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Encoder-Decoder network for local structure 
preserving stereo matching 

JUNHUA KANG1, 2, LIN CHEN2, FEI DENG1 & CHRISTIAN HEIPKE2 

Abstract: After many years of research, stereo matching remains to be a challenging task in 
photogrammetry and computer vision. Recent work has shown great progress by formulating 
dense stereo matching as a pixel-wise learning task to be resolved with a deep convolutional 
neural network (CNN). In this paper we investigate a recently proposed end-to-end disparity 
learning network, DispNet (MAYER et al. 2015), and improve it to yield better results in some 
problematic areas. The improvements consist in two major contributions. First, in order to 
handle large disparities, we modify the correlation module to construct the matching cost vo-
lume with patch-based correlation. We also modify the basic encoder-decoder module to re-
gress detailed disparity images with full resolution. Second, instead of using post-processing 
steps to impose smoothness and handle depth discontinuities, we incorporate disparity gradi-
ent information as a regularizer to preserve local structure details in large depth discontinuity 
areas. We evaluate our model in terms of end-point-error on several challenging stereo data-
sets such as Scene Flow, Sintel and KITTI. Experimental results demonstrate that our model 
achieves better performance than DispNet on most datasets (e.g. we obtain an improvement 
of 36% on Sintel) and estimates better structure-preserving disparity maps. Moreover, our 
proposal also achieves competitive performance compared to other methods. 
 

1 Introduction 

Stereo matching has continuously been an active research area in photogrammetry and computer 
vision. It is widely used in different applications, such as robotics and autonomous driving, 3D 
model reconstruction, object detection and recognition. The core task of stereo matching is to find 
pixel-wise correspondences between images, and thus to calculate the parallax (called disparity in 
computer vision) of corresponding pixels between images. 
Recently, deep learning techniques have shown powerful capability for stereo matching. Convo-
lutional neural networks (CNN) (LECUN et al. 1998) have first been introduced to calculate match-
ing costs in Maching Cost CNN (MC-CNN) (ZBONTAR & LECUN 2016). Instead of using hand-
crafted matching cost metrics, the authors present a Siamese CNN for measuring the similarity 
between image patches. Most other recently suggested patch based stereo methods also focus on 
using CNN to generate unary terms as similarity measure (CHEN & YUAN 2016; LUO et al. 2016). 
Though patch based similarity measurements out-perform traditional hand-crafted ones, these al-
gorithms require extra post-processing steps and hand-crafted regularization to produce complete 
disparity results. Therefore, some researchers suggested using an end-to-end network to directly 
estimate the disparity from stereo images. DispNet is first such end-to-end learning framework 
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(MAYER et al. 2015), which was derived from FlowNet (DOSOVITSKIY et al. 2015). Both of them 
are restricted to rectified stereo images. The network architecture follows a coarse- to- fine fashion 
called auto encoder-decoder structure. It encodes the high-level semantic information at low reso-
lution through successive convolutions and activations and then decodes the result back to the 
original resolution by successive deconvolutions. DispNet achieves considerable performance 
compared to traditional and patch based learning approaches in terms of both accuracy and speed. 
However, average error loss used in DispNet results in over-smoothing in output disparity, which 
leads to losing local structure details, especially in large disparity discontinuity areas. In addition, 
we find that DispNet has lower accuracy for large disparities. 
In this paper, we use DispNet as the basic architecture and present a gradient regularizer for local 
structure preserving stereo matching. The horizontal and vertical gradients of the disparity map 
convey information about significant depth differences in the scene and local structure, which can 
be used to improve estimated disparity maps. In order to avoid over-smoothing in output disparity, 
especially around large disparity discontinuities, we add a gradient regularizer based on depth gra-
dient information into our network to preserve sharp structure details. In addition, we modify the 
correlation layer in the cost volume construction module to deal with large disparities in large scale 
scenes. Finally, we also modify the structure of the encoder-decoder module to preserve more 
spatial information and output a full resolution disparity map. 
The remainder of this paper is structured as follows: we review the related work of stereo matching 
based on CNNs in Section 2. Section 3 presents our methodology. Experimental results and anal-
ysis are illustrated in Section 4, followed by a set of conclusion in Section 5. 

