separate samples of a node into two groups, it 
draws random splits for each of the randomly selected features. It then chooses the best split. This 
method is known for its computational efficiency. It is a more randomized version of Random 
Forest. 
These classifiers have significantly less user-defined parameters than traditional machine learning 
classifiers such as Support Vector Machine (SVM). This makes them ideal candidates for users 
who are new to remote sensing.  
The Python algorithms were imported into IDL® 8.7 and converted to ENVITasks so that the clas-
sifiers could run within the ENVI® environment. 

2.4 Classification Models 

Five classification models were built using the ENVI® 5.5 Modeler, each using a different classi-
fier. These models were simple to construct as they all had the same basic elements (except for the 
classifier). Figure 3 shows an example of the Extra Trees model. The yellow nodes represent EN-
VITask-based operations such as extracting training data, defining the classifier parameters, clas-
sifying the input image, and exporting the accuracy results to a JSON file on disk. Similar models 
were built for the Random Forest and AdaBoost classifiers. 

 
Fig. 3: Extra Trees classification model. 

 
Fig. 4: Minimum Distance classification model. 

When building models, users must define the parameters for each classifier. The following values 
were used for the decision tree-based classifiers: 
 Maximum Nodes: 75 
 Number of Trees (Extra Trees and Random Forest): 125 
 Number of Estimators (AdaBoost): 100 
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The Maximum Likelihood and Minimum Distance (Figure 4) classifiers did not require any user-
defined parameters other than the input image and training ROIs. 

3 Results and Discussions 

Figures 5-9 show the classification images produced from each model. Tables 2-6 show the result-
ing accuracy statistics. 
The Extra Trees and Random Forest classifiers yielded overall accuracies of 100% for 145,514 
training samples. This high accuracy is not uncommon for ensemble-based machine learning clas-
sifiers, particularly with an increased number of nodes (75) and trees (125).  
The AdaBoost machine learning classifier yielded an overall accuracy of 93% for 210,235 sam-
ples.  
In general, these three classifiers effectively discriminated between the five mixed-vegetation 
land-use types.  
The two traditional classifiers – Maximum Likelihood and Minimum Distance – yielded accura-
cies of 84% and 45% for 147,601 samples. 

 
Fig. 5 & Tab. 2: AdaBoost classification image and classifier accuracy metrics. 

AdaBoost Wetland Rangeland Forest Grass / Pasture Cropland 
Producer Accuracy 0.98 0.93 0.81 0.88 0.97 
User Accuracy 1.00 0.92 0.92 0.87 0.95 
Error of Commission 0.00 0.08 0.08 0.13 0.05 
Error of Omission 0.02 0.07 0.19 0.11 0.02 
F1 0.99 0.92 0.86 0.87 0.96 
Recall 0.98 0.93 0.81 0.88 0.97 

Overall accuracy: 0.93 Kappa coefficient: 0.89 
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Fig. 6 & Tab. 3: Random Forest classification image and classifier accuracy metrics. 

Random Forest Wetland Rangeland Forest Grass / Pasture Cropland 
Producer Accuracy 1.00 1.00 1.00 1.00 1.00 
User Accuracy 1.00 1.00 1.00 1.00 1.00 
Error of Commission 0.00 0.00 0.00 0.00 0.00 
Error of Omission 0.00 0.00 0.00 0.00 0.00 
F1 1.00 1.00 1.00 1.00 1.00 
Recall 1.00 1.00 1.00 1.00 1.00 

Overall accuracy: 1.00 Kappa coefficient: 1.00 

 
Fig. 7 & Tab. 4: Extra Trees classification image and classifier accuracy metrics. 

Extra Trees Wetland Rangeland Forest Grass / Pasture Cropland 
Producer Accuracy 1.00 1.00 1.00 1.00 1.00 
User Accuracy 1.00 1.00 1.00 1.00 1.00 
Error of Commission 0.00 0.00 0.00 0.00 0.00 
Error of Omission 0.00 0.00 0.00 0.00 0.00 
F1 1.00 1.00 1.00 1.00 1.00 
Recall 1.00 1.00 1.00 1.00 1.00 

Overall accuracy: 1.00 Kappa coefficient: 1.00 
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Fig. 8 & Tab. 5: Maximum Likelihood classification image and classifier accuracy metrics. 

Maximum Likelihood Wetland Rangeland Forest Grass / Pasture Cropland 
Producer Accuracy 0.83 0.79 0.93 0.84 0.83 
User Accuracy 0.51 0.67 0.94 0.68 0.98 
Error of Commission 0.49 0.33 0.06 0.32 0.02 
Error of Omission 0.17 0.21 0.06 0.16 0.17 

Overall accuracy: 0.84 Kappa coefficient: 0.76 

 
Fig. 9 & Tab. 6: Minimum Distance classification image and classifier accuracy metrics. 

Minimum Distance Wetland Rangeland Forest Grass / Pasture Cropland 
Producer Accuracy 0.50 0.73 0.77 0.57 0.28 
User Accuracy 0.26 0.25 0.88 0.40 0.69 
Error of Commission 0.73 0.75 0.12 0.60 0.31 
Error of Omission 0.50 0.27 0.23 0.43 0.72 

Overall accuracy: 0.45 Kappa coefficient: 0.28 
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4 Conclusions 

This research demonstrated how ensemble-based machine learning classifiers were more effective 
at discriminating among similar land-use classes than traditional classifiers. Python machine learn-
ing tools were imported into IDL and converted to ENVITasks. After this initial setup, the ENVI-
Tasks could be used in the ENVI® Modeler. The use of models made the process of testing classi-
fiers and comparing results much more efficient, compared to writing API code or invoking tools 
through a user interface. Model nodes can be easily interchanged to accommodate different trainers 
and classifiers. Models can also be packaged and deployed to desktop and cloud-computing envi-
ronments for reuse and further customization. As more machine learning classifiers are imple-
mented in ENVI® software in the future (without the need for a Python-to-IDL interface), the 
opportunity for building and testing classification models will be simpler and more streamlined. 
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