2 Related work 

There is a lot of literature focusing on stereo matching research. A traditional pipeline for stereo 
matching includes four steps, which are matching cost computation, cost aggregation, disparity 
calculation and finally disparity refinement (SCHARSTEIN & SZELISKI 2002). Since current state-of-
the-art studies focus on stereo matching employing deep learning techniques, we restrict our re-
view to those CNN based methods. These approaches estimate disparities which can reflect part 
or all of the aforementioned four steps; they can be roughly divided into three categories: patch-
based matching cost learning, post-processed regularity learning, and end-to-end disparity learn-
ing. 
Patch-based matching cost learning. In this category, CNNs are introduced to compute the 
matching cost of image patches. MC-CNN (ZBONTAR & LECUN 2016) is a Siamese network com-
posed of a series of stacked convolutional layers to extract descriptors of each image patch, fol-
lowed by a decision module for measuring similarity. Luo et al. (LUO et al. 2016) expand on Zbon-
tar’s work and propose a notably faster Siamese network to learn a probability distribution over 
all possible disparities without manually pairing patch candidates. Chen and Yuan (CHEN & YUAN 
2016) propose a multi-scale CNN to introduce global context by employing down-sampled images 
and increase the matching accuracy without enlarging the input patch. Although the patch based 
methods outperform most traditional stereo matching methods, which use hand-crafted features, 
they still require subsequent post-processing steps to produce complete results.  
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Post-processed regularity learning. This category learns regularization and focuses on the post-
processing of disparity maps. Scharstein and Pal (SCHARSTEIN & PAL 2007) earn the parameters of 
conditional random fields (CRFs) to replace heuristic priors on disparities. Li and Huttenlocher 
(LI & HUTTENLOCHER 2008) train a non-parametric CRF model with explicit occlusion labeling by 
using a structured support vector machine (CORTES & VAPNIK 1995). Guney and Geiger (GUNEY 
& GEIGER 2015) incorporate semantic segmentation and object recognition in a super-pixel based 
CRF framework to learn regularization and resolve ambiguities in reflective and textureless re-
gions. Seki and Pollefeys (SEKI & POLLEFEYS 2017) propose a SGM-Net to learn penalty parame-
ters for different 3D object structures. They obtain better penalties than hand-tuned SGM 
(HIRSCHMULLER 2008) and mitigate streaking artifacts that appear in MC-CNN.  
End-to-end disparity learning. Approaches in this category incorporate matching cost computa-
tion and hand-crafted post-processing into a single learning process for joint optimization and train 
the whole network in an end-to-end mode. The first end-to-end stereo matching network is DispNet 
(MAYER et al. 2015), which has a similar structure that FlowNet (DOSOVITSKIY et al. 2015). 
DispNet is an encoder-decoder architecture for disparity regression. Given a pair of rectified im-
ages, it explicitly extracts features in the encoder part and then directly estimates the disparity map 
in the decoder part by minimizing a regression training loss based on the absolute difference be-
tween prediction and ground truth disparity. DispNet has achieved prominent performance and has 
become a baseline network in stereo matching. Several studies have tried to improve its perfor-
mance by stacking multiple networks together based on this baseline architecture. For instance, 
CRL (PANG et al. 2017) is a cascade residual learning network, stacking an advanced DispNet and 
a residual network together for explicitly refining initial disparity. GC-Net (KENDALL et al. 2017) 
regresses disparity by employing 3D convolutional layers to exploit more context information. 
Similar to GC-Net, PSM-Net (SHAKED & WOLF 2017) uses spatial pyramid pooling and 3D con-
volutions to incorporate contextual information on different scales. However, high-dimensional 
feature based 3D convolution is computationally expensive. DenseMapNet (ATIENZA 2018) uses 
Dense Convolutional Networks (DenseNet) (HUANG et al. 2017) instead of the encoder-decoder 
structure to reduce the number of learning parameters. Although this network is fast to train, the 
results show limitations in terms of preserving structure details. To enforce smooth disparities, a 
disparity smoothness loss is introduced in an unsupervised deep neural network for single image 
depth estimation (GODARD et al. 2017). This smoothness loss is added with an edge-aware term 
using original image gradients. Inspired by this method, we apply a gradient regularizer on dispar-
ity estimation in a supervised way based on the gradients of prediction and ground truth disparity 
to preserve local structure details.  

3 Methodology 

In this study, we aim to improve performance in some problematic areas by adding some modifi-
cation to DispNet. The input of our network is two rectified stereo images. First, we modify the 
correlation module of DispNet to deal with large disparities and modify the structure of the en-
coder-decoder part to obtain a disparity map with the same resolution as the input. Second, under 
the assumption that the desired disparity map should be locally smooth except at actual disconti-
nuities, we present a gradient regularizer to preserve sharp structure details. 
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3.1 Network structure 

The schematic structure of our proposed network is depicted in Fig. 1. This is a data-driven model 
that enables end-to-end disparity learning. From Fig. 1, it can be observed that our encoder-decoder 
network is composed of three main parts, namely feature extraction, cost volume construction, and 
disparity estimation.  
Feature extraction. In this part we extract features by a Siamese structure with two shared-
weights branches.  In each branch, we employ two convolutional layers, conv_1, conv_2, to learn 
the unary features, which are followed by a rectified linear unit (ReLU), respectively. As shown 
in Fig. 1, the weights between the two branches of the feature extraction part are shared. It means 
that the network learns the same type of feature from the two input images. The output feature 
maps from this module are then applied to the correlation module to extract the correspondence 
prior between left and right images. 
Cost Volume Construction. After having obtained deep unary features from the two Siamese 
branches, the cost volume can be constructed based on these features. Because the correlation is 
indeed an effective cue for finding conjugate pairs, we explicitly encode this relationship in our 
model, which enables our network to capture correspondences between the stereo pairs. As the 
input stereo images are rectified images, the y-coordinates of conjugate points are identical. Sim-
ilar to DispNet, we can use a 1-D correlation layer along the x-direction (epipolar line) to construct 
the cost volume. First, let 𝑀, 𝑀ோ denote the left and right feature maps with w, h, c representing 
their width, height and number of channels, respectively. Then, the cost volume C is created by 
convolving the left and right feature maps 𝑀, 𝑀ோ up to the maximum disparity 𝑑. The correla-
tion of two patches (i.e. context windows) centered at 𝑥ଵ in 𝑀and 𝑥ଶ in 𝑀ோis defined as  
Cሺ𝑥ଵ, 𝑥ଶሻ ൌ ∑ 〈𝑀ሺ𝑥ଵ  𝑜ሻ, 𝑀ோሺ𝑥ଶ  𝑜ሻ〉∈ሾି,ሿൈሾି,ሿ                                    (1) 
where K ൌ 2k  1 is the patch size and 〈∙〉 means the convolution operation.. We restrict the search 
space of possible patch-pairs by setting the maximum displacement along the epipolar line. For 
each location 𝑥ଵ in 𝑀, we compute the correlation Cሺ𝑥ଵ, 𝑥ଶሻ only in the interval [x2 = x1, x2 = x1 + 

𝑑], which implies a one sided search on 𝑀ோ. We set 𝑑 to 40 and increase the stride from 1 to 2 
when computing the cost volume C by sliding M_L over M_R. In this way, our network can handle 
large correlation distances (40*4*2=320 pixel, note that from the first and second convolutional 
layers the feature map is downsampled by a factor of 4) without any extra computation and 
memory cost. After creating the resulting multi-channel maps and organizing the relative displace-
ments in channels, we obtain a 3D cost volume of size ሺw ൈ h ൈ ሺ𝑑  1ሻሻ.  
Encoder-Decoder module. Given the disparity cost volume, the next step is to learn a regulariza-
tion function to refine our disparity estimation. We modify the deep encoder-decoder module of 
DispNet to output detailed disparity with the same resolution as the input. The architecture of our 
encoder-decoder network is presented in Fig. 1. The encoder part encodes sub-sampled features 
from the input and captures high-level representations by interleaving convolutional layers and 
pooling. It enables the network to explicitly leverage context with a wide field of view. However, 
it results in reduced resolution with multiple convolutions of stride 2. Therefore, unlike DispNet, 
which uses 4 groups of convolutional layers to downsample the features with a factor of 64, we 
only stack 3 groups of convolutional layers in the encoder to preserve more spatial context. Each 
group contains two 3 × 3 convolutions with strides of 2 and 1 respectively, achieving an encoded 
feature map with dimension ሺ𝑊 32⁄ ൈ 𝐻 32⁄ ൈ 𝐶 32⁄ ሻ where W, H, C represent the width, height, 
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and channels, respectively. In order to obtain dense per-pixel predictions with the original input 
resolution, we apply 5 up-sampling blocks corresponding to six scales (1/32, 1/16,
1/8, 1/4, 1/2, 𝑎𝑛𝑑 1 ൈ 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒) in the decoder part to refine the coarse representation. 
Each block consists of a 4×4 deconvolution layer with stride of 2 to up-sample the encoded output. 
Similar to DispNet, skip connections are also used in the decoder part to preserve both the high-
level coarse and the low-level fine information. In addition, we connect the left original image 
with deconvolution features, as shown in Fig. 1, to output more accurate and full resolution dis-
parity maps, which is different from DispNet. 

 
Fig. 1: Architecture overview of proposed method 

3.2 Complementary loss 

We train our model end to end with supervised learning using ground truth disparity data. In order 
to preserve local structure details in the output disparity, we present a gradient regularizer as an 
auxiliary loss. So, the loss for training contains two parts: the disparity regression term and the 
gradient regression term. 
For the disparity regression loss ℒ, we use the end point error (EPE), the absolute Euclidean 
distance between the disparity D predicted by the model and the ground truth disparity 𝐷, averaged 
over the valid pixels. We adopt the ℓଵ norm to regularize prediction which is widely used in pre-
vious methods. Thus, the disparity regression loss ℒ is formulated as: 
 

ℒ ൌ
ଵ

ேೡ
∑ ฮ𝐷, െ 𝐷,ฮ

ଵ,∈௩                                                     (2) 

where ‖∙‖ଵ denotes the ℓଵ norm, 𝑣 represents all valid disparity pixels in 𝐷  and 𝑁௩ is the number 
of valid pixels. As ground truth disparity maps are sometimes sparse (e.g. KITTI dataset (GEIGER 

et al. 2012; MENZE et al. 2015)), we average our loss over the valid pixels 𝑁௩, for which ground 
truth labels are available. 
Besides the above disparity regression term, we use a new gradient term in our loss by considering 
large disparity discontinuities. We apply a new gradient regularizer on the disparity field to en-
courage similar change of disparities in the predicted and the ground truth disparity map and thus 
achieve more effective regularization. This is a key difference between our method and DispNet. 
As depth discontinuities are often accompanied by large disparity gradients, horizontal and vertical 
gradients of the disparity map convey information about significant depth differences in the scene 
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and local structure, which can be used to improve the quality of disparity maps. We minimize 
differences between gradients of the estimated disparity map and the ground truth to achieve an 
increase in performance. We apply the ℓଵ norm to disparity gradients with the gradient regression 
loss ℒ defined as： 

ℒ ൌ
ଵ

ேೡ
∑ ቂฮ∇௫𝐷, െ ∇௫𝐷,ฮ

ଵ
 ฮ∇௬𝐷, െ ∇௬𝐷,ฮ

ଵ
ቃ,                                                (3) 

Where ‖∙‖ଵ denotes the ℓଵ norm, ∇௫ and ∇௬ are the horizontal and vertical gradient of the disparity 
maps. This gradient regression term encourages an estimated disparity map to have a similar local 
structure as a target disparity map and also encourages the network to find a local optimum to 
balance between the disparity and the gradient structure of the surfaces. The network is trained by 
minimizing the loss function E which is a weighted sum of these two terms, while 𝜆 controls the 
relative importance of the gradient regularizer in the optimization. 

𝐸 ൌ ℒ  𝜆ℒ                                                              (4) 

4 Experiments and Results 

4.1 Dataset 

In this paper, we use the synthetic Scene Flow dataset to train our model, and then evaluate it on 
some public competitive synthetic and real stereo datasets. An overview of these datasets is given 
in Tab. 1. 

Tab. 1 Overview of datasets used in our experiment 

Dataset Name 
Frames for 

training 
Frames 

for testing 
Ground Dis-

parity 
Synthetic or 
Real World 

Resolution 

Scene 
Flow 

FlyingThings3D 21818 4248 100% 

Synthetic  

960×540 

Driving 8591 - 100% 960×540 

Monkaa 4392 - 100% 960×540 

KITTI 
dataset 

KITTI2015 200 200 
50% 

(sparse) 
Real world  

1242×375 

KITTI2012 194 195 
50% 

(sparse) 
1226×370 

MPI Sintel 1064 564 100% Synthetic  1024×436 

HCI 330 - Real world 656×541 

Scene Flow (MAYER et al. 2015) is a large synthetic dataset for stereo matching, first designed and 
used in DispNet for training CNNs to estimate disparity. This dataset is rendered by computer 
graphics methods and provides accurate dense ground truth, which is large enough to train a com-
plex network. It contains three subsets and has more than 39,000 stereo frames in 960×540 pixel 
resolution. In this paper, we only use the FlyingThings3D subset to train our model. The Driving 
and Monkaa datasets are only used to evaluate our method and baselines. 
The KITTI dataset was produced in 2012 (GEIGER et al. 2012) and extended in 2015 (MENZE et al. 
2015, 2018). It contains stereo images of real-world complex road scenes collected from a cali-
brated pair of cameras mounted on a driving car. It provides 200 stereo frames with sparse ground 
truth obtained from a 3D laser scanner. Since the laser only provides sparse data up to a certain 
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distance and height and labels in some areas (e.g. sky) are hard or impossible to obtain, the ground 
truth in these areas are not available. 
MPI Sintel (WULFF et al. 2012) is also an entirely synthetic dataset, which is created in the Blender 
software by rendering artificial scenes from a short open source animated 3D movie. It has 1064 
training frames and provides dense ground truth disparities with large displacement, which is a 
very reliable test for comparison of methods. In this work, we use its final version because it con-
tains sufficiently realistic scenes including natural image degradations.  
HCI (MEISTER et al. 2012) is a challenge outdoor dataset, which contains eleven real-world scenes 
with a huge variety of different weather conditions, different motion, and depth layers. It has 330 
frames and no ground truth. In this work, we only use it to show the visual quality of our method. 

4.2 Implementation details 

Training: We implemented our architecture and training phase using the Tensorflow framework 
(ABADI et al. 2015) and optimized our model end-to-end by choosing the Adam optimizer with 
default momentum parameters, β1 = 0.9 and β2 = 0.999. Due to hardware limitations, we trained 
the network on a Titan X GPU with a mini batch size of 4 image pairs. The training images were 
resized to 368*760 and preprocessed by normalizing them to zero mean and a standard deviation 
of 1. Since we used ReLu as activation functions and observed that “He initialization” (HE et al. 
2015) worked better for layers with ReLu activation, we chose the “He initialization” method to 
initialize the weights of our network. We set the starting learning rate λ to be 1e-4 and then divided 
it by half every 150k-th iteration after the first 200k iterations. To avoid overfittings, we employed 
L2 regularization with a weight decay strength d=0.0004. The training weights of our final model 
were obtained at the 719k-th iteration because there was no improvement for 5 consecutive vali-
dations after this iteration. In addition, we performed online augmentation to introduce more var-
iation in the training data, which includes geometric transformations (translation, scale) and chro-
matic transformations (brightness, contrast, gamma, and color). 
Testing: we pre-trained our model on the FlyingThings3D dataset and evaluated it on other da-
tasets. For evaluation of results, we used the EPE measure, which calculates the average Euclidean 
distance between predicted and ground truth disparity along all valid pixels. We also compared the 
performance of our method with other disparity estimation methods.  

4.3 Results 

In order to explore the effectiveness of our proposed method, we conduct two experiments on the 
aforementioned datasets. At the same time, we adopt DispNet as the baseline model; we present 
the qualitative and quantitative results. 
Tab. 2 reports the corresponding experiment results in terms of EPE, where “Baseline” represents 
the model of DispNet, “Model_Final” represents our final model with all modifications and 
“Model_NoG” is the model without gradient regularizer. By comparing the results of the 
“Model_Final” to the “Baseline”, we see that our model outperforms the baseline network in most 
cases and the EPE values are improved significantly (e.g. 27.9% on the Driving and 36.2% on the 
Sintel dataset).  Since the Driving and Sintel datasets have larger disparities than the other datasets, 
the significant improvements on these two datasets can be directly attributed to our modification 
of the correlation module.  
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The improvement in visual quality is also distinct from the qualitative results, as show in Fig. 2. 
Compared with the baseline, our method performed noticeably better. We see that not only the 
resolutions of the disparity maps are improved, but also more detailed structures of the scenes are 
captured. For instance, the disparity estimates within the red boxes are improved by our method in 
Fig. 2. Furthermore, in large disparity discontinuity areas, our method can preserve clear edge 
details and produce correct disparity estimates because of using the gradient regularizer, as indi-
cated by the red rectangular in Fig. 2. 

    

    

    

    
            left image                           Ground truth                        baseline                          Model_Final  

Fig. 2:  Visual results of our model and baseline model. (Colum 1: Left image; Colum 2: ground truth; 
Colum 3: results predicted by baseline network. Colum 4: results predicted by our final model.) 

As mentioned above, we use an additional gradient regularizer in the loss function to penalize 
discontinuity on disparity maps. By comparing the results of the “Model_Final” to the 
“Model_NoG”, we could verify the effectiveness of this gradient regularizer. From Tab. 2, we 
observe that the EPE values of the model with gradient regression loss (Model_Final) are slightly 
smaller than the model without gradient regression loss.  
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Tab. 2: EPE of different models on different datasets. The last row shows the improved accuracy when 
comparing ‘Model_Final’ to the baseline (first number) and to ‘Model_NoG’ (second number) 

Dataset Flying3D Monkaa Driving Sintel KITTI2015 KITTI2012 

Baseline 1.68 5.78 12.46 5.66 1.59 1.55 

Model_NoG 1.74 4.60 9.53 3.66 1.56 1.49 

Model_Final 1.71 4.58 8.98 3.61 1.54 1.43 

Improved(%) -1.8/1.2 20.8/0.4 27.9/5.8 36.2/1.4 3.1/1.3 7.7/4.0 

 
Since the EPE metric often favors over-smoothed solutions, it is interesting to also inspect quali-
tative results. Fig. 3 shows visual examples from “Model_Final” and “Model_NoS”.  As illustrated 
in the red box area, by using the gradient regularizer, our model performs well around the bound-
aries of objects. It is able to regularize the output effectively while learning to maintain sharpness 
and local structure details in the output disparity map. This is especially noticeable for the large 
disparity discontinuous area. These results indicate that utilizing the gradient regularizer has a 
positive impact on the performance.  

 

 

 
       Grount truth/left image                           Model_NoS                                          Model_Final  

Fig. 3:  Comparison of results with and without the gradient regularizer. (Left: ground truth or left image; 
Middle: results predicted by Model_NoG without the gradient regularizer. Right: results pre-
dicted by our final model with the gradient regularizer. Note that we also give an example of a 
real world dataset “HCI” without ground truth in the third row.) 
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In addition, we investigate how well our method performs when compared with previously pub-
lished methods, see Tab. 3. It is observed that, our end-to-end model achieves the best disparity 
estimation performance in terms of EPE in most cases, which demonstrates the strong generaliza-
tion possibilities of our model. We note that SGM performs the worst. This confirms that CNN-
based stereo matching algorithms have an explicit advantage for disparity estimation compared 
with more traditional methods. From Tab. 3, we see that the EPE values of MC-CNN-fs are larger 
than any other end-to-end method. That is because it needs extra post-processing steps to estimate 
complete disparity, which mainly decides the accuracy. The main contribution of DenseMapNet 
is reducing the parameter size and computation time. The results show this network has the least 
parameters and performs the best on the Driving dataset, with 0.3M parameters. However, the EPE 
values on other datasets are worse than those of our network. The above comparison demonstrates 
that our model achieves competitive performance through modification of correlation module and 
our gradient regularizer. 

Tab.3 Comparison results of our model with other methods (EPE) 

Dataset Flying3D Monkaa Driving Sintel KITTI2015 KITTI2012 Parameters 

SGM 8.70 20.16 40.19 19.62 7.21 10.06 --- 

MC-CNN-fast 4.09 6.71 19.58 11.94 --- --- 0.6M 

Baseline 1.68 5.78 12.46 5.66 1.59 1.55 36M 

DenseMapNet 5.07 4.45 6.56 4.41 2.52 --- 0.3M 

Our method 1.48 3.92 8.31 3.07 1.37 1.21 37M 

5 Conclusions 

In this paper, we have modified the baseline network DispNet, which we investigated experimen-
tally. We increased the correlation range when computing the cost volume correlation module to 
handle large disparities. At the same time, a gradient regression loss derived from disparity gradi-
ent information is combined with the disparity regression loss to preserve sharper local structure 
details in large depth discontinuity area. The performance of our approach was evaluated on sev-
eral challenging stereo datasets. The experiments demonstrate that our method achieves competi-
tive performance and predicts more accurate and more detailed disparity maps in specific areas.  
We believe that semantic context information is crucial for stereo matching, especially in texture-
less regions. In the future work, we will investigate how to integrate semantic context to improve 
the performance in weakly textured area. At the same time, we will introduce more quality criteria, 
for instance, depth consistency (KOCH et al. 2018), for the evaluation of our method. 
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